FREACSIM - A Framework for Creating and Simulating
Real-Time Capable Network on Chip Systems and
Applications

Dominik Schoenwetter
Chair of Computer Science 3
(Computer Architecture)

Ronald Veldema
Chair of Computer Science 2
(Programming Systems)

Dietmar Fey
Chair of Computer Science 3
(Computer Architecture)

Friedrich-Alexander-University ~ Friedrich-Alexander-University  Friedrich-Alexander-University

Erlangen-Nirnberg (FAU)
Martensstr. 3, 91058
Erlangen, Germany

dominik.schoenwetter

@fau.de

ABSTRACT

This paper presents the new Framework for Real-time capa-
ble Embedded system and ArChitecture SIMulation
(FREACSIM), a highly configurable full-system simulation
environment enabling and easing the modeling, simulation
and verification of Network on Chip architectures for hard
real-time systems. The framework is mostly geared towards
software developers, supporting them in the simulation of
NoCs at an instruction accurate level and offers a broad
variety of real-world hardware components as part of the
integrated virtualization toolbox.

FREACSIM provides a software-based routing strategy
between nodes, with a single node consisting of a processor
and required peripherals for enabling real-time capability.
This allows a flexible and independent comparison of cur-
rently implemented hardware strategies, as well as an easy
adaption to better suit new hardware needs. The software-
based routing, as well as distributed applications that can
be implemented for the NoC hardware design, are able to
use the real-time operating system eCos, which is part of
our framework. As a result, real-time capable software can
be implemented for, and tested on, complex NoC systems.

We demonstrate the flexibility and the benefits of our
framework with a set of applications (use cases), which cover
typical heavy and light load distributions between commu-
nication and computation.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and embedded
systems; D.4.7 [Operating Systems]: Organization and
Design— Real-time systems and embedded systems; 1.6 [Si-

Erlangen-Nirnberg (FAU)
Martensstr. 3, 91058
Erlangen, Germany

ronald.veldema@fau.de

Erlangen-Nirnberg (FAU)
Martensstr. 3, 91058
Erlangen, Germany

dietmar.fey@fau.de

mulation and Modeling]: Miscellaneous

General Terms

Design, Performance

Keywords

Embedded, Network on Chip, Real-Time, Simulation, Soft-
ware-Based Routing

1. INTRODUCTION

Over the last few years, parallel computing has gained
more and more attention in different sectors of embedded in-
dustry. Most importantly in the automotive domain where
hard real-time requirements and many other life critical con-
straints exist. Although, much innovation in this area is
driven by entertainment systems and visualization, the
amount of required compute performance also increases in
more sensible areas, such as engine controllers and ambient
sensor data acquisition and processing, e.g. LIDAR (LIght
Detection And Ranging). For a long time, single core de-
signs were powerful enough to satisfy performance require-
ments. As we slowly reached similar constraining factors
as in desktop environments almost a decade ago, these de-
mands cannot be satisfied any longer. As a consequence,
even real-time requirements could not be met any longer.
Thus, the change to multi-core designs was a necessary step
to increase performance and guarantee those hard real-time
requirements. At the moment, more and more functionality
is added to real-time capable applications and, as a conse-
quence, more computing power is needed to satisfy the re-
quirements. That resulted in Network on Chip architectures
and systems, respectively, where hardware developers disso-
ciate from traditional bus systems. Even if these systems
are not used as the standard in current electronic systems,
they will play a central role in the future of the embedded
domains where hard real-time requirements exist.

From our point of view, the domains, where hard real-
time is required, have many ideas how the respective NoC-
hardware architecture can look like for their use cases, but
often have none concrete idea what is the best. As a con-
sequence, the likelihood of changes to the hardware layout

SIMUTOOLS 2015, August 24-26, Athens, Greece
Copyright © 2015 ICST
DOI 10.4108/eai.24-8-2015.2260960



during the design phase is very high. To avoid that often
difficult and cost-intensive effort, the usage of an environ-
ment that emulates the embedded Network on Chip hard-
ware would be of great advantage. By using this method-
ology the hardware can be modified, whenever necessary,
without the effort of actual hardware redesigns. That is a
big advantage for software developers as well. During the
period of time of the redesign, software developers have no
actual hardware to implement software for. This can result
either in stagnation or bad code that does not exploit the
features of the redesigned hardware. As a result, software
developers often want a full-system simulation environment
that enables them to develop and test their software quickly
on emulated hardware, does not require too much time for
the simulation and enables them flexibility in many ways.
Concerning to fast simulation times and software evalua-
tion, the instruction accurate simulation level is very well
suited. It’s not as detailed as the cycle accurate level or
levels below, but full-system simulation is possible, not only
at a functional level. In comparison to the instruction ac-
curate level, the cycle accurate level is very slow concerning
to simulation speed. Weaver and McKee showed that there
can be discrepancies of hours up to days [23].

A software developer also wants flexibility concerning to
routing and communication. Routing algorithms, like XY
routing [16] or wormhole routing [20], that are implemented
in hardware, do not offer flexibility from a point of view
of switching and routing. Often some leeway is required in
the scope of flexibility, independence and performance. A
software-based routing strategy enables the just mentioned
flexibility. As a consequence, an easy adaption to better suit
new hardware needs is possible.

