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ABSTRACT
In this paper, an open and generic storage simulator is

proposed. It simulates with accuracy multi-tiered storage
systems based on heterogeneous devices including HDDs,
SSDs and the connecting buses. The target simulated sys-
tem is constructed from the hardware configuration input,
then sent to the simulator modules along with the trace
file and the appropriate simulator functions are selected and
executed. Each module of the simulator is executed by a
thread, and communicates with the others via ZeroMQ, a
message transmission API using sockets for the information
transfer. The result is an accurate behavior of the simulated
system submitted to a specific workload and represented by
performance and reliability metrics. No restriction is put on
the input hardware configuration which can handle differ-
ent levels of details and makes this simulator generic. The
diversity of the supported devices, regardless to their na-
ture: disks, buses, ..etc and organisation: JBOD, RAID,
..etc makes the simulator open to many technologies. The
modularity of its design and the independence of its exe-
cution functions, makes it open to handle any additional
mapping, access, maintenance or reconstruction strategies.
The conducted tests using OLTP and scientific workloads
show accurate results, obtained in a competitive runtime.

Keywords
Simulation tools, event-driven simulation, modularity, Ze-
roMQ, storage systems, HDD, SSD, OLTP and scientific
workloads.

1. INTRODUCTION
Studies based on modeling and simulation techniques have
always been capital to understand the inside behaviors of
any system, to evaluate its design trade-offs, to narrow down
its design spaces, and to reduce the prototyping efforts.
Simulators of data storage systems are mainly used to eval-
uate the impact of specific workloads and hardware devices
on the delivered performance and reliability. They are used
in diverse situations, regardless of the workload type: real
traces or generated synthetic ones, regardless of the char-
acteristics of the hardware devices: real or factitious. The
reason is the need to understand and quantify how a system
performs with yet-to-come storage device, submitted to any
profile access from any application.
Simulators are considered as strong tools, particularly in
data storage area. This lies on the critical data manipula-
tion which can lead to data corruptions making any related
calculations or decisions, totally erroneous. Thus, the use of
simulators is capital to evaluate and validate any architec-
ture design choice, any data layout scheme, any access strat-
egy and any data reconstruction and device maintenance al-
gorithm. It is important that every aspect of the storage
system, can it be software or hardware, can be meticulously
and thoroughly examined, tested and validated before sub-
mission to a final decision.
Having at one’s disposal, accurate, highly configurable, gene-
ric and open tools to model, then access and evaluate a
target data storage system becomes a first concern in this
data era, where the personnel data volume are counted in
TeraBytes, the enterprise data volume in Petabytes and the
data centers data volume in Exabytes. 1

The data storage simulators as any other simulators in dif-
ferent areas, should follow the market and the use trends
otherwise they are useless and become obsolete. During the
last decade and the wide-spreading of SSDs at the three
level of the use hierarchy (personal, enterprise, data center),
a new kind of storage systems, composed of both HDDs

1Source: IDC’s Digital universe Study.
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(Hard Disk Drives) and SSDs (Solid state Disks) appeared.
Both devices have to be kept because they have different
characteristics and are used accordingly. Thus, both have
their place in the data storage system. However, the exist-
ing simulators can simulate configurations based on one or
the other type of these devices. Consequently, they cannot
be used to model and simulate such systems.
In this paper, we propose OGSSim: an Open Generic data
Storage systems Simulator, which aim to satisfy the storage
systems requirements in term of:

• hardware heterogeneity: various storage devices as
HDDs, SSDs, DRAM, ...etc.

• diverse architecture configurations and design choice:
multi-tiered architecture to provide the hierarchical
scheme and at each tier, many organisations/volumes
can coexist as JBOD (Just a Bunch Of Disks) and
RAID (n+p) : a Redundant Arrays of Independent
Disks with n disks of data and p disks of parity,

• modularity and software evolution: all functions to run
the devices according to their technologies. All func-
tions of FTL (Flash Translation Layer) for the SSDs
and defragmentation for HDDs as examples.

