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Abstract

Big Data applications allow to successfully analyze
large amounts of data not necessarily structured,
though at the same time they present new challenges.
For example, predicting the performance of frame-
works such as Hadoop can be a costly task, hence
the necessity to provide models that can be a valu-
able support for designers and developers. This pa-
per provides a new contribution in studying a novel
modeling approach based on fluid Petri nets to pre-
dict MapReduce jobs execution time.

The experiments we performed at CINECA, the
Italian supercomputing center, have shown that the
achieved accuracy is within 16% of the actual mea-
surements on average.

Keywords: Map Reduce, Hadoop, fluid Petri
nets.

1 Introduction
The implementation of Big Data applications is

steadily growing today [12]. According to recent
analysis, the Big Data market reached $16.9 bil-
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lion in 2015 with a compound annual growth rate
of 39.4%, about seven times the one of the overall
ICT market [1].

From the technological perspective, MapReduce is
capable of analyzing very efficiently large amounts
of unstructured data, i.e., it is a viable solution to
support both the variety and volume requirements of
Big Data analyses [14]. MapReduce has been adopted
in multiple application domains, e.g., machine learn-
ing, graph processing, and data mining [25]. Its open
source implementation, Hadoop 2.x, recently intro-
duced a wide set of performance enhancements (e.g.,
SSD support, caching, and I/O barriers mitigation).
IDC estimates that Hadoop touched half of the world
data last year [I3], supporting both traditional batch
and interactive data analysis applications [23].

In this context, one of the main challenges [17] 24]
is that the execution time of a MapReduce job is
generally unknown in advance. Because of this, pre-
dicting the execution time of Hadoop jobs is usually
done empirically through experimentation, requiring
a costly setup [I0]. In alternative, it is possible to
develop models for predicting performance. Models
may be used to support design-time decisions during
the initial development and deployment of Big Data
applications or at run-time to trigger system recon-
figuration. For example, design-time models can help
to determine the appropriate size of a cluster or to
predict the budget required to run Hadoop in pub-



lic Clouds (a trending scenario, since by 2020 nearly
40% of Big Data analyses will be supported by public
Clouds [1]). Models can also be kept alive at run-time
and lead the dynamic adjustment of the system con-
figuration [3| 22], for instance to cope with workload
fluctuations or to reduce energy costs.

While in early Hadoop versions CPU slots and
other resources were separated between mapper and
reducers using a static approach, in Hadoop 2.x con-
tainers are distributed among ready tasks in a dy-
namic fashion. On the one hand, this allows a better
cluster utilization, on the other hand modeling the
performance is not a task of negligible difficulty.

The originality of this paper consists of a new mod-
eling technique concerning the dynamic assignment of
the available cluster resources. We assume that the
cluster is governed by the Capacity Scheduler, which
partitions the available resources among multiple cus-
tomers through queues, each queue being regulated
by a FIFO policy.

This work proposes a fluid Petri Nets model to esti-
mate MapReduce jobs execution time, combining real
experimentation and model-based evaluation and ex-
ploring different properties of the MapReduce process
to unveil the characteristics of the YARN Capacity
Scheduler that have the highest influence in its per-
formance and therefore should be represented in the
models used for a model-based performance evalua-
tion.

The accuracy of the model is evaluated on real sys-
tems by performing experiments based on the TPC-
DS industry benchmark for business intelligence data
warehouse applications. The Italian supercomputing
center, CINECA, has been considered as target de-
ployment.

Results and experiments performed on real systems
have shown that the achieved accuracy is within 16%
of the actual measurements on average. With respect
to previous literature, to the best of our knowledge
this article is one of the first contributions able to
study the performance of Hadoop-2.x-based clusters,
where the dynamic allocation of resources between
map and reduce stages makes the performance anal-
ysis much more challenging.

