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ABSTRACT
Thanks to nanotechnology, it is now possible to fabricate
sensor nodes below 100 nanometers in size. Although wire-
less communication at this scale has not been successfully
demonstrated yet, simulations confirm that these sensor nodes
would be able to communicate in the terahertz band using
graphene as a transmission antenna. These developments
suggest that deployment of wireless nanoscale sensor net-
works (WNSNs) inside human body could be a reality one
day. In this paper, we design and analyse a WNSN for mon-
itoring human lung cells. We find that respiration, i.e., the
periodic inhalation and exhalation of oxygen and carbon
dioxide, is the major process that influences the terahertz
channel inside lung cells. The channel is characterised as
a two-state channel, where it periodically switches between
good and bad states. Using real human respiratory data, we
find that the channel absorbs terahertz signal much faster
when it is in bad state compared to good state. Our simula-
tion experiments confirm that we could reduce transmission
power of the nanosensors, and hence the electromagnetic
radiation inside lungs due to deployment of WNSN, by a
factor of 20 if we could schedule all communication only
during good channel states. We propose two duty cycling
protocols along with a simple channel estimation algorithm
that enables nanosensors to achieve such scheduling.
Keywords: WNSNs, Nanoscale communication, Health mon-
itoring systems, Nannosensors, communication protocols.

1. INTRODUCTION
Recent advancements in nanotechnology has made it pos-

sible to fabricate sensor nodes below 100 nanometers in
size using various types of novel materials. These nanosen-
sors have extra-ordinary sensing capabilities and can sense
a range of information at molecular level. For example, it
is now possible to fabricate supersensitive nanoscale sensors

that can measure chemical compounds in concentrations as
low as one part per billion [12]. Medical researchers are al-
ready considering use of nanoparticles for targeted delivery
of drugs to infected cells within human body [3, 14]. When
sensing is combined with these nanoparticles, they can also
collect a range of valuable cell-level data for early detection
of diseases. Wireless communication for such nanosensors
will be a key enabler for such cell-level data collection from
human body.

Although wireless communication at nanoscale has not
been successfully demonstrated yet, recent simulation stud-
ies confirm that these nanosensors may be able to commu-
nicate in the terahertz band using graphene as a transmis-
sion antenna [7]. Following this development, in this paper,
we present the design of a WNSN for monitoring human
lung cells. The WNSN continuously measures important
cell-level data inside lung cells and send them back to the
Internet using terahertz communication.

The success of such WNSN will critically depend on the
ability of the nanosensors to communicate reliably with other
nanosensors to forward the data to a sink, which can di-
rectly communicate with a macro-scale receiver outside hu-
man body, such as a skin-patch. Electromagnetic radiation
inside lungs due to wireless communication is another im-
portant consideration for such deployments. Hence, commu-
nication reliability must be achieved with as little transmis-
sion power as possible, which will minimise radiation. These
requirements cannot be met without good knowledge of the
channel characteristics. Thus the primary focus of this pa-
per is to characterise the terahertz channel inside human
lung.

It has been shown that terahertz is highly susceptible to
molecular absorption, which can be characterised using ra-
diative transfer theory [6, 18]. Essentially, this theory says
that the amount of signal absorption will depend on the
types of molecules are present in the channel, as different
molecules have different absorption capabilities. We use this
theory to study the characteristics of terahertz communica-
tion channels that may be encountered in human lungs. We
have found that the respiration process is the major factor
that influences the terahertz channel inside lung cells. The
channel periodically switches between good state (i.e., bit
error rate in the channel is low) and bad state (i.e., bit error
rate is high) due to significant cyclic variations in the con-
centration of carbon dioxide in the channel. Using real res-
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Figure 1: A schematic architecture of the proposed lung monitoring system via WNSN.

piratory data, we have shown that these channel variations
are significant. More specifically, it takes 20x less power
to communicate reliably if all communications are sched-
uled only during good channel states, which appear once
in every 3 seconds, compared to the case when nanosensors
communicate randomly at any time. Therefore, we propose
duty cycling as a solution for nanomotes to smartly transmit
only when the channel is good. Finally, we propose simple
channel estimation algorithms that enable the nanosensors
to achieve such scheduling.

