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ABSTRACT
A good understanding of contact patterns in delay tolerant net-
works (DTNs) is elemental to the design of effective routing or
content distribution schemes. Prior work has typically focused on
inter-contact time patterns in the aggregate. In this paper, we argue
that pairwise inter-contact patterns are a more refined and efficient
tool for characterizing DTNs. First, we provide a detailed statis-
tical analysis of pairwise contact and inter-contact times in three
reference DTN data sets. We characterize heterogeneities in con-
tact times and inter-contact times, and find that the empirical distri-
butions of inter-contact times tend to be well fitted by log-normal
curves, with exponential curves also fitting a significant portion of
the distributions. Second, we investigate analytically the relation-
ship between pairwise and aggregate inter-contact times. In par-
ticular, we consider both the exponential and log-normal cases and
show analytically how the aggregation of pairwise inter-contacts
may lead to aggregate inter-contacts with power laws of various
degrees.

1. INTRODUCTION
In delay tolerant networks (DTNs) [7] nodes are typically mobile

and have wireless networking capabilities. They are able to com-
municate with each other only when they are within transmission
range. The network suffers from frequent connectivity disruptions,
making the topology only intermittently and partially connected.
This means that there is no guarantee that an end-to-end path ex-
ists between a given pair of nodes at a given time. Examples from
the recent literature include the DieselNet project [26], which fea-
tures communication devices deployed in a regional bus system,
and Pocket Switched Networks (PSNs) [3], which are formed by
devices that people carry every day, such as cell phones, PDAs,
and music players. In contexts such as these, end-to-end paths can
exist temporarily, or may sometimes never exist, with only partial
paths emerging.

Understanding mobility of nodes in DTNs is of utmost impor-
tance. A large number of design issues such as routing, content dis-
semination or resource management much depend upon what one
expects in terms of node mobility. We provide in this work a de-
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tailed statistical analysis of pairwise contact and inter-contact times
in three reference DTN data sets which allow us to draw conclu-
sions about the characteristics that DTN models should integrate.
We characterize heterogeneities in contact times and inter-contact
times, and find that the empirical distributions of inter-contact times
tend to be well fitted by log-normal curves, with exponential curves
also fitting a significant portion of the distributions. Second, we
investigate the relationship between pairwise and aggregate inter-
contact times. In particular, we consider both the exponential and
log-normal cases and show analytically how the aggregation of
pairwise inter-contacts may lead to aggregate inter-contacts with
power laws of various degrees.

Initial DTN work focused on scheduled meeting times [12]. Fo-
cus then turned to the sort of randomness in meeting times en-
countered in mobile ad-hoc networks [10, 23], and characterised
in mobility models such as Random Way-Point [13], and Random
Walk [6]. These models yield homogeneous patterns, where all
nodes share a single inter-contact time distribution. Spyropoulos
et al. model mobility of nodes as independent random walks on
a torus, and use it to analyse the performance of different routing
schemes [25]. Their model considers all pairs of nodes to follow
the same law, with the same parameters. This results in a homo-
geneous DTN (a network where the mobility of nodes results in all
pairwise inter-contacts to follow exactly the same law).

More recent work has analysed experimental data sets [11, 3, 5]
that record actual inter-contact patterns that occurred between peo-
ple in a number of different environments. Chaintreau et al. [3],
from observations on those data sets, proposed to model the se-
quence of contacts as a discrete renewal process, and study power-
law distributed inter-contacts. Karagiannis et al. [15] analyse the
mobility traces and explain the observed exponential tail behavior
of inter-contact times with a simple random walk on a two dimen-
sional torus followed by all nodes in the network.

In this paper, we advocate that researchers should look at pair-
wise inter-contact patterns. We make two contributions along these
lines: First, we provide a detailed statistical analysis of pairwise
inter-contact patterns in three reference DTN data sets. Previous
work has studied inter-contact times in the aggregate, across all
pairs of nodes. It has combined, and thus obscured, the individual
effects of pairwise inter-contacts. We characterize heterogeneities
in contact times and inter-contact times, and find that distributions
of inter-contact times tend to be well modeled by log-normal curves.
Exponential curves also tend to fit a fair portion of distributions.