On these grounds, we developed the Framework for Real-
time capable Embedded system and ArChitecture SIMula-
tion (FREACSIM), that targets software developers in the
first instance. FREACSIM is an instruction accurate full-
system simulation environment that enables the creation
and simulation of a large number of real-time capable em-
bedded NoC architectures in a fast way. Because the frame-
work is a full-system environment, software developers have
the possibility to simulate their applications on real-time ca-
pable embedded NoC architectures. Furthermore, FREAC-
SIM provides a software-based routing solution that enables
the implementation of distributed and real-time capable ap-
plications. The possibility of implementing real-time capa-
ble applications is obtained by the real-time operating sys-
tem eCos (embedded Configurable operating system, [4]),
which is included into our software-based routing and eluci-
dated in section 4.

To avoid starting from scratch, we decided to use an ex-
isting instruction accurate simulation environment as the
simulation engine of our framework which can be adapted
to our needs. This allows more flexibility in our designs, be-
cause emulated hardware components are already available.
We choose Open Virtual Platforms provided by Imperas.
With the aid of OVP it is possible to build single- up to
many-core hardware architectures, add desired peripherals
and simulate real application code [14]. Because of the abil-
ity to establish multi- and many-core architectures running
real application code, it is possible to develop distributed
applications that can be simulated, verified and evaluated.
That is an important feature for our work and one of the
reasons why we chose OVP as the virtual environment. An-

other reason why this environment was chosen is, that OVP
offers a wide range of processor and peripheral models for
the simulation. As a consequence FREACSIM can be ex-
tended to more hardware components, if necessary. Because
OVP is an instruction accurate simulator, as explained in
section 3, the simulations are very fast.

This paper is organized as follows. The next section shows
an overview of existing simulation environments and solu-
tions, as well as further related work. In section 3 and sec-
tion 4, a short overview of OVP and eCos is given. Section
5 describes the framework FREACSIM and its tools. The
software applications (use cases) we implemented for demon-
strating the flexibility and the benefits of our framework are
illustrated in section 6. Afterwards, the results of our mea-
surements are shown (section 7). The paper concludes with
a short summary and an outlook on future work.

2. RELATED WORK

There is a wide range of free as well as commercial Net-
work on Chip simulators and frameworks available. One
commercial variant is NetSim [11]. NetSim is provided by
Boson and uses Boson’s proprietary simulation and routing
tools. This simulator is only available for Windows and the
focus is on routing and switching. NetSim enables the simu-
lation of routers, switches as well as PCs. Supported are 42
different routers and 6 different switches. The focus of this
simulator is not on embedded Network on Chip systems.

One free variant of a network simulation tool is Graphite,
presented by Miller et al. in 2010 [19]. This simulator of-
fers the possibility to simulate hundreds or even thousands
of cores. Graphite is not a complete cycle-accurate simu-
lator, it uses different techniques to provide accurate per-
formance results. The simulation environment offers pro-
cessors, a memory subsystem, cache models as well as a
network for realizing interconnections. All these models use
further analytical timing models to guarantee accurate re-
sults. However, the focus of Graphite is not on embedded
systems.

The probably most widespread free and open source em-
ulation environment is QEMU [8]. In most cases, QEMU is
used to run one operating system on another, e.g. Windows
on Linux. Because QEMU can be stopped during execution
and the current state can be examined, debugging is also a
use case. QEMU supports a couple of embedded processors,
but does not target the embedded domain directly.

A simulation environment that focuses on the network
simulation of NoC systems is BookSim [15]. This simulator
is designed to be cycle accurate, but no full-system simula-
tor that is able to simulate nodes and processors of nodes,
respectively. The simulator provides accurate modeling of
network components as well as flexibility. Flexibility is given
by the possibility of configuring network parameters like the
topology, flow control or the routing algorithm that shall
be used. Furthermore, the microarchitecture of the router
can be configured, including the management of buffers and
different allocation schemes.

An environment that focuses on virtual prototyping of
multi-processor system on chips (MP-SoC) is SoCLib [22].
SoCLib provides a wide range of processor and peripheral
models, for example MIPS32 and ARM. Furthermore, the
usage of real-time operating systems like eCos is supported.
This environment enables simulations at the cycle accurate
level as well as the bit accurate level. Because all models are



written in SystemC [6], the ability to simulate at transaction
level is given, too.

A cycle accurate Network on Chip interconnection model
called Garnet [7] was published in 2009 by Agarwal et al.
The model is embedded into the GEMS (General Execution-
driven Multiprocessor Simulator, [5]) environment. Details,
such as flit-level input buffers or routing logic are modeled.
GARNET in conjunction with GEMS provides a detailed, as
well as accurate, timing model of the memory system. They
evaluated the benefits and the potential of their model by
comparing it against the network model provided by GEMS.
Their setup consisted of 16 in-order 2-way SPARC proces-
sors with 64 KB L1 I&D caches, L2 and direct caches, as well
as 4 memory controllers and the respective NoC interconnec-
tion model. GEMS is no longer under active development.
The development has been shifted to the gem5 simulation
system, an open source software, which is discussed in the
next paragraph.

The gem5 simulation environment [9] combines the ben-
efits of the M5 [10] and the GEMS environments. M5 is a
configurable simulation environment offering multiple ISAs
(instruction set architectures) as well as various CPU mod-
els. The CPU can be configured to operate on different
levels of detail and accuracy. In combination with GEMS,
gemb provides a detailed and flexible memory system as well
as interconnection models. A wide range of instruction set
architectures (e.g. x86, ALPHA or MIPS) is supported by
gemb. This simulation environment is not designed to be
pure instruction accurate and targets the embedded domain
partially.

Madsen et al. published a paper on a modeling environ-
ment for embedded System-on-Chip (SoC) designer, dealing
with multiprocessor architectures [17]. They are focusing
on real-time applications and the interconnection of single
processors using NoCs. The base for their modeling envi-
ronment is SystemC. As a consequence, the environment
is neither complete cycle accurate nor complete instruction
accurate what impacts the simulation performance in com-
parison to a complete instruction accurate environment.