In the rest of the paper, section 2 presents related works
with their contributions and their limits, section 3 describes
the simulator design and implementation in detail, it goes
through all its modules and their functions and parameters.
Section 4 presents the experimentation settings and covers
both the workload and the hardware environments consid-
ered in the conducted tests. In section 5, the obtained results
are presented and discussed. Finally, section 6 concludes the
paper and gives the future extensions of this tool.

2. RELATED WORKS
A certain number of data storage system simulators exist in
the literature, going from the HDD-based to the SSD-based
systems. The pioneer in the area is DiskSim, initially devel-
oped by Ganger et al. [6] and subject to many improvements
via additional contributions, as the one by Bucy et al. [4].
It is dedicated to the HDD-based storage system simulation
and reports only on the performance aspects. It is composed
of modules representing the storage system main compo-
nents: buses, controllers and disk drives. It accepts external
I/O traces and integrates an internal trace generator to pro-
duce synthetic I/O traces -if needed- according to different
probability distributions. The last release DiskSim 4.0 [4]
includes the MEMS-based storage device but it is still has
limitation on the shape of the storage system toplogy which
limits the simulation possibilities using this tool.
Two extensions of DiskSim were proposed to handle the
non-volatile devices (SSDs). The first one was proposed
by Agrawal et al. [3] and consists of adding a module in
charge of the wear levelling and the block erasure. The sec-
ond extension, called FlashSim [12] is an object oriented
version which encapsulates three FTL (Flash Translation
Layer) controllers implementing both the wear levelling and
the garbage collection. FlashSim adds detailed performance
evaluation capabilities up to the NAND channel level. How-
ever, this does not push the limitation on the storage system

topology. Nevertheless, it is true that using these event or
trace driven simulators, the internal behavior of the system
can be observed and evaluated in its fine details with accu-
racy.
More recently, simulators dedicated to SSDs were developed,
motivated by the increasing interest and use of this technol-
ogy. We can cite NAND FlashSim by Jung et al. [11] provid-
ing a detailed disk model up to the plane level and SSDsim
by Hu et al. [8] allowing advanced command execution as
copyback, multiplane and interleave commands.
There are also the virtual devices simulators for Flash-based
storage systems [5] [10] which implement very basic FTL
functions, use analytical models for delays and propose very
simple topologies without the device’s internal detail. Thus,
they are inappropriate for simulating accurately large and
heterogeneous storage systems.
Emulators are another kind of storage systems evaluation
tools. They are more realistic tools but totally inflexible
without any possibility to adjust hardware design parame-
ters as OpenSSD [1] and BlueSSD [13]. Also, there is an SSD
simulator based on a virtual machine to allow the hardware
evaluation in real time and uses a software on the top of the
virtual machine to provide multiple design choice for the em-
ulated SSD. This tool is VSSIM [16], developed by Yoo et
al. and operating on top of QEMU/KVM. It combines the
flexibility of a trace driven simulator and the accuracy of
the hardware based emulator. However, emulators are very
time consuming, also it is absolutely impossible to develop
all FTL functions using them. As far as we know, existing
evaluation tools cannot manage complex systems.
Finally, all the previous simulators and/or emulators with
their different characteristics, capabilities and functions can-
not be used to model or simulate a generic data storage sys-
tem based on both HDDs and SSDs with various possible
configurations and a flexible connectivity.
However, the cohabitation of such devices according to mul-
tiple design topologies can be found and will be common in
the very near future. Consequently, there is no tool actually
able to give the possibility to model and simulate such sys-
tems. We propose in this paper, a simulation tool for this
purpose and make it open for any extensions to new hard-
ware technologies and related configurations and operations,
as well as mapping, access, maintenance and reconstruction
strategies.

3. SIMULATOR DESIGN AND IMPLEMEN-
TATION

3.1 Global overview
The proposed simulator is composed of several modules and
submodules with a defined and specific role each. We have
seven modules: the workload (WKLD), the hardware config-
uration (HWC), the pre-processing (PP), the volume driver
(VDRV), the device driver (DDRV), the execution (EXEC)
and finally the performance (PERF). OGSSim is developed
in C++, for its speed and its modularity. This choice allows
an easy expansion of any module if needed, for adding a new
feature for example.