Second, we provide analytical studies of the relationships be-
tween aggregate and pairwise distributions. One often adopts the
distributions estimated on aggregate data for modelling pairwise
inter-contacts. We show that this may be a too strong simplifica-
tion which leads to paradoxical situations. For example, when one
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wants to route messages, results are too pessimistic. We describe
how distributions with finite means and variances can be composed
to yield distributions whose tails follow a power law. This corre-
sponds to the power-tailed distributions that Chaintreau et al. [3]
observed. In particular, we show that exponential and log-normal
pairwise inter-contact time distributions can be combined to create
an aggregate power law distribution.

The rest of this paper is structured as follows. Sec. 2 provides
a statistical analysis of pairwise contacts in the three real life data
sets we used in this work. Sec. 3 discusses the power law paradox.
Sec. 4 discusses the results and describes related work concerning
mobility in DTNs. Sec. 5 concludes the paper, discussing directions
for future work.

2. PAIRWISE INTERACTIONS
This section introduces and analyses the three different data sets

that we use in the rest of this paper. We characterize interactions
that may occur in DTN scenarios and highlight the different kinds
of heterogeneities that arise.

2.1 Experimental data sets
We describe here the contexts in which the data sets have been

collected and the acquisition methodologies that were used. All of
these data sets are publicly available in the CRAWDAD archive [1].

Dartmouth data

This connectivity data set has been inferred from traces collected
in the Wi-Fi access network of Dartmouth College [11]. The traces
that we use were pre-processed by Song et al. [24] for their prior
work on mobility prediction. They track users’ sessions in the wire-
less network, noting the time at which nodes associate and disso-
ciate from access points. Although the Dartmouth data is not from
a DTN network, we use it because it is perhaps the richest data set
publicly available that tracks users in a campus setting, and because
of its quality. Jones et al. [14], Leguay et al. [18], and Chaintreau
et al. [3] have recently used these traces in a similar way.

A few judicious assumptions are required to adapt the Dartmouth
data for DTN studies. First, we only consider the subset of users
who were present in the network every day between January 26th

2004 and March 11th 2004, an academic period during which we
expect nodes’ activity to be fairly stationary. This data set contains
834 users, or nodes. Then, we assume that two nodes are in contact
if they are attached at the same time to the same access point (AP).
We miss other contacts between users that are not logged by Wi-
Fi devices, because the users are not carrying the devices or have
turned them off. These contacts might have been logged in a true
DTN network, by lighter-weight wearable devices that remain on
at all times. When more extensive DTN data in campus settings
becomes available, researchers will need to revisit the studies made
using the Dartmouth data, to see if the lack of such contacts has
an impact on their conclusions. Finally, we filter the data to re-
move the well knownping-pong effect. Wireless nodes, even non-
mobile ones, can oscillate at a high frequency between two APs.
To counter this, we filter all the inter-contact times below 1,800
seconds (30 minutes). Note that defining better filtering methods,
although challenging, would be of interest for the community. As
this is not the purpose of this work, we choose here the threshold
that Yoon et al. [27] used for the same purpose. We use this inferred
data set for the remainder of this paper.