Recently, Schoenwetter et al. made eCos available to
the simulation environment OVP [21]. They validated their
work by showing that their implementation of an engine con-
trol unit software that uses eCos and was simulated within
Open Virtual Platforms works. Imperas, the founder of
Open Virtual Platforms, published that work on their web-
site [1].

3. THE SIMULATION ENVIRONMENT
OPEN VIRTUAL PLATFORMS™

We use Open Virtual Platforms (OVP) as the engine that
drives the simulation of our Network on Chip architectures.

The instruction accurate simulation technology from Open
Virtual Platforms was developed for high performance sim-
ulation. The technology enables debugging applications,
which run on the virtual hardware, as well as analysis of
virtual platforms containing multiple processor and periph-
eral models. The OVP simulation technology is extensible.
Furthermore, it provides the ability to create new proces-
sor models and other platform components by writing C
or C++ code that uses application programming interfaces
(APIs) and libraries supplied as part of OVP [13].

OVP multi-component platforms (multi-processor plat-

forms or single core platforms with a specified number of
peripherals) are not working simultaneously. For efficiency,
each processor and peripheral, respectively, advances a cer-
tain number of instructions in turn. So in multi-component
simulations a single component is simulated until it has sig-
naled that it has finished its quantum. The quantum is
defined as the time period in which each component in turn
simulates a certain number of instructions [13]. The just
mentioned and changeable time period is called a time slice.
Simulated time is moved forward only at the end of a quan-
tum. This can create simulation artifacts, for example where
a processor spends time in a wait loop, while waiting for
the quantum to finish. To avoid this the quantum has to
be set very low (perhaps even to one, which will have a
significant impact on simulation performance) so that the
measurements will not be affected by this simulation arti-
facts. The time slice can be adjusted in the simulator set-
tings [14]. The simulation can only figure out how many
instructions were executed. Assuming a perfect pipeline,
where one instruction is executed per cycle, the instruction
count divided by the mips rate (millions of instructions per
second) would give the amount of time the program runs.
The OVP-simulator provides the possibility for measuring
instruction counts within a program. As a consequence, the
instruction counts for specific code snippets can be recorded.

4. OVERVIEW ABOUT ECOS

eCos (embedded configurable operating system) is a free
real-time operating system designed for embedded systems.
A wide variety of popular embedded processor architectures
is supported. This makes eCos a good choice for end users
that have to deal with many diverse hardware architectures.
The design of eCos corresponds to a configurable component
architecture consisting of several key software components
such as the kernel and the HAL (Hardware Abstraction
Layer). This allows the construction of a complete embed-
ded system from these reusable software components. Fur-
thermore, different configuration options within the software
component can be chosen and unused software components
can be removed. To summarize, an operating system that
specifically matches the requirements of an application can
be created.

An application that uses eCos runs as a part of the op-
erating system, contrary to operating systems like Linux.
Thus, an eCos application is a monolithic block where the
operating system and the application are not considered sep-
arately.

eCos provides a multilevel queue scheduler and a bitmap
scheduler. The multilevel queue scheduler is able to execute
multiple threads of the same priority level. This scheduler
allows preemption between the different priority levels. The
bitmap scheduler is able to execute threads at multiple pri-
ority levels, too. However, just a single thread can exist at
each priority level. As a result, the bitmap scheduler is very
efficient because the same priority level for two threads is
forbidden what simplifies the scheduling algorithm [18].

Our framework supports the usage of both schedulers.

S. THE FRAMEWORK FREACSIM

The framework FREACSIM is able to generate simulation
models of various real-time capable embedded Network on
Chip architectures and to simulate these simulation mod-



Y v v Y Y Y v v D : Computation node
MO RO M1 R1 M2 R2 M3 R3 : Routing node
™~ L L L] .
N N 3\ N M| : Shared memory
g g g g . Bidirectional link
N € . ~ el I~ €2 ~ €3 "7 (vead/write transfers)
! ! o by . Unidirectional link
D " (trigger interrupt)
»E}] M4 E{i M5 E}ﬂ M6 E{ﬂ M7
N N N N,
A A 4 : K
[ s | [ o | [ o] f])
- M8 RS M9 R9 M10 R10 Mi11 R11
i P - e
RY RY R Ry
K » »
4 v ’4 4 ‘4
> R12—‘ Mi12 ’;13 M13 Enj Mi14 Gﬂ M5 D
\J S S S o
. » - R - » -
L c12 e . cu a5

Figure 1: 4 x 4 torus-2D architecture with routing and computing nodes as well as notification of computation

cores using interrupts if new data have arrived.

els afterwards. For each of those various hardware archi-
tectures, a real-time capable, and software-based, routing li-
brary can be generated. The real-time capability is achieved
by using the real-time operating system eCos, which runs
on every node core that requires real-time capability and
is encapsulated in our routing library with a correspond-
ing API. That API can be used by a software developer to
implement distributed and real-time capable applications.
A brief overview of eCos can be obtained from section 4.
Concerning to the hardware, FREACSIM allows the usage
of different topology schemes for the interconnection of the
single nodes. At the moment, the topologies star, ring, grid-
2D and torus-2D are implemented and can be used within
a design. Figure 1 shows an example and a visualization of
one possible architecture (4x4 torus-2D) that can be gen-
erated and simulated with FREACSIM. Figure 2 shows an
overview of the framework.