The rest of the paper is structured as follows. The pro-
posed WNSN for lung monitoring is presented in Section 2.
The terahertz channel inside lung cells is analysed in Section
3 followed by the proposed duty cycling protocols in Section
4. We present simulation results in Section 5 and conclude
the paper in Section 6.

2. PROPOSED WNSN FOR LUNG MONI-
TORING

WNSNs are expected to sense and control important phys-
ical processes right at the molecule level delivering unprece-
dented performance improvement of medical, industrial, bi-
ological, and chemical applications [1, 17]. There are some
indications that show WNSNs can potentially be deployed
inside human body for different purposes such as health
monitoring and targeted drug delivery systems [1, 3].

It is well-known that by monitoring the composition of
the exhaled air, many diseases such as asthma, bronchiec-
tases and even lung cancer can be detected at the very early
stage of development [11]. For example, volatile organic
compounds (VOCs) in breath are recently found as a novel
biomarker that can provide precise information for quick di-
agnosis of the lung cancer [15].

In this work, we demonstrate using WNSNs to remotely
monitor human lung at the molecular level. We first describe
the lung structure followed by the proposed WNSN-based
architecture for remote lung cell monitoring.

2.1 Lung Structure
The human lung is the organ of respiration, composed of

a pair of large, spongy organs optimized for gas exchange
between the blood and the air (Figure 1.a). Air enters the
body through the nose or mouth and passes through the
pharynx, larynx, and trachea. The trachea is a tube that
connects the larynx to the bronchi of the lungs. Just before
reaching the lungs, the trachea then splits into the left and
right bronchi. Many small bronchioles branch off from the
bronchi. The bronchioles further branch off into many tiny
terminal called bronchioles. Terminal bronchioles are the
smallest air tubes in the lungs and terminate at the alveoli
of the lungs, a colony of lung smallest cell that is called
alveolus (Figure 1.b).

Alveolus cells are the functional units of the lungs that
permit gas exchange between the air in the lungs and the
blood in the capillaries of the lungs that have surrounded
each alveolus cell (Figure 1.c). A thin layer of connective
tissue underlies and supports the alveolar cells. The res-
piratory membrane is formed where the walls of a capillary
touch the walls of an alveolus. At the respiratory membrane,
gas exchange occurs between the air and blood through the
extremely thin walls of the alveolus and capillary.

Upon inspiration, the intra-alveolar pressure change around
5-6 mmHg within one respiration cycle due to relaxation of
the intercostal muscles and diaphragm. Due to the same
reason, the radii of an alveolus periodically varies between
about 0.1 mm to 0.2 mm. We will later use these variations
to harvest energy for our nanomotes.

Now we describe our proposed WNSN-based architecture
for real-time monitoring of human lung cells.

2.2 Proposed Architecture
The proposed system aims to measure and report few

markers that can help to detect the lung-related diseases.
We target sparse sampling from several alveoli colonies that
have been selected across both left and right lungs. For this
purpose, we propose a hierarchical WNSN-based solution



which includes four levels that has been depicted in Figure
1.

At the lowest level, we assume that we can deploy two
nanomotes within each targeted alveolus cell to collect data
from the cell. We refer to these nanomotes as ‘nanocollec-
tors’. Nanocollectors can be attached to the cell walls by
using some bioengineering techniques such as atomic force
microscopy or some form of artificial bacteria [9]. Each
nanocollector has been equipped with a nanoscale energy
harvester [5] to harvest energy from pressure variation and
cell wall movement during the respiration cycle ; a nanosen-
sor [16] to measure the target markers in the exchanged
gases; a nanomemory [13] to save the detected marker; a
nanoprocessor [4] to run the required algorithm and a nan-
otransmitter [7] to transfer the recorded markers wirelessly
to a nanoscale remote station. A schematic of the proposed
nanocollector has been depicted in Figure 1.d.