Every module is handled by a thread, and all of them com-
municate via the push/pull Zero Message Queue (ZeroMQ),
a socket API of message transmission developed by iMatix
Corporation [2]. A ZeroMQ is configured with a protocol,
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Figure 1: OGSSim design

an IP address, a port and a queue type. In our context, we
used the API with the TCP protocol and only in local and
we define for every queue, a port and an identifier. For ex-
ample, the ZeroMQ between the workload module and the
pre-processing interface has the identifier 5555. There are
many types of ZeroMQ but we use only the push/pull ones,
running as producer/consumer queues. A thread sends mes-
sages to a queue and another one receives them via the same
queue. Table 1 describes the parameters given to the differ-
ent ZeroMQ in OGSSim (57xx means ports between 5700
and 5799).

From To Address
WKLD PPI tcp://localhost:5555
HWC PPI tcp://localhost:5556
PPI EXEC tcp://localhost:5557
PPI VDRV tcp://localhost:56xx

VDRV DDRV tcp://lcoalhost:57xx
VDRV EXEC tcp://localhost:5558
DDRV EXEC tcp://localhost:5558
EXEC VDRV tcp://localhost:58xx
EXEC DDRV tcp://localhost:59xx

Table 1: ZeroMQ parameters

Figure 1 shows the actual design of OGSSim and the infor-
mation flow between the different modules. The simulator
needs the trace and the hardware configuration files as in-
puts and generate the result file and related performance
graphs at its output.
The description of the different modules is given below:

3.2 Workload
The workload module (WKLD) constructs the request array
structure from an input trace file. This one contains raw
data describing request parameters. OGSSim supports three
types of request format:

• Basic: timestamp, type (read or write), address and
size;

• Advanced A: basic format and a group color or iden-
tifier;

• Advanced B: basic format and both the generating
host and the process identifiers.

The WKLD module creates a request array, a shared mem-
ory structure and initialises it with the trace parameters.
The request execution times and other intermediate values
used by the simulator -such as the target device and the
address on the device- are added to fill the rest of the struc-
ture during the simulation process. Because a request can
be subdivided into subrequests, this array contains also a
field for the parent index.
Once the trace is parsed and the request array created and
initialised, the shared memory pointer is sent to the pre-
processing module (PP).

3.3 Hardware Configuration
The hardware configuration module (HWC) creates the hard-
ware structure in a shared memory from the XML input files.
The first or global file describes the architecture and the bus
configurations. Then, the device files indicated in the global
one, describe the internal details of the hardware devices
(disks, buses, ...etc).
OGSSim can evaluate the performance of a multi-layer sys-
tem composed of tiers, volumes and devices. A tier is a
bunch of volumes, each of which is a set of devices organised
according to a specific topology as JBOD or a RAID (n+p).
The created hardware structure holds the storage architec-
ture configuration parameters, using four lists, one for every
device type: buses, tiers, volumes and disks. These lists re-
fer to each others according to the connectivity of the sim-
ulated system. For instance, a volume can redirect to its
parent tier, its connected bus and its first disk device. Once
the structure is built, the shared memory pointer is sent to
the pre-processing (PP).



3.4 Pre-processing
The pre-processing module (PP) has two roles. The first one
is to instantiate the volume driver modules after receiving
the pointer on the hardware configuration structure. It cre-
ates one thread per volume driver, and then sends them the
shared memory address.
Its second role is to launch the simulation process. The mod-
ule cycles through the request array, determines the target
volume for each request and sends the request index to it.