Depending on the user input, like the topology or the
number of nodes to use, the tool noc-generator creates a
NoC-Design. The representation of this Design is within a
self defined XML format, what we call an XML hardware
description. This XML hardware description is the input
for the tool xmli-to-sim-model, which generates a complete
Open Virtual Platforms simulation model out of the XML
description. We decided to introduce this intermediate XML
format for two reasons. First, the user has the ability to
write self defined hardware descriptions in the given XML
format, what results in more flexibility and independence.
If there would be no XML interface, the tools noc-generator
and xml-to-sim-model could be seen as one tool that is more
complex. As a consequence, the user could only use the
hardware descriptions that are generated by the tool noc-
generator. Second, if a further simulation environment shall
be added to the framework, only the adaption of the tool
xml-to-sim-model has to be done.

The XML hardware description contains required com-
ponents, like processors or memories, as well as the inter-
connection of that single components that define the NoC-

User Input

noc-generator

'

XML File (Hardware Description)

'

Hardware Information Header File

xml-to-sim-model routing-generator

Routing Library and Header Files

used by

Hardware Simulation Model

*h
“.cpp

Executable Simulation Model

*.exe

Run Simulation

\

Results

Figure 2: Overview of the tools and components of
the framework FREACSIM.

Design and architecture, respectively. An example of such
a NoC-Design is shown in Figure 1. Furthermore, the tool
noc-generator creates a header file that contains information



about the created hardware design, e.g. which node is inter-
connected directly with another node or at which address a
memory (message buffer) is accessible for a processor of a
node.

This hardware information header file is the input for
the the tool routing-generator. That tool creates a soft-
ware library and the required header files, that enables the
(software-based) communication and routing between nodes
in the design. The header files contain the prototypes of
our API-functions, that have to be used to communicate
between nodes, for example to send and receive data pack-
ets/messages. The library also encapsulates the necessary
libraries of eCos, to enable the real-time capability on the
nodes.

Now the user is able to implement a distributed applica-
tion for the NoC-Design. As already mentioned, the appli-
cations for the single node processors have to use our API-
functions to enable the communication between nodes. We
provide a set of software applications and use cases, respec-
tively (see section 6), that use our APIL

After the implementation of the single programs of the
distributed application, that single programms have to be
loaded into the processor memories of the corresponding
nodes, what is done using an interface provided by OVP.
The user has the possibility to control the simulation using
parameters. One particular parameter for the simulation is
the time slice, which was elucidated in section 3. The time
slice controls the simulation speed. After the simulation has
terminated, the results can be inspected and evaluated.

5.1 Architectures of Nodes

We distinguish the nodes in our designs (cf. Figure 1) into
routing nodes and computation nodes. The computation
nodes shall only perform actions of applications and shall not
be busy with routing tasks. As a consequence, the routing
nodes take care of the routing. It is also possible to disable
the routing nodes what results in an architecture, where no
distinction between routing and computation nodes is made
and the routing as well as the computations have to be done
by the same node. The focus, however, is on architectures
that distinguish between routing and computation nodes,
because node cores of (hard) real-time capable embedded
systems normally don’t want to spent time for routing tasks,
because the computing time is required for CPU-intensive
computation tasks.

The base for the implementation of our software-based
routing, that uses the store and forward algorithm, are single
shared memories, that are connected to some computation
and routing nodes, respectively. These shared memories act
as buffers, the store and forward routing algorithm works
with (see Figure 1). Which computation nodes and which
routing nodes are connected to a shared memory depends
on the chosen topology and if routing nodes are enabled or
not.

A computation node has a fixed architecture (Figure 3),
a routing node has two possible architectures.

One single computation node consists of five hardware
components. These five components are required because
the real-time capability is achieved by using the real-time
operating system eCos (see also section 4) that runs on every
computation node in our NoC designs. The first component
is a UART controller/interface. This interface is used for in-
put and output calls of C-functions like printf or getc. The

\AARAAAL
IRO ... IR6 IR8

ARM920T

PIC Timer
Processor

IRQ |« IRQ IR7 |« TRQ2

CORE MODULE

Program

Memory UART

COMPUTATION NODE

Figure 3: Architecture of a computation node.

association of the other four hardware components is called
a core module. The core module consists of a processor, a
programmable interrupt controller (PIC), a timer and some
core local program memory. This memory is loaded with the
application that uses our routing library, which contains the
necessary eCos libraries. The timer generates periodically
an interrupt on pin IRQ2, which is defined as the scheduler
clock of eCos, and is forwarded to the processor’s interrupt
pin (IRQ). All components are connected to a virtual OVP
bus (see [14]). That bus is the interface where a shared
memory (buffer) is connected to, independent of the chosen
topology (cf. Figure 1).

A routing node can consist of the same components as a
computation node (same processor, etc.) and one additional
component called a signal generator. The signal generator
component is a hardware component that is required for
triggering interrupt pins on computation node cores. If the
notification for new data of a computation node shall be
realized using interrupts, the pins IR0 to IR6 and IR8 of the
computation node interrupt controller are used to connect a
corresponding pin of the signal generator component. As a
consequence, it is possible to send interrupts from a routing
node/core to a computation node/core for notification of
new data.

Because the routing node has the same architecture as the
computation node, with the exception of the signal generator
component, eCos can also run on the routing node. Thus,
the real-time capability is given on a routing node, too. The
other possibility of the architecture of a routing node is that
the real-time capability is disabled and the routing takes
place without eCos. In that case, a routing node requires a
processor, some processor local memory and the just men-
tioned signal generator component for triggering interrupts,
if desired. At the moment, the tool noc-generator allows to
choose one of five processor types if no real-time capabili-
ties for the routing shall be used or are required. These five
processors type are ARM920T, ARM7TDMI, ARM926EJ-S,
ARM Cortex A9 and ARM Cortex R4 [3]. As a consequence
of these different types of processors, it is not only possible to
build homogeneous architectures and systems, respectively,
but also heterogeneous architectures.