This paper is organized as follows. com-
pares this work with other proposals available in the

literature; presents our novel proposals for
Hadoop modeling, via fluid Petri Nets. Next,
reports some experimental results to validate
and study the properties of our models. Finally,
draws the conclusions, providing the lines for
future work.

2 Related Work

The literature provides a large number of perfor-
mance studies for Hadoop 1.x, since the framework
has been widely adopted in the ICT industry, of-
ten supporting core business activities. Two main
approaches have been explored: i) simulation-based
models implement the single constituents of Hadoop
and of the job, replaying in a simulated environ-
ment the steps and delays of the real system; ii) an-
alytical models, on the other hand, define a math-
ematical representation of those constituents, avoid-
ing the costs of running multiple simulations. Both
approaches make use of information such as input
dataset size, cluster resources, and Hadoop specific
parameters. The computational effort and the time
spent in running simulation-based models make them
hardly fit for the purposes of runtime cluster man-
agement: thus, we hereby consider only analytical
models, according to the focus of our paper.

The authors of [24] propose the ARIA framework
for estimating the makespan of jobs in MapReduce
clusters. This approach relies on information ex-
tracted from the logs of previous executions of sim-
ilar jobs. Adopting scheduling techniques, the au-
thors prove lower and upper bounds on makespans.
From these results, they derive formulae for perfor-
mance prediction. They obtain both a conservative
estimate, suitable for hard deadlines, and an alterna-
tive that does not offer guarantees of meeting dead-
lines, but boasts a relative error below 10% in the
validation against measured timings.

Another performance model estimating the execu-
tion time by considering the single costs of the vari-
ous phases of a MapReduce job is described in [I8].
In this work, the authors go down to the very low
level elements that determine the cost of single job
phases, writing a 37-parameter model that provides



execution times within 10% of those measured in a
real cluster. Even with such an accurate model, the
validation considers just single job executions.

In queueing network (QN) literature, the fork/join
paradigm (see [2I] and [4]) is used to denote the
modeling of the concurrent execution of many tasks
within higher level jobs. Specifically, this approach
operates through two steps: i) jobs are spawned at
a fork node in multiple tasks, then ii) they are sub-
mitted to queueing stations that, in turn, model the
available servers.

Once all the tasks have been served, they can syn-
chronize at a join node. It has to be noted that
when a fork-join network has more than two queues,
a closed-form solution is not possible. That said, it
is possible to mitigate the issue by using a special
kind of structure, as shown in [I6] which considers
the Markov Chain underlying the QN representing
the possible states of the system. Unfortunately,
as noted in [9 [19], the state space grows exponen-
tially when the tasks number corresponds to realistic
MapReduce jobs—in the order of thousands—thus
making the above approaches unsuitable.

An interesting alternative in the shape of approxi-
mation methods is introduced in [20], which proposes
a method based on exponentially distributed service
times, though it is not applicable to Hadoop deploy-
ments. Indeed, as per preliminary experiments con-
ducted in this work, it is safe to assume that phase
type (or in some cases Erlang) can approximate the
general distributions of mapper and reducer times,
while assuming an exponential distribution led to
around 50-60% relative error on the prediction of
the overall job execution time. To this concern, see
also [16], where an approximate mean value analysis
technique is proposed, by using an iterative hierar-
chical approach.

Other approaches prefer adopting a MapReduce
modeling based on Petri nets (PNs). For example,
in [8] the authors use a stochastic PN, applying Mean
Field Analysis to calculate average metrics and es-
timate the performance of a Big Data architecture
based on Hadoop.

In order to capture the performance of Hive
queries, Generalized Stochastic Petri Nets together
with other formalisms (i.e., process algebras or

Markov chains) are used to create multi-formalism
models in [5]. Specifically, the authors show how
performance can depend on some configuration pa-
rameters.

In [2], the authors propose colored PNs to de-
termine the feasibility of a distributed file system
project. After designing a deployment of HDFS (us-
ing a set of spare resources in a cluster of workstations
in order to provide a sufficiently available distributed
file system), the system availability is assessed by ex-
ploiting PNs.