3.5 Volume Driver
The volume driver module (VDRV) also has two roles. The
first one is to create the layout model submodule correspond-
ing to the volume type. Then, it instantiates the device
driver module after receiving the hardware configuration
structure.
OGSSim handles different types of volumes: JBOD, RAID1,
RAID-01 and RAID (n+p). JBOD is just a bunch of disks,
RAID1 is a RAID with mirroring, RAID-01 is a RAID with
mirroring and striping and RAID (n+p) represents a RAID
with n data and p parity disks. OGSSim can also handle
different types of declustering: none/no declustering, parity
declustering or data declustering. No declustering means
that each disk contains only data or only parity. Parity
declustering means that each parity block is affected to disks
in a round robin manner. Data declustering is the same
as parity declustering apart the first data block of a stripe
which is allocated to the disk beside the one holding the
parity block, and not the first disk by default.
Its second role is to redirect the requests sent by the pre-
processing module (PP) to the target device. To do so, first,
the request index is sent to the layout model submodule.
Second, it is decomposed into a set of subrequests taking
into account that every subrequest is destinated to a unique
disk. Third, the subrequest index is sent to the target disk
device driver to be executed.
The subrequests are stored in a secondary array located in
the shared memory space. The size of this array is defined by
the user in the configuration file of OGSSim. Each element
of this array contains a boolean to indicate the subrequest
status: True, for the living subrequest (to execute/execution
in progress), False for the totally executed subrequest. A
False status makes the array element a candidate to be used
for a new subrequest to execute.
If the submodule does not find any subrequest with a True
status, thus there is no free space, it sends a message to
the execution module (EXEC) and waits for a reply from it
before retrying its search procedure.

3.6 Device Driver
The disk device driver module (DDRV) is composed of a set
of maintenance submodules which are device-specific such
as the garbage collection, the wear levelling or the defrag-
mentation. Each submodule can be implemented with an
algorithm defined by the user. Those submodules generate
maintenance subrequests which are sent to the execution
module. A new submodule can also easily be added to the
simulator.
Some technologies or data layout schemes necessitate syn-

chronisation mechanisms to be achieved efficiently and guar-
antee that the simulation process will complete within a
competitive time. The first synchronisation mechanism in
OGSSim is related to the implementation of the RAID (n+p)

Figure 2: Barrier utility

volumes. It refers to figure 2. For small and large writes 2,
a user write request generates pre-read subrequests and a
parity calculation before being executed. So, all write sub-
requests need the pre-work to be done before starting. The
followed procedure is presented on figure 3.
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Figure 3: Synchronisation mechanism

This mechanism uses special subrequests to indicate that
a disk device needs to be synchronised with some others
which are waiting for the new parity. After sending this
special subrequest to the execution module (1), the disk de-
vice driver waits for a reply from the execution. When all
the concerned disk devices reach this synchronisation barrier
(2), the execution module sends the reply to the disk device
(3) which will continue the simulation process (4).

3.7 Execution
The execution module (EXEC) function is to execute the re-
quests and determine the request response time as the user
critical performance metric.
The service time is computed according to the device pa-
rameters and the transfer time based on the bus bandwidth.
The waiting time is determined by request arrival time and
the disk device’s clock when the device becomes available for
this request execution. If a request is decomposed into sub-
requests, the request service time is the highest subrequest
service time and the request waiting time is the lowest sub-
request waiting time.
These calculated times are then reported on an output file,
which contains also the request index, the timestamp, the
target volume and the target device as mentioned in subsec-
tion 3.1

2A request which does not cover a whole stripe, small is for
less than half a stripe and large for more than half a stripe
but not a complete one.



3.8 Performance
The performance module (PERF) is composed of scripts
written in python which generate visualisation tools (graphs,
histograms, ...etc) based on the collected data in the results
files. These visualisation tools are plotted using a python
plotting library named matplotlib [9]. They can represent
the workload per disk, the request decomposition or the
mean service and response time of the requests, the disk
utilisation during the simulation, the simulation time with
the trace file size, ...etc. Additional performance metrics can
also be implemented, depending on the user needs.

4. EXPERIMENTATION
We study and assess different aspects of our proposed sim-
ulation tool OGSSim. We vary the configurations and the
hardware hierarchies to highlight its generic aspect, we con-
sider HDD and SSD as shown on table 4 for its heteroge-
neous aspect, combined with various layout schemes (JBOD,
RAID n+p) leading to different mapping and access strate-
gies. In addition, we evaluate the performance of the simu-
lation process itself by analysing the impact of the workload
and the simulated architecture on the simulator runtime.
Below, details about the considered test environments

4.1 Experimental environment
The machine used to conduct our experiments is a hyper-
threaded octo-core, 800MHZ with 8 GB of memory and 750
GB of disk space. It is running using the operating system
Ubuntu 14.10 64bits. OGSSim is compiled with gcc version
4.8.2 and the -O3 optimisation flag.