Fig. 1 presents, for all the data sets, the evolution over time of the
total number of contacts that occurred between nodes (left column)

and the number of contacts for every pair of nodes having at least
one contact, ranked in decreasing order (right column). Fig. 1(a)
and Fig. 1(d) are the plots for the Dartmouth data set. As Fig. 1(a)
shows, the interactions between nodes are quite stable over time.
We observed 13,901.7 contacts per day on average, with a standard
deviation of 796.9 contacts. We conjecture that this stability comes
from the fact that we choose only nodes that are present every day.
Fig. 1(d) shows that a few node pairs had a high number of contacts,
and that this number then decreases very rapidly. Just 10.7% (i.e.,
37,424) of node pairs had contacts between each other, and these
are the ones that are plotted. Among these, the mean number of
contacts was 15.4, with a standard deviation of 32.9 contacts.

iMote data

Chaintreau et al. [3] used iMotes (Bluetooth contact loggers from
Intel) to acquire proximity contacts that occurred between partic-
ipants in the student workshop at theInfocom 2005 research con-
ference. Students were asked to carry one of these sensors in their
pocket at all times. Due to Bluetooth’s short range, authors logged
instances when people were close to each other (typically within
10 meters). They collected data from 41 iMotes over 3 days. The
devices performed Bluetooth inquiry scans every 2 minutes. For
each pair of nodes(i, j), we considered thati and j were in contact
if either one saw the other. Note that, as with the Dartmouth data,
many contacts might be missed. Those that occur between the 2
minute scans are not registered, and two nodes that are scanning
simultaneously will not see each other.

In this data set, the evolution of the number of contacts between
participants shows diurnal variations, as seen in Fig. 1(b). We ob-
served 231.7 contacts per hour on average, with a standard devi-
ation of 281.3 contacts. Fig. 1(e) only plots node pairs that had
contacts, but these represent fully 95.4% of the pairs. For these
pairs, the mean number of contacts was 22.8, with a standard devi-
ation of 14.8 contacts. The iMote data shows more contacts for the
typical node pair than does the Dartmouth data.

MIT data

The Reality Mining experiment [5] conducted at MIT captured prox-
imity, location, and activity information from 97 subjects (mainly
students) over the course of an academic year. Each participant had
an application running on their mobile phone to record proximity
with others through periodic Bluetooth scans (every 5 minutes) in
a similar fashion to that of the iMote experiment. Locality infor-
mation comes from knowing which GSM network cell the phone is
attached to. We only make use of the Bluetooth proximity data to
determine whether two nodes were in contact. We selected 95 days
of data corresponding to the first semester of the academic year
2004-2005 where activity was high in the traces in terms of the
number of phones that collected data and the number of contacts
that were recorded.

Fig. 1(c) displays weekly variations in the number of contacts
between participants. The mean number of contacts per day is
660.0 contacts per day, with a standard deviation of 405.072 con-
tacts. The number of interactions is lower than in the iMote data
set, where the mean number of contacts per day was 1,378.39, and
that was among only 41 nodes. For the 60.4% of node pairs that
had at least one contact, and are plotted in Fig. 1(f), there is a mean
of 22.3 contacts, with a standard deviation of 32.8 contacts. This
plot more closely resembles the plot for the Dartmouth data set than
the iMotes data set.
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Figure 1: Evolution of the total number of contacts over time (top). Number of contacts for each pair of nodes (bottom); pairs are
sorted in decreasing order of their number of contacts.

These data sets represent three different DTN scenarios which
are of interest for the understanding of interactions between people
that might carry communication devices. We will refer to these data
sets asDartmouth, iMote andMIT.

2.2 Heterogeneity in expectations
This section looks at the durations of contacts between pairs of

nodes (contact times) and the time that elapses between any such
contacts (inter-contact times). Both parameters influence perfor-
mances of DTN schemes. Inter-contact patterns characterize the
overall network topology and identifies message forwarding oppor-
tunities. It has a direct impact on opportunistic routing decisions.
Contact time, along with other individual node characteristics such
as memory, disk or power, adds constraints that further impact in
particular the capacity of the DTN. This study focuses on hetero-
geneity, looking at the distributions for all node pairs. In the data
sets just described in Sec. 2.1, we have already observed hetero-
geneity in the number of contacts per node pair. However, a deeper
look is required to understand the impact of contact patterns on
routing.