Though earlier methods exploited static resource
allocation (at different levels of detail) to model
Hadoop 1.0 clusters, the fluid Petri Net models used
here can capture the dynamic assignment of YARN
resource containers (for example, by using the model
presented in [7]) and are capable of estimating per-
formance of Hadoop 2.x jobs very efficiently.

3 Fluid models

Very often modelers are bound to face several prob-
lems when trying to provide a description of a phys-
ical system by using a formalism. Typically, these
problems are more evident in techniques using dis-
crete states, since the analysis produces a state space
explosion, with an exponential growth in the num-
ber of states following the complexity of the model.
Different alternatives to mitigate this problem have
been proposed. Specifically, hybrid techniques involv-
ing a continuous and discrete part have proved to
reduce significantly the severity of the issue. Contin-
uous variables can be exploited in different scenarios:
for example, they can be used to represent the rising
temperature in a closed room or the water leaking
out of a full bucket.

In literature, fluid models have been presented
in different ways for what concerns the realization
of the continuous aspect. Among the different fla-
vors, in [I1], the authors refer to i) Fluid Stochastic
Petri Nets (FSPNs), ii) Reward and iii) Fluid models.
FSPNs add to Stochastic Petri Nets introducing the
ability to handle continuous parts. In reward models,
the idea consists in using a Markov chain and asso-
ciating a Reward rate, a positive weight whose value



depends on the time spent in a particular state.

Fluid models can be used to successfully study the
MapReduce framework and even more sophisticate
ones, such as Spark [26], including paradigms like
concurrent programming. In [7], the authors con-
sider a scenario to analyze the energy-related perfor-
mance metrics by using a broad Markov chain, taking
into account different configuration parameters and
finally focusing on the solution process that is run in
parallel on all the available cores. The completion
times are taken as a benchmark. It is noted that all
the observed cases show a ladder-like shape, denoting
the level of parallelism considered.

In the following, describes the FSPN
used, while describes how to generate an

approximation of the average execution time of jobs
with deterministic execution time.

3.1 FSPN Model for a MapReduce
Job

In order to formalize the fluid model proposed in this
paper, we will describe it using the FSPN shown in
Figure 1| (the purpose of this FSPN model is just to
specify the underlying fluid model without enumer-
ating its states).

In this formalization, single circles represent dis-
crete places, which can hold an integer number of
tokens; single boxes represent timed transitions that
can fire after an exponential amount of time; bars
represent immediate transitions, which fire as soon
as they are enabled; thin lines define standard arcs
that move tokens among places and enable the con-
nected transitions; and thin lines with circular ends
define inhibitor arcs, which prevent the correspond-
ing transitions from firing whenever the input place
is marked. Double circles represent fluid places, that
can hold a continuous amount of fluid; double boxes
identify fluid transitions, that continuously pump
fluid in and out of continuous places; double arrows
represents fluid arcs that can remove fluid from their
input places; and thick arrows represents set arcs,
that immediately insert a given amount of fluid in
their destination place when their input transition
fires.

The discrete amount of tokens is moved across the
discrete arcs as usual. With regard to the fluid places,
they include a level denoted by a continuous variable,
which flows according to an instantaneous rate. The
discrete FSPN component regulates the fluid flow
through the continuous part, while the conditions en-
abling a transition depend on the discrete component
only.