4.2 Experimental settings
We separate the software settings from the hardware ones.
The former is about the I/O workloads submitted to the
data storage system and the second is the data storage sys-
tem architecture, accessed by this workload.

4.2.1 Workloads
Two types of workloads are used: OLTP and Scientific ones.
Our choice is motivated by their quite different access pro-
files and also being typical data-intensive applications. Thus,
good candidates for the simulated storage systems. The
workloads are produced by an external generator which could
be easily incorporated within the simulator. They are syn-
thetic but based on the characteristics of real extracted traces,
then they are in accordance with the real traces and pre-
serve all their key characteristics. The representativeness is
ensured using HMM (Hidden Markov Model) for OLTP [7]
and I/O characterization works achieved by Park et al. [15].
The workloads parameters are summarized below:

1. OLTP workload: characterized by a ratio of 0.67 of
reads against 0.33 of writes with I/O request size of one
page of 4KB each, randomly distributed and coming
at a rate of 1600 req/s.

2. Scientific workloads: we use three traces

(a) S trace 1: collected from Los Alamos National
Laboratory and represents an MPI IO test,

Trace RD/WR ratio I/O pattern
RD WR

S trace 1 0.50/0.50 Seq. Seq.
S trace 2 0.14/0.86 Rand. Rand.
S trace 3 0.67/0.33 Rand. Rand.

Table 2: I/O pattern and RD/WR ratio for Scien-
tific workloads [15]

Name Hierarchy Devices Configuration
Archi 1 1 tier, 1 volume 4 HDDs JBOD
Archi 2 1 tier, 1 volume 4 SSDs JBOD
Archi 3 1 tier, 1 volume 7 HDDs RAID6
Archi 4 1 tier, 2 volumes 2 SSDs JBOD

4 HDDs RAID0-1
Archi 5 2 tier, 1 volume 4 SSDs RAID0-1

1 volume 5 HDDs JBOD

Table 3: The test bed storage systems architectures

(b) S trace 2: collected from Sandia National Labo-
ratories, represents a physics problem, more pre-
cisely the algebra shock and multi-physics family
of codes,

(c) S trace 3: collected from Sandia National Labora-
tories, represents a shock wave physics computer
code.

Table 2 summarizes their I/O pattern and read/write
ratios. Their request size distributions, all the granu-
larities going from 1KB to 2MB are included.

We noticed regular I/O request sizes for the OLTP and less
regular ones for the scientific (physics) applications.

4.2.2 Simulated Architecture
We selected different storage system architectures which can
represent the main capabilities of our simulation tool OGSSim,
as shown on table 3 using disks from table 4. The simulated
architecture is described in an XML file, pointing the used
storage devices. OGSSim builds the whole system to sim-
ulate and extract the device characteristics to execute the
I/O requests in the trace file. We consider here one HDD
and one SSD but enriching the device library by adding the
description of new ones is straightforward.

5. RESULTS AND DISCUSSION
We address three aspects of our proposed tool validation:
the simulation duration for the efficiency of OGSSim itself,
then its representativess of the spatial and temporal behav-
iors of various storage system configurations submitted to
typical workloads.

5.1 The simulation duration
Figure 4 shows the evolution of the simulation process du-
ration or the execution time of OGSSim depending on both
the number of requests in the workload trace (S trace 2 here)
and the hardware configuration.
First, we can see that regardless of the used configuration,
the simulation duration increases in proportion to the num-
ber of requests. Second, all non RAID (n+p) configurations



Device/parameter value
HDD HUA721050KLA330

Capacity 500GB
Sector size 512B

Min. seek time (ms) 1.1
Avg. seek time (ms) 8.7
Max. seek time (ms) 15.2

Rotational speed (rpm) 7200
SSD SSDSA2CW300G3K5

Capacity 300GB
Page size 8KB

Rand. read (IOPS) 39500
Rand. program (IOPS) 23000

Seq. read (MB/s) 270
Seq. program (MB/s) 205

Erase (ms)* 1.5

Table 4: The devices characteristics
* unknown, we consider the mean actual value for
current SSDs