Fig. 2 shows, on the top row, the complementary cumulative
distribution functions (CCDF), for all node pairs, of mean inter-
contact times. We denote with E(τ) the expectation of inter-contact
times, withτ being the process of inter-contact times for a given
pair. Similarly, Fig. 2 shows, on the bottom row, the CCDF of
E(Ω), the expected contact times of node pairs. We can see that
the distributions are heterogeneous, with the means spanning over
three orders of magnitude. The mean inter-contact time is 280.6

hours for Dartmouth, with a standard deviation of 210.5 hours; 4.9
hours for iMote, with a standard deviation of 5.6 hours; and 387.1
hours for MIT, with a standard deviation of 377.3 hours.

The mean contact times are also heterogeneous, as shown by
plots in the right column of Fig. 2. The mean expected contact
times are: 0.8 hours for Dartmouth, with a standard deviation of
3.0 hours; 0.03 hours for iMote, with a standard deviation of 0.04
hours; and 0.3 hours for MIT, with a standard deviation of 0.4
hours.

These results demonstrate that pairwise contact and inter-contact
times processes should not be considered homogeneous in DTN
models as they plot a high level of heterogeneity in expectations
when looking at real data. We also observe, for all three data
sets, that mean contact times are much shorter than inter-contact
times. This leads us to conjecture that understanding inter-contact
times processes is more crucial that understanding contact times
processes if one needs to choose which to focus on.

2.3 Nature of inter-contact times distributions
Concentrating on aggregate inter-contacts provides very com-

pact descriptors of the overall network behavior. It is summarized
in a single distribution (e.g. Pareto) and the estimates of its pa-
rameters (in the Pareto case, two parameters). Although being very
synthetic, using such information for DTN modeling might lead to
erroneous conclusions. As a consequence, in order to better under-
stand node interactions in DTN, we will be looking in this section
at characterizing pairwise inter-contact distributions.

In a network ofn nodes, there aren(n−1)/2 inter-contacts dis-
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Figure 2: CCDF of mean inter-contact times E(τ) (top) and mean contact times E(Ω) (bottom).

tributions. Fitting a different distribution for each pair, along with
its parameters, may lead to intractable models. In order to keep a
model of manageable size, we will be looking at families of dis-
tributions that can best capture pairwise behaviors. In the sought
model, a single family (e.g. exponential, Pareto or log-normal)
governs all pairwise inter-contacts, variations between individual
pairs being summarized by different parameter values.

To this end, and as a first step, we test for whether the distribution
of inter-contact times between any two nodes can be modelled ei-
ther by an exponential, a log-normal, or a power law (to be precise,
Pareto) distribution.

For this purpose, we use the Cramer-Smirnov-Von-Mises [4] sta-
tistical hypothesis test. Recall that such a statistical test can only
reject or fail to reject a given hypothesis. So, when the hypothetical
distribution is rejected by the test, we are certain that the distribu-
tion computed over the data does not match. On the other hand,
when the test fails to reject the hypothesis, we only know that this
is true to a confidence level 1−α . We used a relatively high level
of confidence (α = 0.01) and also visually cross-checked the good-
ness of fits.

For each pair of nodes(i, j) having at least 4 contacts, we com-
pare the cumulative distributionIi j

N of the N inter-contact times
observed and the hypothesised cumulative distribution functions
(CDFs),Fi j(x) = P(Ti j < x), given by the three following formulas:

• Exponential distribution:Fi j(x) = 1− e−λi jx

λi j is the constant decay rate of the exponential distribution
characteristic of a light tail behavior.

• Pareto distribution:Fi j(x) = 1−
( xmi j

x

)ki j

ki j is the shape parameter of the Pareto distribution and rep-
resents the degree of the power-tail (the slope of the linear
decay of its CCDF on a log-log plot).

• Log-normal distribution:Fi j(x) = 1
2 + 1

2erf

[

ln(x)−µi j

σi j

√
2

]

This corresponds to a variable whose logarithm follows a
Normal (i.e. Gaussian) distribution with parametersµi j and
σi j. The distribution is light-tailed and decays exponentially.