In the next level, two nanoscale remote stations would be
deployed in the central point of both left and right lungs that
are able to receive signal from many nanocollectors. These
nanoscale sinks which will be referred as ‘nanosinks’ have
similar modules to nanocollector except they do not have
any sensor but instead have an extra energy harvester that
can scavenge energy from RF waves. Nanosinks can trans-
mit the received data from the nanocollector to the next
level which is a macroscale sink (macrosink) that has been
patched to the external skin of the chest in a proper posi-
tion that minimizes the distance between macrosink and the
nanosinks. The macrosink then transmit the received data
from nanosinks to the user device that could be a mobile
phone or a personal computer. The data would be processed
by a spacial software on the device and the results would be
displayed on the user’s device monitor. For further analysis
or to keep the person’s record on a cloud, the data could be
remotely transferred to a health server via Internet.

2.3 Powering of nanomotes
The nanocollectors can use a piezoelectric nanogenerator

to either harvest energy from the motion due to alveolus
cell movement or pressure variation during the respiration
process. According to the literature up to few pW (10−12)
can be harvested from motions of human organs using a
flexible piezoelectric nanogenerator of one square micron size
[5].

The nanosinks need more power as they need to collect
data from many nanocollectors and transmit data to the
macrosink. RF energy harvesting might be an option for
nanosink, i.e. macrosink feed the nanosinks via wireless RF
transmissions.

3. IN-VIVO THZ CHANNEL MODELLING
The small antenna size dictates that nanomotes operate

over very high frequencies, namely the terahertz band [1, 7].
As terahertz band is the resonance frequency of molecules,
communication in this band is severely affected by molecular
absorption noise and attenuation.

Radio communication is affected by the chemical compo-
sitions of the medium in two different ways in the terahertz
band. First, radio signal is attenuated because molecules in
the channel absorb energy in certain frequency bands. Sec-
ond, this absorbed energy is re-radiated by the molecules
which creates noise in the channel. We assume that the ra-
dio channel is a medium consisting of N chemical species

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time(sec)

m
i(t

)%

 

 

H
2
O

O
2

CO2
N2

Figure 2: Alveoli gas composition during one respiration
cycle.

S1, S2, ..., SN . The effect of each chemical species Si on the
radio signal is characterised by its molecular absorption co-
efficient Ki(f) of species Si at frequency f . The molecular
absorption coefficients of many chemical species are avail-
able from the HITRAN database [2].

In this section, we aim to characterise the THz communi-
cation within human body based on radiative transfer theory
presented in [6].

3.1 Human lung as the communication medium
As we mentioned in previous section, the quality of com-

munication in WNSN is strongly affected by the composi-
tion of the communication medium. It is then important to
identify the composition of the medium. In the proposed
architecture in Section 2, we have three mediums including
communication between nanocollectors within one alveolus
cell; between nanocollectors and nanosinks; and between
nanosink and macrosink. It this paper, we focus only on
the first medium, i.e. communication within alveolus cells,
which is the most challenging medium due to the dynamic
nature of its composition arising from the respiration pro-
cess. The communication between nanocollectors is mainly
affected by the exchanged gases in the membrane of the alve-
olus cells which is modulated by the human respiratory sys-
tem. In addition, the blood circulatory system circulates the
blood through the body; carrying oxygen to the cells; col-
lecting the excess water and CO2 which has been produced
during cell respiration; and carries them to the alveolus cells
in the lungs (Figure 1.c). This process affects the composi-
tion of the alveolus cells. Table 1 shows the composition of
the in/exhaled air. While less than 0.04% of the inhaled air
is CO2, the exhaled air is composed of 4-5 CO2.

Table 1: The composition percentage of exhaled and inhaled
air [10].

N2 O2 CO2 H2O Others
Inhaled air 78 21 0.05 < 1 < 0.1
Exhaled air 78 13-16 4-5 3-5 < 0.1

Figure 3 shows the variation of the mole fraction, i.e. ra-
tio of CO2 during the respiration process in 10 second that
contains 3 full respiration cycles for an adult person which
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Figure 3: Variation of the CO2 during the respiration in 10
second that has been experimentally measured [8].

has been obtained by real measurement [8]. It shows that
CO2 mole fraction fluctuated between 0.05-5 %. It starts
at 0.05 at the beginning of inhalation and raises to around
5% at the end of inhalation. It drops again to 0.05 at the
end of exhalation. Similar pattern has been observed in all
respiration cycles. We use the data of Table 1 and the respi-
ration data of the same person to simulate the gas exchange
in the alveolus cell. Figure 2 shows the concentration (mole
fraction) of different molecules during the gas exchange pro-
cess in alveolus cell. As it can be seen, the composition of
alveoli as our wireless medium is variable over time causing
a time-varying WNSNs.