By using a the tool noc-generator, a wide range of settings,
concerning to the architecture of a node and the whole sys-
tem, can be configured. Such settings are the overall number



of nodes, which is limited to 64 at the moment, or if routing
nodes shall be used. If computation and routing nodes shall
be used, the tool allows the configuration how the notifica-
tion of a computation node, if new data for even that node
are available, takes place. Possible settings therefore are
polling or interrupt . Also the type of routing core, which
is part of the routing node, can be configured as well as
frequency/mips rates of computation and routing cores.

5.2 Routing / Communication

Routing in our NoC design means that packets are for-
warded from one core to an adjacent core on the path to
the packet’s destination, what corresponds to an implemen-
tation of the store and forward algorithm [12].

As already mentioned, the base for the communication be-
tween nodes and for realizing the different topology schemes
are single shared memories, where specific computation and
routing nodes are connected to (cf. Figure 1). These shared
memories are used to hold the data/packets that have to
be send from one computation node to another or that are
received by a computation node. For the torus-2D topology
with routing nodes, four routing nodes and cores, respec-
tively, share such a memory (up, down, left and right).

Bounded packet sizes make memory management, flow-
control, etc. much easier. Because we are geared towards
routing around faulty or overloaded cores, we need to route
messages dynamically. Thus, we prefix each message with
an eight byte message header. Each hop in the network
examines the message header to make routing decisions.

As the minimum, a single packet may be in flight between
connected nodes at a time. To gauge the performance of
this extreme point, we format the shared memory that only
one packet can be placed into it at a time per attached core
(single buffer). There needs to be a single buffer per di-
rection (send and receive). Otherwise, a message sent from
computation node to the other would overwrite a message
concurrently sent in the opposite direction. A flag in each
of the two buffers indicates whether the buffer is currently
in use. The sender sets this occupied-flag once the message
is completely placed into the buffer. The receiver resets the
flag once the message is copied away into local memory.

A single buffer per hop and direction has one major dis-
advantage: The sender needs to wait until the receiver has
copied away the message before it can send the next message.
A slow receiver can therefore stall the sender. This problem
can be solved by spending more resources (buffers) per hop
and direction. To be more precise, we can format the shared
memory as linked lists of messages. The user has the choice
between single buffer or linked list communication.

The receiver of a message can either poll for the arrival
of messages or can be notified by an interrupt that a new
message has arrived. Which mechanism shall be used can
be configured in the routing settings.

To implement the store and forward routing efficiently,
each computation node or routing node (when they are en-
abled) maintains a routing table that encodes the topology
of the network. To perform routing decisions, either the
computation cores or the routing cores need two operations:
is-responsible-for-message and is-attached-core. We need
the is-responsible-for-message to be able to elect a computa-
tion core (or routing core) if multiple computation nodes (or
routing nodes), attached to a given shared memory, have a
link to the destination core. The operation is-attached-core

is needed, that a core knows, that the destination core is
one of its attached cores (and there is no need to forward
the message elsewhere).

If at run-time a core or network connection dies, becomes
hot, or is overloaded, a neighboring computation core or
routing core can notice this and inform the others via a spe-
cial broadcast message. The computation cores (or routing
cores) can then patch their routing tables.

The implementation of both is-responsible-for-message and
is-attached-core operations devolve into a table look-up in a
pre-computed table so that the costs are negligible.

Depending on the interconnection scheme/topology and
the communication/routing settings (polling or interrupt,
etc.), the required communication and routing mechanism
for data packets between nodes and cores, respectively, is
generated in software as a library. This library has a trans-
parent interface (API) to the programmer. As a result,
the NoC software developer does not need much knowledge
about the hardware.

To use our NoC design in association with our API, the
programmer needs to send explicit messages. Our API is
not an end-user API such as MPI or MCAPI' but rather
designed to build other APIs or hardware components on
top of it. The API consists of send and receive commands
(in both, blocking and non-blocking variants) to send mes-
sages up-to the packet size. The message size (MTU-size,
Maximum Transmission Unit) is configurable, what results
in flexibility for the user. To make the system a little more
flexible, each message has an associated tag so that types
of messages can be differentiated. Each node keeps a set of
lists (one per tag) in its private memory. Higher level layers
can then build message fragmentation/reassembly, quality of
service guarantees, and high/low priority messages on top of
this message tagging scheme.

6. APPLICATIONS / USE CASES

When a NoC design is created, the design is typically op-
timized for some software application area. This software
application area has a range from applications that perform
almost no computation but mainly communicate to appli-
cations that only compute and perform little communica-
tion. We defined a set of four software applications and use
cases, respectively, that cover the extremes and single parts
of these range. All applications are written in C and are able
to scale to any number of nodes supported by the framework.
As a consequence, a designer can interpolate between these
use cases to get the best answers for the application profile
at hand.

6.1 Bandwidth

The bandwidth software application and use case, respec-
tively, simply sends a MByte of data between the nodes and
then waits for a single acknowledgement message.

6.2 Stencil kernel

The compute-bound Stencil kernel computes the average
of all the direct neighbours of each point in a matrix and
writes the result into a second matrix. Each core maintains
a partition of the matrices. At the end of each iteration, the
boundary rows are exchanged with the adjacent cores. We

"http://www.milticore-association.org/workgroup/
mcapi.php



use a 512 - 512 matrix of floats. As a result, 512 -4 = 2048
bytes are transferred after each iteration and in each direc-
tion. There is a computation complexity of O(M?) with a
communication complexity of O(M). Communication hap-
pens rarely and in periodic bursts compared to the itera-
tion’s computation time.