The model considers N users (corresponding to the
marking of place Users) that can submit jobs to the
system after a think time Z. The submission of jobs
from a user is modeled by the firing of transition
Think characterized by the infinite server semantic.
According to the YARN Capacity Scheduler, we con-
sider that only one job at a time can be executed
by the system: this is obtained via place Available,
which holds a token whenever the infrastructure is
ready to run a new job, thus enabling the correspond-
ing Start transition. Both the map and reduce phases
are modeled by a similar sub-network. Place Ready
holds a token whenever the phase is ready to start,
and its beginning is modeled by the firing of immedi-
ate transition Start. This transition inserts (using its
output set arc) the number of tasks (either map or
reduce) that need to be executed in the correspond-
ing phase in fluid place Queue. The execution of the
jobs is modeled by the time-dependent fluid transi-
tion Exec, which is connected to place Queue with
an output arc. Transitions Exec have a special time-
dependent semantic that will be described in the fol-
lowing paragraphs: for this reason it is represented
with a small clock drawn at its side. Whenever the
queue is empty, the next phase can start or the job
can end thanks to the firing of transition End.

Following [6], the fluid evolution is defined as a
function ¢ : R2 — R, which defines how the fluid level
of the corresponding place changes with time. In par-
ticular, ¢ (z,t) represents the fluid level reached by a
place at time t, if it starts at level x at time ¢ = 0.
This semantic is represented graphically by drawing
a fluid arc that connects a fluid place (Queue in

ure 1)) to a time-dependent fluid transition (Exec in
Figure 1)). In the model, two functions ¢, (z,t) and
or (x,t) are associated respectively to the map and

reduce phases. These functions regulate the evolution
of the fluid in the corresponding places, so that the
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Figure 1: FSPN representation of the fluid model underlying a MapReduce job.
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Figure 2: Fluid evolution: Deterministic task execu-
tion time

fluid level x represents the average remaining number
of tasks that still need to be executed in a phase. In
the following, the representation of function ¢ (z, t) to
model the average execution time of jobs with deter-
ministic task duration is provided. This is an initial
approximation, which is acceptable within the scope
of this paper.

3.2 Deterministic Task Execution

Time

Task duration distributions can be generally regarded
as phase-type or Erlang, parameterized according to
the observed coefficient of variation (CV). The CV
ranges between 0 and 1, whence the two limiting
cases of deterministic and exponential distribution,
respectively. In this paper we adopt the low CV ap-

proximation with deterministic task execution times,
in accordance with the observed distributions.

Let us suppose that our MapReduce jobs are ex-
ecuted by C' containers. Let us also assume that a
phase is composed of N tasks, and that each task re-
quires a deterministic time 7 to be executed.
represents the evolution of the number of remaining
tasks as function of time, which in our fluid model
corresponds to the fluid evolution function ¢ (N,t).
At time t = 0, C out of N tasks are immediately
assigned to the C' containers. Since their duration is
deterministic, all the C tasks will end at the same
time 7', leaving just N — C' tasks left to be executed
in the system. Then the next batch of C tasks will
start, and it will end at 27T, leaving in the system
N —2C jobs. Function ¢ (z,t) can then be defined as

follows:
¢ (z,t) = max (O,x — L;J C>

In this scenario, the time 7 (N, C,T) required to
run N tasks with deterministic running time 7" on C'
containers can be computed as:

(1)

7(N,C,T)=T F(ﬂ

(2)
4 Experiments

In this section, we describe the results of the exper-
iments we conducted to validate our approach. All



these experiments have been performed at CINECA,
the Italian supercomputing center. The experiments
consist of a set of Hive queries taken from the TPC-
DS benchmark suite and run on a dedicated Hadoop
cluster. The rest of the section is organized as follows:

thoroughly describes how the experiments

have been executed; [Section 4.2) presents the obtained
results by applying the fluid models.

4.1 Experimental Settings

The models presented in the previous sections have
been validated with an experimental campaign on
CINECA, the Italian supercomputing center.

PIC(E, the Big Data cluster available at CINECA,
is composed of 74 nodes, each of them boasting two
Intel Xeon 10-core 2670 v2@2.5GHz, with 128 GB
RAM per node. Out of this 74 nodes, up to 66 are
available for computation. In our experiments on
PICO, we used several configurations ranging from 40
to 120 cores and set up the scheduler to provide one
container per core.