Note that, for a given node pair, several distributions may fit the
inter-contact distribution. We see an example in Fig. 3 of the inter-
contact times for an iMote node pair. These inter-contact times are
found to follow a log-normal distribution.

Table 1 presents, for each data set, the proportion of pairs for
which the distribution of inter-contact times fits an exponential, a
Pareto, and a log-normal distribution. We also show the proportion
of pairs that were rejected for all three hypothetical distributions.

One notable observation is that log-normal tends to fit better than
exponential or Pareto for all three data sets. The main reason is that
the log-normal distribution offers a more versatile model to capture
the variability in inter-contact patterns across the different pairs of
nodes. Almost no pair of nodes has been found to fit only an expo-
nential or a Pareto distribution. For Dartmouth, for example, 0.1%
of node pairs are exponential only, and the same proportion are
Pareto only, while 36.4% of node pairs only match a log-normal
distribution.

Fig. 4 plots the distribution of theσ parameters of the log-normal
in the three data sets. This parameter governs the shape of the
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Dartmouth iMote MIT
Number of pairs tested 20,211 755 2,174
Exponential 42.8 % 7.9 % 56.3 %
Pareto 34.2 % 12.3 % 26.5 %
Log-normal 85.8 % 99.4 % 96.9 %
None 12.9 % 0.4 % 2.7 %

Table 1: Fitting results.

log-normal distribution. For small values ofσ the log-normal dis-
tribution is bell shaped around its meaneµ . Indeed its skewness

(2+eσ2
)
√

eσ2 −1, becomes, forσ << 1, equivalent to 3σ , which,
being close to 0, indicates a fairly symmetric distribution. For large
values ofσ the distribution becomes very skewed. Its unique mode
is given byeµ−σ2

, so that, forσ >> µ , the mode gets close to zero
and appears as a vertical asymptote around the origin.

In other words, the log-normal family of distributions is capable
of modelling all types of behaviors of the CDF around the origin,
from smooth horizontal asymptotes for small values ofσ , to nearly
vertical asymptotes for larger values. In our data sets many samples
exhibit vertical asymptotes around the origin, which translates into
σ values: they are higher in Dartmouth, with an average of 3.5,
compared to 2.2 for iMote and 2.1 for MIT. Both the exponential
and Pareto have a linear behavior around the origin so the ability
of the log-normal distribution to cope with vertical asymptotes near
the origin is a clear advantage.
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Figure 4: CDF of σi j for log-normal node pairs in data.

From these observations it seems reasonable, in these data sets,
to consider pairwise inter-contact time distributions as log-normal
rather than power law or exponential. This speaks to the hetero-
geneity of the distributions. The log-normal family is better ca-
pable of modeling the variations of behaviors across the pairs of
nodes. The reasons are probably twofold. First, it covers a large
span of asymptotic behaviors at the origin (from horizontal to verti-
cal asymptotes). Second, it can capture light tailed behavior as well
as some heavy tailed behavior over a certain range, while always
maintaining a finite expectation and variance (contrary to power
laws with degrees lower than 2).

As we have examined only three data sets, albeit often-used ones,
we cannot draw firm general conclusions about what will be re-
vealed elsewhere. But one might reasonably expect that other mo-
bility traces captured in similar environments will show similar
characteristics.

3. THE POWER LAW PARADOX
In this section we wish to investigate and understand better the

interplay between pairwise inter-contacts and aggregate inter-contacts.
Let’s first first introduce why it seems important to make this dif-

ference: Chaintreau et al. [3] report that aggregated inter-contact
times follow power laws in a number of DTN traces (including
ones based on Dartmouth and iMote data). At the same time, we
have just ruled out a power-law distribution to model pairwise inter-
contacts in favor of the log-normal which exhibits a light-tail (with
exponential decay). And this holds for traces based on the same
Dartmouth and iMote data. This constitutes what we called the
power law paradox.