6.3 QR-codes

QR-codes are 2D bar codes that encode a simple bit-string
(a black square corresponds to 1, a white square to 0) and
are often printed and posted where a smartphone can take a
picture of them. Because the phone’s camera may be rotated
with respect to the QR-code and the QR-code may not be
centered, the QR-code detection of this application rotates
the picture to align the embedded QR-code and scans each
rotated picture to find the QR~code’s position in the picture
using the corner’s encoding pattern.

Computation core 0 repeatedly rotates the image by some
angle (both, clockwise and anti-clockwise) and sends the
results in a round-robin fashion to all other node cores in
the design. These node cores scan the received and rotated
image to detect a QR-code. For the application we use a
256 - 256 pixel RGB image (192 KByte) with an embedded
64-64 pixel rotated and translated QR-code. To send and re-
ceive this image the application needs to fragment the image
into packets and to reassemble them. The communication
pattern is thus a series of burst communications (3072 mes-
sages when using a 64 byte packet size) from core 0 to the
core 1, a small wait (while it rotates the image), then a burst
of packets to core 2, and so on. Bandwidth is important for
this use case.

6.4 Packet Rewriter

Computation core 0 creates (artificial) Ethernet packets
and sends them to the other computation cores for rewriting
in a round-robin fashion. Once a packet has been rewritten,
it is returned to computation core 0 (which could concep-
tually forward it). Because an Ethernet packet can be far
larger than a packet of our NoC, packet fragmentation and
reassembly are needed for this application as well. We solve
this problem by prefixing each packet, which is send over
the NoC channels, with an extra offset field. Only after
all small packets of an IP packet have arrived, the receiver
rewrites the reassembled packet and sends it back to core 0,
in fragments again.

Thus, the communication pattern in this application is a
repeated sequence of a set of (%) packets sent in
a small burst from computation core 0 to each of the other
computation cores followed by an almost simultaneous burst
from the other computation cores back to computation core
0. This application is mostly bandwidth-bound.

7. RESULTS

We distinguish our results into flexibility and simulation
speed of the framework FREACSIM. Some fixed settings for
the measurements and some varying settings to demonstrate
the flexibility and the simulation speed are used. The focus
of the flexibility measurements is on the software-based rout-
ing, not on the possibility to simulate different hardware de-
signs and topologies. We chose only one varying parameter
for the software-based routing. Considering more parame-
ters and different hardware architectures would result in a
design space exploration, what is not the goal of this paper.

The fixed settings for our measurements are elucidated in
the following.

The hardware architecture used for the measurements is
the 4 x 4 torus-2D architecture shown in Figure 1. This
is one of the most complex Network on Chip architectures
the framework can generate. As a consequence, our experi-
mental setup consists of 16 computing nodes and 16 routing
nodes. The size of each shared memory is set to 256 kilobyte
(KB). Because the torus-2D topology is used, a single shared
memory is connected to four routing nodes for realizing the
network topology. The computing nodes use the architec-
ture, introduced in Figure 3 and section 5.1. The routing
nodes use the architecture that does not support real-time
ability. The type of routing core used for the routing nodes
is set to ARM Cortex-R4. Our routing library without real-
time ability runs on the routing cores, the computation cores
use the routing library with real-time ability (eCos enabled).
eCos uses the multilevel queue scheduler. The frequency of
a computation core contains the value 800 MHz and the
frequency of a routing core is set to 500 MHz. For inform-
ing the computation nodes that new messages have arrived,
the routing nodes use the polling strategy provided by the
routing library and linked list messages for transfering data.

For each measurement, the applications elucidated in sec-
tion 6 are running on the 4 X 4 torus-2D architecture. Each
application utilizes our software base routing library and is,
as a consequence, real-time capable.

Both parts of the measurements, simulation speed and
flexibility of the framework, are illustrated in the following
sections.

7.1 Simulation Speed

To show the simulation speed, and the possibility the soft-
ware developer has to speed up simulation performance, we
measured the simulated times of the four use cases against
the wall clock times required for the simulation. Simulated
time describes the overall time a use case ran on the 4 x 4
NoC-architecture. Wall clock time is the overall time taken
by the simulation process on the host machine from start
to end. We varied the parameter time slice, elucidated in
section 3, of the simulation from 1 microsecond over 5 mi-
croseconds to 25 microseconds. A packet size of 64 Bytes was
used for the routing. The host machine, where the measure-
ments were performed, was a 64 bit core i7 quad core [2] and
the host operating system was fedora version 21.

Figure 4(a) shows the simulated times of the four use cases
bandwidth, stencil, QR and packet rewriter for the different
time slices. Figure 4(b) shows the corresponding wall clock
times. As can be seen from Figure 4(a), the simulated times
vary in a small range for different time slices, although they
should be the same. The reason for that circumstance are
simulation artifacts, e.g. where a routing core spends time
in a polling loop while waiting for the quantum to finish (see
section 3).

As can be seen from Figure 4(b), the larger the time slice,
the shorter the wall clock time. This is the case because
the simulator does not need as many context switches for
large time slices as for short time slices. Setting the time
slice very low delivers the most precise results, because each
component simulates just a view instructions in turn. One
the other hand, the wall clock time of the simulation, when
setting the time slice very low, is the highest in comparison
to the other time slices.