In the next section, we show how this variation in the
composition of the medium can affect the quality of com-
munication over the terahertz band.

3.2 Time-varying WNSN
We consider a radio channel in a medium which has time-

varying chemical composition. Let mi(t) be the mole frac-
tion of chemical species Si in the medium at time t. The
medium absorption coefficient K(t, f) at time t and fre-
quency f is a weighted sum of the molecular absorption
coefficients in the medium:

K(t, f) =

N∑
i=1

mi(t)×Ki(f) (1)

where Ki(f) is the absorption coefficient of molecules i at
the frequency f .

As we discussed in Section 3.1, Figure 2 shows the evolu-
tion of different molecules during the gas exchange process
within one alveolus cell.

The attenuation at time t, frequency f and a distance d
from the radio source is given in [6]:

A(t, f, d) = eK(t,f)d ×
(

4πfd

c

)2

(2)

where c is the speed of light. The molecular absorption noise,
Nabs(t, f, d), which is due to the re-radiation of absorbed
radiation by the molecules in the channel, is given by [6]:

Nabs(t, f, d) = kBT0(1− e−K(t,f)×d) (3)

where T0 is the reference temperature 296K and kB is the
Boltzman constant.

Let U(t, f) be the power spectral density of the transmit-
ted radio signal at time t and frequency f . The signal-to-
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Figure 4: BER during one respiration cycle.

noise ratio (SNR) at time t, frequency f and distance d is:

SNR(t, f, d) =
U(t, f)

A(t, f, d)Nabs(t, f, d)
(4)

3.3 Channel simulation
Now, we are ready to analyse the quality of communica-

tion within alveolar. We first calculate the SNR based on
the procedure of Section 3. We then use Pulse Amplitude
Modulation (PAM) to calculate the Bit Error Rate (BER).
Figure 4 shows the BER of the medium in one respiration
cycle. It shows the BER fluctuated over time as the medium
is mainly affected by gas exchanged process.

In the next section, we introduce two smart communica-
tion protocols that can duty cycle the nanomote to smartly
wake-up and transmit when the BER in the channel is low.

4. BIO-INSPIRED DUTY CYCLING COM-
MUNICATION PROTOCOLS

In Section 2, we described how a WNSN can be used
to monitor the lung biomarkers at the molecular level for
early detection of the related diseases. We also showed in
Section 3 that the quality of communication (BER) among
nanomotes is variable over time, which is due to variation
in the composition of the medium that is modulated by the
human respiratory system. There are two approaches to pro-
vide reliable communication in such time-varying WNSN’s
channel. First, nanomotes can use a constant high transmis-
sion power to overcome the worst possible absorption in the
channel. This approach can guarantee a target BER in the
channel but it wastes the power when the channel’s absorp-
tion is low which is not appropriate for resource restricted
nanomotes. The second approach is dynamic power alloca-
tion [19] in which the nanomotes continuously adjust their
transmission powers proportional to the channel’s state, i.e.
absorption coefficient while maintaining a low overall power
budget.

Although dynamic power allocation can improve the reli-
ability of communication, compared to the constant power
allocation approach, it is more appropriate for applications
that need to collect real-time data samples at a very high
rate. However, in our proposed lung monitoring system, we
do not need to collect continuous samples, instead the sys-



tem requires to collect data at a low frequency, e.g. every few
seconds. We therefore aim to design duty cycling protocols
that smartly take advantage of the respiration information
to transmit only when the channel’s absorption is low. We
will explain this protocol in the next Section.