Computing the cumulative distribution of aggregated inter-contact
times for the Dartmouth data set confirms this observation. The
log-log plot in Fig. 5 shows that it follows a power law of the form
f (x)= cxδ , with exponentδ =−0.16 and scale parameterc = 3.45.
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Figure 5: Log-log plot of the CCDF of aggregate inter-contacts
in Dartmouth.

This section studies analytically this power law paradox by look-
ing at the relationship between pairwise inter-contacts and inter-
contacts aggregated over the entire set of pairs of nodes. The main
purpose is to identify conditions in which aggregating different
pairwise inter-contacts may lead to power-tailed distributions. We
show how specific combinations of heterogeneous pairwise inter-
contact times, both for the exponential and log-normal cases, can
explain the aggregated power laws that have often been observed in
experimental data sets.

First, we introduce a generic model of a heterogeneous DTN.
The model supports any inter-contact time distribution. To analyze
the power law paradox, we study two special cases which corre-
spond to the exponential and log-normal distribution families. This



leads to explicit analytical formulas that provide insight into the
phenomenon at play.

3.1 Heterogeneous DTN Model
Let us first consider a generic model for a heterogeneous DTN

composed ofn nodes. All nodes are given a unique ID in 1,2, ...,n.

For any two nodes(i, j) we denote as(t(n)
i j )n∈Z = ... < t−1

i j < t0
i j <

t1
i j < ... the sequence of time instants at which a contact betweeni
and j occurs.

The inter-contact pattern of the network is defined in the follow-
ing way:

• For each pair of nodes(i, j) the pairwise inter-contact se-

quence(t(n)
i j )n∈Z is a renewal process; in other words, inter-

contact times between nodesi and j are independent iden-
tically distributed(iid) random variables, let’s sayTi j. Note
that for each pair(i, j) the distribution law ofTi j and its pa-
rameters may differ.

• A given joint distribution of then(n− 1)/2 pairwise inter-
contact sequences serves in particular to characterize the pos-
sible correlations between two inter-contact sequences.

In this section we are interested in looking at variableΘ, the
inter-contact times aggregated for all pairs of nodes in the network.
By definition the aggregated inter-contact time is greater thant,
t > 0, if the inter-contact time is greater thant for at least one pair
of nodes. Formally, this means thatΘ > t iff ∃(i, j), i < j,Ti j > t,
which means thatΘ = supi< j Ti j.

The major hypothesis made by the model is that inter-contact
time distributions are stationary. The model focuses on the tempo-
ral dynamics of node connectivity in a DTN. It does not model node
mobility directly, but captures inter-contact patterns. In this way it
provides a common framework to analyse different DTNs. The tra-
ditional Random Way Point and Random Walk mobility models for
ad-hoc networks fall in this category (see Carreras et al. [2]). More
generally, the model would allow one to capture the different forms
of heterogeneity that we have identified in the data sets of Sec. 2.

3.2 Aggregated Exponentials
In this section we address the exponential case. The exponen-

tial hypothesis is not the best fit for the data we analysed, but ap-
pears often as the second best choice (as one can see from Table 1).
It constitutes also the extreme case – exponential decay being the
very prototype of light tailed distributions – and the opposite of the
power tailed behavior of the Pareto. We are then able to formally
derive the aggregate distribution of inter-contact times in the case
of exponential pairwise inter-contacts.

The heterogeneous exponential case corresponds to the model
with the following complementary hypotheses: the pairwise con-
tact sequences are homogeneous Poisson processes (HPPs), i.e.,
the inter-contact times follow exponential laws with parametersλi j.
Furthermore the HPPs are independent. The purpose is here to
focus on the heterogeneity of pairwise mean inter-contact times,
which are given by 1/λi j and to study the effect of aggregating the
inter-contact patterns. Choosing the exponential case may be seen
as an extreme; the tail distribution of the exponential is the very
opposite of the heavy tailed pattern that power laws capture best.
Moreover, it may seem that the pairwise exponential assumption is
too strong to yield a power law in the aggregate.