Figure 4: Execution times of the simulator for the
S trace 2

have similar simulation duration independently of the archi-
tecture configuration.
The RAID (n+0) configuration needs a bit longer time, due
to the request decomposition which necessitates more calcu-
lation because of the striping. The main clue here is the gap
between the previous configurations and the RAID (n+p)
with p different from zero. This gap is related to the synchro-
nisation mechanism explained in subsection 3.6 which gener-
ates a waiting time for all requested pre-read subrequests to
join the execution module. Finally, the RAID (n+2) needs
more time to be simulated than the RAID (n+1) because
more subrequests are created for the second parity.

Figure 5 represents the variation of the execution time de-
pending on the read/write ratio of the workload. It repre-
sents the behavior of all the simulated hardware configura-
tions or architectures for the rest of the workloads (S trace
1, S trace 2 and OLTP). All the simulation durations are
relative times (with the HDD-based JBOD as a reference).
We can observe that the simulation durations of non RAID
(n+p) configurations are close to the relative time. For
RAID (n+p) configurations, the simulation durations seems
to be directly related to the ratio of write requests in the

Figure 5: Study of the impact of the workload be-
havior over the simulator execution time

workload. The more there are write requests, the longer is
the simulation time. This is, as previously, due to the syn-
chronisation mechanism which is more requested because of
the high number of writes and the associated parity calcu-
lation.

5.2 OGSSim temporal behavior
For the following, we need to give some precisions about the
temporal profile of the workloads and their sizes. We con-
sider a unit equal to one page for a SSD, and 8 sectors for a
HDD. All the trace evaluations are represented on figure 6.
Each graph represents, for a given workload and configura-
tion, the evolution of the mean service and waiting time of
the requests during the simulation.
The S trace1 (figures 6a, 6d, 6g, 6j, 6m) shows three phases.
The first one covers the first 135K requests of 1-unit each.
The second one covers the next 60K requests of 1-unit or
256-units each. The last phase covers the last 205K requests
of 256-units each.
The S trace2 (figures 6b, 6e, 6h, 6n, 6n) shows four phases.
The first one covers the first 40K requests of 1-unit each
with sparse requests of 8, 32 and 256-units each. The sec-
ond one covers the next 120K requests of 256-units each and
sparse requests of 1-unit each. The third one covers the next
20K requests of 128-units each and sparse requests of 1-unit
each. The last phase covers the last 220K requests of only
128-units each.
The S trace3 (figures 6c, 6f, 6i, 6l, 6o) is a mix of various
profiles: a set of 70K requests of 1 to 16-units each, a set
of 50K requests of 2-units each if write and 128-units each
if read, a set of 30K requests of 256-units each if write and
128-units each if read, a set of 55K requests of 256-units
each if write and 64-units each if read, a set of 70K requests
of 512-units each if write and 64-units each if read, a set of
50K requests of 256-units each if read and 512-units each if
write, and finally a set of 75K requests of 256-units each if
read and 64-units each if write.

First, we discuss the differences between the configurations
Archi1 and Archi2 (see table 3). Figures from 6a to 6f
present the associated mean service and response time. Both
are JBOD, but one is composed of HDDs (archi1) and the
other of SDDs (archi2). Archi1 delivers higher mean service
time than Archi2 because the access latency is higher on a



(a) Archi1 / S trace1 (b) Archi1 / S trace2 (c) Archi1 / S trace3

(d) Archi2 / S trace1 (e) Archi2 / S trace2 (f) Archi2 / S trace3

(g) Archi3 / S trace1 (h) Archi3 / S trace2 (i) Archi3 / S trace3

(j) Archi4 / S trace1 (k) Archi4 / S trace2 (l) Archi4 / S trace3

(m) Archi5 / S trace1 (n) Archi5 / S trace2 (o) Archi5 / S trace3

Figure 6: Experiment results



(a) Archi1 / S trace1 (b) Archi3 / S trace1 (c) Archi4 / S trace1

(d) Archi1 / S trace2 (e) Archi3 / S trace2 (f) Archi4 / S trace2

(g) Archi1 / S trace3 (h) Archi3 / S trace3 (i) Archi4 / S trace3

(j) Archi1 / OLTP (k) Archi3 / OLTP (l) Archi4 / OLTP

Figure 7: Device utilisation rates



HDD than on a SSD. Consequently, a higher waiting time is
observed. It is due to a similar request arrival rate for both
traces, so a higher service time generates a more important
delay for the following queueing requests.