The cluster is shared among different users, hence
resources are managed by the Portable Batch System
(PBS). PBS Professional allows for submitting jobs
and checking their progress, configuring at a fine-
grained level the computational requirements: for
all submissions it is possible to request a number
of nodes and to define how many CPUs and what
amount of memory are needed on each of them. Since
the cluster is shared among different users, the per-
formance of single jobs depends on the overall system
load, even though PBS tries to split the resources.
Due to this, it is possible to have large variations
in performance according to the total usage of the
cluster. In particular, storage is not handled directly
by PBS, thus leading to an even greater impact on
performance.

We tried to mitigate this variability first of all by
requesting entire nodes of the cluster for the execu-
tion of our experiments. In such a way, we could be
sure that nobody else could run other jobs on the
same nodes, thus interfering with the performance
measurement.

Thttp://www.hpc.cineca.it/hardware/pico

select avg(ws__quantity),
avg(ws__ext_sales_price),
avg(ws_ext__wholesale_cost),
sum(ws__ext__wholesale_cost)

from web__sales

where (web_sales.ws_sales_price
between 100.00 and 150.00)

or (web_sales.ws_net_profit

between 100 and 200)

group by ws__web__page_ sk

limit 100;

(a) R1

select inv_item_ sk, inv_warehouse_sk
from inventory

where inv__quantity__on__hand > 10

group by inv_item_sk, inv__warehouse_ sk
having sum(inv_ quantity _on_hand) > 20
limit 100;

(b) R2

select avg(ss_ quantity),
avg(ss_net_profit)

from store__sales
where ss__quantity > 10

and ss_net__profit > 0
group by ss_store_ sk
having avg(ss_quantity) > 20
limit 100;

(c) R3

select cs_item sk, avg(cs_quantity)
from catalog_sales

where cs__quantity > 2

group by cs_item_ sk;

as aq

(d) R4

select inv_ warehouse_ sk,
sum(inv__quantity _on_hand)

from inventory

group by inv__warehouse_ sk

having sum(inv__quantity on_ hand) > 5

limit 100;

(e) RS

Figure 3: Interactive queries
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An ephemeral Hadoop cluster has been created at
the beginning of each experiment on the allocated
nodes. The PICO cluster provides the myHadoop
tool for setting up a Hadoop 2.5.1 cluster, upon which
we used Hive 1.2.1. HDFS is kept locally on the se-
lected nodes, in order to experience lower variability
than the one observed using the centralized storage.

In spite of these settings, still the experiments
showed high variability, in particular with a few runs
characterized by extremely high execution time. To
further reduce this variability, in our analyses we dis-

carded runs with an anomalous execution time, tak-
W x ’ Table 1: Fitted parameters

ing out all the experiments that lie more than three 1 =
standard deviations away from the average computed ~Query d[GB] nM ¢ [ms] =nM ¢ [ms]

for the same configuration. R1 250 144 25970 151 9346
The dataset used for testing has been generated R1 500 287 392159 300 1958
using the TPC-DS benchmarklﬂ data generator, cre- R1 750 434 34944 455 1996
ating at a scale factor ranging from 250 GB to 1 TB R1 1000 591 40534 619 3063
several files directly used as external tables by Hive. R2 9250 4 57326 4 8785
We chose the TPC-DS benchmark as it is the industry R2 500 9 49202 9 6582
standard for benchmarking data warehouses. Fur- R2 750 3 48869 3 7500
ther, we performed experiments on five Hive queries, R2 1000 65 1082274 68 13086
dubbed R1-5 and shown in These are ad R3 9250 381 98659 400 92369
hoc queriesﬂ that Hive runs as a single MapReduce R3 500 757 37018 793 92570
job. The profiling phase has been conducted by ex- R3 750 1148 49348 1009 2785
tracting average task durations from at least twenty R3 1000 1560 41961 1009 3048
runs of each query. The numbers of map and reduce R4 250 288 25087 302 2058
tasks varied, respectively, in the ranges [2,1560] and R4 500 573 41007 601 2961
[2,1009]. The discussed parameters are shown in R4 750 368 43902 910 3959
In the table we report the scale factor d, the R4 1000 1183 49615 1009 8667
number of tasks of each phase, respectively n™ and R5 250 4 13456 4 1424
n® for mappers and reducers, and the average task R5 500 9 11774 9 1499
durations, respectively tM and %, R5 750 3 12682 3 1462
R5 1000 64 19557 68 1610