4.1 Smart Sleep & Wake-up Protocol (SSW)
The aim of this section is to design a smart duty cycling

protocol that allows nanomotes to intelligently stop trans-
mitting when the absorption in the channel is high and only
resume data transmission when the channel is good, i.e. the
absorption is low. We refer to this protocol as smart sleep
and wake-up (SSW) protocol. Let assume each respiration
cycle C(x) contains N discrete time slots:

C(x) = {tx1 , tx2 , tx3 , . . . , txN }

Then, Tx = txN −tx1 is the duration of the respiration cycle.
The wake-up period for respiration cycle C(x), ∆TW (x), de-
fine as the time slots that the channel has the lowest possible
absorption during a given respiration cycle of C(x):

∆TW (x) = txi ∈ C(x) and K̄(txi) <= η × Γ(x); η => 1
(5)

where K̄(t) is the average absorption coefficient of the chan-
nel at time t that can be obtained from integration of Equa-
tion 1 over transmitter’s bandwidth, Γ(x) is the minimum
average absorption coefficient in the channel over C(x) and
η > 1 is a design parameter. The sleep period of the nanomotes
over cycle x, ∆TS(x) would simply be:

∆TS(x) = C(x) \∆TW (x)

Now, we explain how nanomotes can practically estimate
∆TW (x) for a given respiration cycle of C(x). As we de-
scribed in Section 2, we have two nanocollectors in each
alveolus cell. Both nanomotes run algorithm 1 for Tx sec-
ond to calculate ∆TW (x):

Algorithm 1: Wake-up intervals calculation.

χ = ∅
while t < Tx do

Transmit an estimation packet.

Measure the received SNR from the counterpart
nanocollector and label it as γt.

χ = χ ∪ γt
t = t+ ∆t which ∆t > 1ms

∆TW (x) = t ∈ Tx and γt <= η ×min{χ}

SSW can offer the best sleep & wake-up cycle but it needs
nanomote to know the exact duration of each individual res-
piration cycle, C(x) and also the exact values for channel
absorption or SNR over the entire cycle. For a given per-
son, the average respiration rate depends on the age, gen-
der, health condition and the activity that person is doing.
Hence, the respiration cycle time, C(x) can be approximated
for a given person in a given health and activity condition.
Nevertheless, continues real-time measuring of the SNR in
the channel is not practical for resource restricted nanomotes
as it will exhaust their limited energies and also might affect
their functionalities. In the next section, we therefore pro-
pose a practical protocol that can approximate the wake-up

and sleep cycles based on only the real measurements from
only one respiration cycle.

4.2 Extended Smart Sleep & Wake-up Proto-
col (ESSW)

Let assume that we can obtain the wake-up and sleep pe-
riod for one respiration cycle via algorithm 1, ∆TW (x). The
extended SSW (ESSW) tries to extend this information to
obtain the wake-up and sleep periods for all other respiration
cycles.

Although for a given person p in a given condition, the
exact period for each individual respiration cycle, Tp,x, is
different but our investigation shows that the average period,
T̄p has a small variance (less than 5%) which means it can
be used as a good estimation for each individual cycle time.
The wake-up period for other next respiration cycles would
be:

∆TW (x+ i) = ∆TW (x) + i× T̄p (6)

where ∆TW (x) is the calculated wake-up period for cycle
x and T̄p is the average period for respiration cycles of the
person p that can be obtained from the respiratory rate of
the person.

Although the respiration period for a given person can be
considered as fixed but if user changes his activity, e.g. starts
walking prior to running, then the respiratory rate and as
a result the cycle periods will change. Nanomotes therefore
need to re-calibrate their T̄p parameter to have a realistic
estimation for the wake-up/sleep periods. The estimation
of period in different activities and re-calibration process is
left for future work.

5. RESULTS
This section aims to study the performance of the smart

communication protocols proposed in Section 4. A good
protocol is the one which provides a higher reliability for a
given power budget. We compare two proposed protocols ,
SSW and ESSW against a default power allocation policy
that use a constant power allocation all the time.

5.1 Methodology
We consider a single hop communication between two

nanomotes that are communicating within an alveolus medium
over a distance equal to 0.2mm. We extract the respiration
data from CapnoBase database [8] for an adult person with
respiratory rate of 18 breaths per minutes for 30 second that
includes 9 respiration cycles, each around 3.32 second (Tx).
Then, we follow the same steps as in Section 3.3 to simulate
the gas exchange process in alveolus cells in each of 9 cycles,
i.e. we extract the mole fractions of different molecules to
calculate K(t). Then, in order to implement SSW protocol,
we follow the algorithm 1 with η = 2 to calculate the wake-
up periods for all 9 cycles ∆TW (x1), . . . ,∆TW (x9). We also
use the first wake-up period, ∆TW (x1) to approximate other
8 wake-up periods from equation 5 for ESSW. Finally, we
use the WNSN’s channel modelling described in Section 3
to calculate SNR and BER for each protocol/cycle.