If we compare Archi1 to Archi3 (RAID(5+2)) using S trace1
as shown on figures 6a and 6g, we can see that the mean ser-
vice time is more varying during a single phase and that the
mean service time is higher. Those are due to the pres-
ence of the parity mechanism which imply, as explained in
section 3.6, two side effects: the decomposition of a simple
write request into pre-read and write subrequests and the
synchronisation after the pre-read due to the parity compu-
tation.
The differences between the two configurations for S trace3
are shown on figures 6c and 6i and can be summarized by a
higher waiting time for the phases where requests are larger
on Archi3. This is also explained by the presence of parity
and the synchronisation mechanism which leads to have a
request service time at least two times higher, and accumu-
lates more waiting times than with the JBOD.
Running S trace2 on Archi3, represented on figure 6h, shows
a mean waiting time increasing continuously until reaching
2.5 million of milliseconds. This behavior means that the
hardware configuration can not bear this kind of workload.
Thus, the request arrival rate and the proportion of write
requests are too important for the configuration capability.
However, we can observe three phases too. The first one is
negligible, not visible. Then we get a high slope from 50K
to 170K requests, which matches the second phase of the
workload, with requests of 256-units each and finally, the
slope decreases a little, corresponding to the last requests
stream of 128-units each.

Considering Archi1 and the HDD-volume of Archi4 (RAID-
01). The S trace1 (figures 6a, 6j) reveals that the mean
service times are approximately similar for both. This is be-
cause a write request is decomposed into two subrequests on
RAID-01. One request for the original disk and the other for
the mirror one. The mean waiting times are lower on Archi4
than on Archi1 because the read requests are distributed
across the original disks or the mirror ones to balance the
load on the disks.
As shown on figure 6b and 6k, S trace2 presents higher mean
service and waiting times on Archi4 because it contains more
write requests than read ones so the write load is almost dou-
bled.
Figures 6c and 6l show the S trace3 behavior which is sim-
ilar on both configurations. We can notice that, except for
the highest step, the mean service times are close, but the
mean waiting times on Archi4 are lower on Archi1 because
of the load distribution and the dominance of reads. For
the higher step, we can observe that both the mean service
and waiting times are higher on Archi4. This is due to the
combination of two factors: the big size of the requests and
the fact that Archi4 has two data disks instead of four for
Archi1. Large requests increase the service time, but there
are less data disks in the configuration, so the load distribu-
tion across these disks is less efficient.
Finally, we observe the comparison between the HDD-based
Archi1 and the HDD-volume of Archi5 (JBOD). The two

configurations are similar and all the profiles match. The
unique difference is for the S trace2 and the S trace3 (figures
6b, 6c, 6n, 6o), where the mean waiting-time on Archi5 is
lower than on Archi1. This is due to the number of devices of
the configurations. Archi5 has one more device, and because
the workload deals with random-access requests, there is less
requests per disk, so less waiting time. This phenomenon is
not visible for S trace1 (figures 6a, 6m) because the access
profile is sequential.