4.2 Experimental Results

In this section we present and discuss the results ob-
tained with the previously described fluid techniques.
First of all, we studied the empirical cumulative dis-
tribution functions (CDFs) of task durations on dif-
ferent nodes, in order to identify the cases in which
performance was strongly affected by exogenous in-
terference. We then considered the accuracy that

Zhttp://www.tpc.org/tpcds/
3https://github.com/deib-polimi/Hive- Experiment- Runner


http://www.tpc.org/tpcds/
https://github.com/deib-polimi/Hive-Experiment-Runner

R3 Map — ¢ 120 — d 500 GB

0.8

o
>

Probability

<
=

—— n012 ||
—— 1020
—— 1022
—— 1023 ]
—— 1025
n027

100

0.2

Time [s]

Figure 4: R3 map, 120 containers, 500 GB dataset

can be reached assuming deterministic task execu-
tion time.

4.2.1 Performance by Node

Figures[d] [ [6]and [7]show the empirical CDFs derived
from the measurements. Figures[d]and [f]refer to sub-
sequent phases of the same experimental run, namely,
query R3 running on the six-node, 120-container clus-
ter deployment over the 500 GB dataset. Accord-
ingly, Figures [6] and [7] show query R2 on the two-
node, 40-container cluster over the same dataset.

As a general trend well represented in Figures
and [7} reducers tend to behave quite regularly. Most
likely, possible variabilities spread across the shuffle
stage that overlaps with the map phase, hence end up
being hardly noticeable in each reducer task duration.

On the other hand, mappers suffer a stronger im-
pact from external interference. In the reported
graphics we have examples of both good and prob-
lematic performance. shows how all but
one node have a very similar behavior. Further, the
only different node is not significantly distant from
the others, hence probably the low variability is im-
putable to the physiological effects of data locality.
Instead, reports that the two involved nodes
have a strongly diverse performance, with a twofold
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Figure 5: R3 reduce, 120 containers, 500 GB dataset
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Figure 7: R2 reduce, 40 containers, 500 GB dataset

R1 — ¢ 40 — d 1000 GB

700
600 LH\\
500 jl[\ﬁ\
£ 400 |
o
e jl LH
£ 300 .
g m
200 TE u&\
100 \_‘
L
0 200 400 600 800 1000
Time [s]

Figure 8: Query R1, 40 containers, 1 TB dataset
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Figure 9: Query R4, 80 containers, 750 GB dataset

difference in task durations. In this case, since we are
dealing with a small interactive query, any exogenous
interference may cause a strong impact on the overall
response time, thus making prediction harder.

4.2.2 Accuracy

[Table 2 reports the results of the accuracy assessment
for the proposed method. In particular, we consider
the fluid evolution function discussed in
For several experiments we report the involved query,
the total number of containers available in the cluster
(c), the scale factor for the dataset generator (d),
the average measured (t) and predicted (7) execution
time, and the relative error (g). The latter is defined

as:
A T—1

t 3)

9

The average accuracy achieved with the approx-
imate formula is 15.33%, perfectly in line with the
expectations in the performance prediction field [I5],
where a 30% accuracy on response times is reason-
able. The Q-Q plot in[Figure 10]shows that the errors
follow a Gaussian distribution, as expected. Only a
handful of experiments show a relatively high error,
peaking at 41.79% in absolute value. Nonetheless,
the standard error of the mean is 1.75%. The largest
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Figure 10: Q-Q plot of the errors

relative errors tend to appear either in the experi-
ments involving R2 and R5, small queries both in
terms of number of tasks and of overall duration, or
in those run at 120 containers. This behavior sug-
gests that the relative abundance of resources might
amplify the effects of variability, whilst the basic as-
sumption of the deterministic approximation for the
fluid evolution is that the CV is null.