Simulated times for different time slices

Wall clock times for different time slices

15
time slice 1 us N time slice 1 us N
time slice 5 us 80 [ time slice 5 us
time slice 25 us I time slice 25 us I
= 1 o 60
Q Q
-, 9,
[} Q
£ £
el x
[0} Q
ks S
2 =
£ )
7D 05 =
20
: i1 : III In

bandwidth stencil QR

Use case

(a) Simulated times

packet rewriter

bandwidth stencil QR

Use case

(b) Wall clock times

packet rewriter

Figure 4: Simulated times and wall clock times of the four use cases for time slices 1us, 5us and 25us.

For clarifying that circumstance, Figure 5 shows the av-
erage wall clock times per simulated second of the different
use cases.

Average wall clock times per simulated second for different time slices

time slice 1 us I
time slice 5 us T
time slice 25 us N

Average wall clock time per simulated second [sec]

bandwidth stencil QR

Use case

packet rewriter

Figure 5: Average wall clock times per simulated
second.

The results in Figure 5 show, that one simulated second
never requires more than a wall clock time of 71 seconds,
independent of the use case. One simulated second includes
the simulation of 16 computation nodes as well as 16 rout-
ing nodes and the required peripherals. That corresponds to
a high simulation performance and speed, respectively. As
opposed to this, we measured a wall clock time of 639 sec-
onds per simulated second for the gemb5 environment, if just
a single processor of profile ARMv7-a, e.g. Cortex A9 [3], is
simulated and the level of accuracy is set to low. If the level
of accuracy is set to high, the wall clock time per simulated
second increases to 12771 seconds (about 3.5 hours).

By using the parameter time slice, the software devel-
oper can select between simulation accuracy and simulation
speed. That enables various possibilities to the software de-
veloper, concerning to the trade off of simulation accuracy
and speed. If functionality of real-time capable software

shall be tested, the time slice can be set to a large value,
because functionality of software is not affected by the time
slice.

7.2 Flexibility

To demonstrate the flexibility of our routing library, and
the information a software developer can obtain from those
flexibility, we chose one particular parameter that varies for
every measurement. This parameter is the packet size. The
packet size can be easily configured by setting one parameter
before the build of the routing library, nothing else has to be
changed. The packet size sweeps from 32 to 512 Byte and the
time slice for the measurements was set to 1 microsecond.
Figure 6 shows the simulated times for varying packet sizes
and for the different use cases.

Simulated times for different packet sizes
25

32 Byte I
64 Byte I
[| 128 Byte HEEE
256 Byte I

Simulated time [sec]

05

bandwidth stencil QR
Use case

packet rewriter

Figure 6: Simulated times for different packet sizes.

As expected, the measurements emphasize, that changing
the packet size can have a decisive influence on the simu-
lated time and, as a consequence, the run time of the use
cases. The results show, that the larger the packet size, the
faster the application of the respective use case. The larger
the packet size, the more data can be transfered in one com-



munication step. This is the reason why the simulated time
wanes the larger the packet size.

8. CONCLUSION

This paper presents the highly configurable Framework
for Real-time capable Embedded system and ArChitecture
SIMulation (FREACSIM). To the best of our knowledge,
there is no other comparable fully integrated system-simula-
tion environment, that covers the full stack of (real-time)
applications, software-based routing as well as NoC specific
hardware and architecture aspects for embedded systems.

A range of embedded processors where our configurable
software-based routing can be cross compiled or adapted and
changed, respectively, is supported. As a result, we are able
to build heterogeneous as well as homogeneous Network on
Chip architectures and systems, where real-time capable and
distributed software can be developed for and tested on. As
a consequence, different NoC-architectures and topologies
can be evaluated with the framework FREACSIM.

We allow the implementation of real-time capable and dis-
tributed applications by the usage of our routing library and
the corresponding API. Software-based routing means, that
special nodes implement the routing functionality in soft-
ware and not in hardware, what is a good solution, if flex-
ibility and independence shall be given. A software devel-
oper can change and adapt all parameters provided by the
routing library to his own needs. This enables flexibility to
the software developer and shows the influence on his soft-
ware. Thus, the software developer can get a feeling how
well his real-time capable software works on the respective
NoC-architecture or what kind of changes have to be made.

One main advantage of our framework is the simulation
speed, as illustrated in section 7. From a point of view of a
software developer, simulations of large embedded systems,
like NoCs, have to be fast. Unfortunately, fast and pre-
cise simulation are in a mutual tension relationship. For
the simulation of large embedded systems, its always the
question, what kind of accuracy should be used. Complete
cycle accurate simulations are not a good solution for such
large systems, because the wall clock time of the simula-
tion is always much greater than the simulated time. Soft-
ware development does not need precise modeled hardware
for testing software functionality in many cases. We think
that instruction accurate simulation is the best solution for
simulating distributed software functionality for such large
embedded systems, even if the modelling of the hardware is
not as precise as on other accuracy levels.

A further benefit of the framework is the possibility to per-
form design space explorations over a wide range of already
available parameters. Such parameters are for example the
topology of the NoC or the frequencies of computation and
routing cores. Furthermore, our routing library supports a
range of possible parameters, like the packet size (see Fig-
ure 4(a)) or the organization of the shared memories (single
buffer or linked list communication). This enables flexibility
and allows testing software with various configurations.

Because all virtualized hardware components exist as real
components, it is possible to build a real design out of the
hardware components FREACSIM provides. Even our con-
figurable software-based routing can be used on real hard-
ware.

9. FUTURE WORK

In a next step, we have to validate the results of the sim-
ulator concerning to non functional properties. The instruc-
tion accurate simulation technology from OVP cannot make
a clear statement about non functional properties like the
execution time.