5.3 OGSSim spatial behavior
This subsection aims to assess the spatial distribution of
physical requests on the disks devices. Figure 7 shows the
different device utilisation for the configurations Archi1, Archi3
and Archi4, submitted to OLTP and the three scientific
traces. Thus, it allows to check the load balancing on the
disks depending on the hardware configuration and the ac-
cess profile.
For the first configuration: Archi1 which is just a HDD-
JBOD submitted to the sequential S trace1, a right behav-
ior would be the utilisation of only one device as the entire
trace does not cover a whole data disk or two disks (the end
of one and the beginning of the next one). Also, the right
and expected behavior for the random traces (S trace2 and
S trace3) is a load balancing across the disks. The OGSSim
results are shown on figure 7a for the S trace1 and shows
that only the first device is used, as it should be. The rate
is almost 45% because the first part of the workload is com-
posed of small requests and do not keep the disk busy. The
right behavior is also observed with S trace2 and S trace3
on figure 7d and figure 7g respectively, where the load bal-
ancing is clear and every disk has a utilisation percentage of
25%.
For the second configuration: Archi3 which is a RAID (5+2)
of HDDs, the expected behavior is a load balancing on the
disks resulting from the striping and the parity decluster-
ing. The OGSSim results, shown on figures 7b, 7e and 7h
for S trace1, S trace2 and S trace3 respectively, are in ac-
cordance with this behavior. We can see that disks have
similar utilisation rate, which depends mainly on the write
ratio of the workload. The writes increase the load by the
generated pre-reads and the double parity updates whilst
the read load is still unchanged.
For the third configuration: Archi4 which is composed of
a JBOD of SSDs and a RAID-01 of HDDs, as volumes of
the first and the second tier respectively. A right behavior
would be a negligible utilisation rate for the first (JBOD)
tier because of the reduced latency of the SSDs and a load
balancing for the second (RAID-01) tier because of the strip-
ing. The OGSSim results, shown on figures 7c, 7f and 7i for
S trace1, S trace2 and S trace3 respectively, confirm these
expectations. The utilisation rate for the disks of the first
tier, is less than 1%. We can notice a perfect load balancing
on the second tier for S trace1 and S trace3 because of the
striping and the equilibrium between the write and the read
ratios. Only S trace2 makes a difference in the load balanc-
ing because of the disparity between the read and the write
ratio (14 and 86% respectively). Writes double the physical
load and target both the native and the mirror disks whilst
the read load is unchanged and targets the native disks only.

For all the configurations with the OLTP workload, the right



behavior is a nearly perfect load balancing on the disks be-
cause of the randomness and the small size of the requests.
The OGSSim results are shown on figures 7j, 7k and 7l and
confirm this expectation. We can notice here that for HDDs,
both Archi1 (JBOD) and Archi4-vol2 (RAID-01), the utili-
sation rate is almost 100% while it is above 50% for Archi3
(RAID 5+2). The first statement can be explained by the
high arrival rate of the requests and the latency of HDDs.
The second observation is explained by the presence of a
double parity which is not accessed as the workload is mainly
composed of read requests. For the SSDs (Archi4-vol1), the
disk utilisation rate is negligible because of the short access
time of such disks, negligible comparing to the simulation
duration.

For all the conducted tests, the results obtained by OGSSim
confirmed the expected storage system behavior, given by
the hardware configuration and the profile access of the
workload. We deduce that OGSSim reflects accurately the
behavior of the storage system in its fine details.

6. CONCLUSION AND FUTURE WORKS
In this paper, we present OGSSim, an Open and Generic
Storage system Simulation tool. It enables the researchers
and the practitioners to (1) examine a storage system re-
gardless to its configuration and basic devices, (2) study
its behavior and (3) analyse its performance in a unified
framework. We validated its representativeness on both spa-
tial and temporal aspects, as well as its competitive ex-
ecution duration with traces of 400K I/O requests from
OLTP and scientific environments using various multitiered
hardware configurations based on two disks technologies.
OGSSim is still very competitive because of the implementa-
tion choices. It achieves the simulation process in a reduced
duration: about 10s for 400K req with the simplest configu-
ration (JBOD) and 140s with the most complex one (RAID
5+2).
In the near future, we intend to enhance the implemented
mechanisms and to add device-specific features such as the
defragmentation for HDDs or the garbage collection for SSDs.
We also target to include the failure mode in our simulator
and the data reconstruction even after multiple failures by
adding the declustered RAID mechanism[14] with the possi-
bility for the user to implement his own allocation algorithm.
Finally, we intend to develop the bus queueing models to
handle the bus interleaving effects between storage devices,
volumes and tiers with accuracy.
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