Moreover, you can see how the approximate for-
mula compares to the measured data for a couple
of experiments in Figures [l and [0 The blue lines
represent the average completion times of each task
in the map phase, analogously the red lines for the
reduce phase. Notice that the latter begins when the
first reducer container was allocated: all the overlap-
ping time spent shuffling has not been considered to
improve prediction accuracy. The stair-shaped green
and cyan lines are the approximate fluid function in
the limiting case of deterministic task duration, re-
spectively for the map and reduce phase. In the end,
the purple vertical line shows the average measured
response time of the whole query.

5 Conclusions

In this paper we proposed fluid Petri Nets able to
model the execution of MapReduce jobs running

Table 2: Accuracy with the approximate formula

10

Query ¢ d[GB] t[ms] 7 [ms] e [%]
R1 40 250 122084 106528 —12.74
R2 40 250 83364 69119 —17.09
R3 40 250 525374 530780 1.03
R1 40 500 383265 390264 1.83
R2 40 500 86864 57697 —33.58
R3 40 500 1033004 1006209  —2.59
R1 40 750 603006 592265  —1.78
R2 40 750 81292 58983 —27.44
R3 40 750 1534601 1512636 —1.43
R1 40 1000 918454 916637  —0.20
R2 40 1000 3774111 4953744 31.26
R1 60 250 80316 82314 2.49
R2 60 250 84551 68916 —18.49
R3 60 250 275684 228130 —17.25
R4 60 250 219243 201000  —8.32
R5 60 250 25924 16827 —35.09
R1 60 1000 956680 547176  —1.71
R2 60 1000 2009929 2546188 26.68
R3 60 1000 1374024 1295475 —5.72
R4 60 1000 1374244 1502290 9.32
RS 60 1000 48839 60180 23.22
R1 80 250 82531 67386 —18.35
R3 80 250 197388 138850 —29.66
R4 80 250 164811 131252 —20.36
R1 80 500 143139 103568 —27.65
R3 80 500 526760 494960  —6.04
R4 80 500 410376 423152 3.11
R1 80 750 268821 228888 —14.85
R3 80 750 791314 783088 —1.04
R4 80 750 618045 602829 —2.46
R1 80 1000 439052 406720  —7.36
R3 80 1000 1019973 994976  —2.45
R4 80 1000 960985 1015617 5.69
R1 120 250 46215 50790 9.90
R3 120 250 143650 101708  —29.20
R4 120 250 97829 82851 —15.31
R1 120 500 91809 80058 —12.80
R3 120 500 303843 214438 —29.42
R4 120 500 275407 226472 —17.77
R1 120 750 199234 115968 —41.79
R3 120 750 661214 510431 —22.80
R4 120 750 507861 430320 —15.27
R1 120 1000 349425 222165 —36.42
R3 120 1000 838708 647536 —22.79
R4 120 1000 2837286 3344833 17.89




in Hadoop 2.x clusters governed by the Capacity
Scheduler. Preliminary experimental results have
shown that the average percentage error that can be
achieved is around 16%, making the approach suit-
able for design-time capacity planning or run-time
cluster management. Future work will consider the
extension of the approach to cope with jobs described
as directed acyclic graphs, characteristic of Apache
Tez or Spark. Moreover, the framework will be inte-
grated within an optimization tool for run-time clus-
ter management.
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