For each protocol/cycle, we conduct 30 sets of experi-
ments, each with a different nominal power levels, Pnominal

that is ranging from 10−19 to 10−17 W that are equally
spaced. For default power allocation, each nanomote uses
Pnominal as the transmission power all the time. For other
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Figure 5: Channel status and power allocation via different protocols within alveolus medium over 9 respiration cycles (nominal
power equal to 0.5 aW).

policies, nanomote use Pnominal only during the wake-up pe-
riods and use Pnominal = 0 during the sleep period, i.e. don’t
transmit. The average allocated power over each cycle via
each protocol therefore would be Pnominal for default proto-

col and ∆TW (x)
Tx

× Pnominal for SSW and ESSW. Note that

∆TW (x) for SSW and ESSW might be slightly different due
to estimation error.

5.2 Results
Figure 5.a illustrates the K̄(t) over 9 respiration cycles.

It shows that absorption coefficient of the alveolus channel
varies between 1 and 15 m−1. Figure 5.b shows the typical
power allocation via 3 different protocols over the 9 cycles
for a nominal power equal to 0.5aW (0.5 × 10−18). As it
can be seen, the SSW can successfully capture the moments
that absorption is low in the channel. ESSW which uses the
wake-up period of the first cycle to estimate other wake-up
periods is also relatively close to the SSW. While default
protocol uses 0.5 aW to provide BER of only 0.04, SSW
and ESSW can improve the BER to 10−5 and 2 × 10−5 by
spending almost half of the power that default protocol has
used.

Figure 5 shows the results for a given nominal power.
Now, let investigate the performance of proposed protocols
when nanomotes use different nominal powers. Figure 6
shows the power/BER trade-off for different protocols. It
shows that for a given power budget, the SSW can signifi-
cantly improve the BER of the default protocol by few or-
ders of magnitudes. On the other hand, for a given BER,
SSW and ESSW reduce the required power by a factor of
averagely 20 and 18, compared to the default protocol. We
hypothesize that this lower performance of the ESSW is due
to the variation in the respiration times, Tx which has been
considered fixed in equation 5.
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Figure 6: Achievable BER via different protocols as a func-
tion of average allocated power for the alveolus medium.

As the SSW and ESSW only transmit over a fraction of
respiration cycle, it might negatively affect the channel ca-
pacity. So, we use the Shannon capacity formula [6] to cal-
culate the average achievable channel capacity for different
protocols over one respiration cycle that has been presented
in Figure 7. Although SSW and ESSW have a relatively long
sleep cycle, which means their capacities are zero, but they
performs better than default protocol as their average SNR
over wake-up period is significantly higher than the average
SNR of the default protocol over the entire cycle. For fair
comparison, we consider zero capacity for SSW and ESSW
during the sleep cycles.
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6. CONCLUSION
We have presented the concept of a WNSN for monitor-

ing human lung cells. Using radiative transfer theory, we
have studied the characteristics of terahertz communication
channels that may be encountered in human lungs. The key
finding is that the respiration process is the major factor
that influences the terahertz channel inside lung cells. The
channel periodically switches between good and bad states
due to significant cyclic variations in the concentration of
the exchanged gases in the human lung. Using real respi-
ratory data, we have shown that these channel variations
are significant. More specifically, it takes 20x less power
to communicate with a low BER less than 10−6 if commu-
nication is restricted to good channel states than the case
where this restriction is not enforced. Given that good chan-
nel states cyclicly reappear once every 3 seconds, the power
saving, which directly reduces the electromagnetic radiation
in lung cells, can still support high frequency monitoring.
We have further shown that it is possible for nanosensors to
accurately detect and predict the timings of good and bad
channel states, making the power saving viable.
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