Single parts of the simulation, were precise results are nec-
essary, could be performed on a more detailed accuracy level
than FREACSIM supports at the moment. An example
would be the cycle accurate level. If only single parts are of
interest, not the whole simulation has to be cycle accurate
for that purpose. Parts of interest can be particular mem-
ory accesses or communication traffic. In order to realize the
simulation of single parts, it is necessary to switch between
the accuracy levels (instruction accurate to cycle accurate
and back to instruction accurate in that example).

In future work we want to tether a second simulation en-
vironment to our framework, that enables partial simula-
tion on a more detailed level than the instruction accurate
one. As a consequence of that partial simulation, the sim-
ulation speed is still high, but the results are more precise.
One possible solution for that purpose would be SystemC,
but there are also other solutions and simulation environ-
ments, respectively. Our XML interface between the tools
noc-generator and xml-to-sim-model (refer to Figure 2 and
section 5) is therefore a perfect point to start from.

Also, we will think about the integration of higher-level
parallel programming models like OpenMP? and MPI?.

10. REFERENCES

[1] ecos on arm integrator compact platform.
www.ovpworld.org/operating-systems-support-ecos,
2015. Last visit on 04.02.2015.

[2] Intel core i7-4702mq processor website.
http://ark.intel.com/de/products/75119 /Intel-Core-
i7-4702MQ-Processor-6M-Cache-up-to-3_20-GHz,
2015. Last visit on 04.02.2015.

[3] Official arm website for processors.
http://www.arm.com/products/processors/index.php,
2015. Last visit on 02.02.2015.

[4] Official ecos website. http://ecos.sourceware.org/,
2015. Last visit on 04.02.2015.

[5] Official gems website.
http://research.cs.wisc.edu/gems/, 2015. Last visit on
02.02.2015.

[6] Official systemc website. http://www.systemc.org,
2015. Last visit on 02.02.2015.

[7] N. Agarwal, T. Krishna, L.-S. Peh, and N. Jha.
Garnet: A detailed on-chip network model inside a
full-system simulator. In Performance Analysis of
Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on, pages 33—42, April 2009.

[8] F. Bellard. Qemu, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
FREENIX Track, pages 41-46, 2005.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower,

T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The

http://openmp.org/wp/
Shttp://www.mcs.anl.gov/research/projects/mpi/



gemb simulator. SIGARCH Comput. Archit. News,
39(2):1-7, Aug. 2011.

N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt. The m5 simulator:
Modeling networked systems. IEEE Micro, 26:52—60,
2006.

Boson. Boson NetSim 10 User Manual. Boson
Software, LLC, 25 Century Blvd., Ste. 500, Nashville.
Last access date: 02.10.2014.

R. Cypher, F. Meyer auf der Heide, C. Scheideler, and
B. Vocking. Universal algorithms for
store-and-forward and wormhole routing. In
Proceedings of the Twenty-eighth Annual ACM
Symposium on Theory of Computing, STOC ’96, pages
356-365, New York, NY, USA, 1996. ACM.

Imperas Software Limited. OVP Guide to Using
Processor Models. Imperas Buildings, North Weston,
Thame, Oxfordshire, OX9 2HA, UK, May 2014.
Version 0.5, docs@imperas.com.

Imperas Software Limited. OVPsim and Imperas
CpuManager User Guide. Imperas Buildings, North
Weston, Thame, Oxfordshire, OX9 2HA, UK, August
2014. Version 2.3.6, docs@Qimperas.com.

N. Jiang, D. Becker, G. Michelogiannakis, J. Balfour,
B. Towles, D. Shaw, J. Kim, and W. Dally. A detailed
and flexible cycle-accurate network-on-chip simulator.
In Performance Analysis of Systems and Software
(ISPASS), 2013 IEEE International Symposium on,
pages 86-96, April 2013.

T. Karadeniz, L. Mhamdi, K. Goossens, and

J. Garcia-Luna-Aceves. Hardware design and
implementation of a network-on-chip based load
balancing switch fabric. In Reconfigurable Computing
and FPGAs (ReConFig), 2012 International
Conference on, pages 1-7, Dec 2012.

J. Madsen, S. Mahadevan, K. Virk, and M. Gonzalez.
Network-on-chip modeling for system-level
multiprocessor simulation. In Real-Time Systems
Symposium, 2003. RTSS 2003. 24th IEEE, pages
265-274, Dec 2003.

A. J. Massa. Embedded Software Development with
eCos. Prentice Hall Professional Technical Reference,
December 2002.

J. Miller, H. Kasture, G. Kurian, C. Gruenwald,

N. Beckmann, C. Celio, J. Eastep, and A. Agarwal.
Graphite: A distributed parallel simulator for
multicores. In High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International
Symposium on, pages 1-12; Jan 2010.

L. Ni and P. McKinley. A survey of wormhole routing
techniques in direct networks. Computer, 26(2):62-76,
Feb 1993.

D. Schoenwetter, V. Sieh, and D. Fey. Porting an
engine control application to a virtual environment by
using an open source real time operating system. In
DESIGN&ELEKTRONIK, editor, Embedded World
Conference Proceedings, 2013, Nuremberg, feb. 2013.
WEKA FACHMEDIEN GmbH, Haar.

SoClib. Official soclib developer website.
http://www.soclib.fr/trac/dev, 2015. Last visit on
01.02.2015.

[23] V. M. Weaver and S. A. McKee. Are cycle accurate

simulations a waste of time? In Proc. 7th Workshop

on Duplicating, Deconstructing, and Debunking, June

2008.