The key to resolving the paradox in the exponential case is given
by a classical result by Bernstein which states that any completely
monotone PDF can be obtained as the mixture of exponential PDF’s
(see for example [8]). Let’s examine how this translates in our case.

Let Θ be the aggregate inter-contact time for all pairs of nodes.
Let’s writeK = n(n−1)/2 and renumber the pairwise inter-contacts
Tk from 1 toK. We then haveΘ = sup1≤k≤K Tk. Let’s imagine that
all inter-contact processes are exponentially distributed with vari-
ous parametersλk. Different distributions of theλk parameters can
model different global properties of DTNs. For example, in some
cases, a node will meet most of the others several times a day, and
the remaining ones on a weekly basis. Letpk denote the proportion
of pairs with parameterλk.

Conditioning on the event that in the aggregate sup1≤k≤K Tk the
pair is pair numberk, we have:

P(Θ > t) =
k=K

∑
k=1

P(Tk > t)pk (1)

In the case of a DTN with a very large number of pairs (such as
in the Dartmouth case) we consider the analogue formula with a
continuously varying probability distributionp(λ ) of theλ param-
eters:

P(Θ > t) =
∫ ∞

λ=0
e−λ t p(λ )dλ (2)

What Eq. 2 says is that, for the exponential case, the aggregate
inter-contact time distribution is fully characterized by the distri-
butions of theλ parameters. More precisely, the tail cumulative
distribution of the aggregated inter-contact times is given by the
Laplace transform of the probability density function (PDF)p of
theλ parameters.

We would thus like to know if there exist cases of PDFsp that
can generate power law tail behaviors in the aggregate. Let’s con-
sider the case of the Pareto law with shape parameterα > 0 and
scale parameterb > 0, which reads, fort ≥ 0:

P(Θ > t) = (
b

t +b
)α (3)

Since the Laplace transform is invertible, Eq. 2 tells us that tak-
ing the inverse Laplace transform ofP(Θ > t) gives the distribution
p of theλ parameters. We then have,Γ being the Gamma function,
for λ ≥ 0:

p(λ ) =
λ α−1bα e−bλ

Γ(α)
(4)

This provides an answer to our initial question: even if all pair-
wise inter-contacts follow an exponential distribution, it is still pos-
sible to regain the power law distribution in the aggregate. One
could have thoughta priori that it would require the distribution of
theλ parameters to be power-tailed. In that case a power law would
still have come into play, not directly in the pairwise inter-contacts,
but at a global scale of the DTN (its distribution of parameters).
In fact Eq. 4 shows that this is not necessary, since the tail of the
Gamma distribution drops off exponentially.

What this analytical result shows is that when considering a DTN
with independent pairwise exponential inter-contacts, one can re-
gain the power law behavior for the aggregated inter-contacts when
the distribution of the parameters is a Gamma.

Let us apply this result to the Dartmouth data set; recall that inter-
contact patterns are not all exponential, so to confront the result to
the data, we proceed in the following way: we estimate parameters
α andb from the cumulative distribution of theλ parameters for
pairs that were shown to follow an exponential behavior (the ones
that “pass” the Cramer hypothesis test). We findb = 113,766.9 and



α = 2.26. Fig. 6(a) shows the estimated cumulative gamma distri-
bution g(x) with the experimental lambda cumulative distribution
for all pairs that have shown to be exponential. Then, we plot in
Fig. 6(b) the corresponding power-lawh(t) with cumulative distri-
bution of aggregated inter-contact times.

The fit of the Gamma distribution in Fig. 6(a) captures the shape
of the distribution of parameters with a small underestimate for
larger values ofλ . The predicted Pareto distribution for the aggre-
gated inter-contacts in Fig. 6(b) shows good fit for most of the val-
ues. The tail that the Pareto distribution generates appears however
heavier than the actual inter-contacts which might be explain by the
fact that aggregated inter-contacts do not fit perfectly a power-law
(see Fig. 5).

3.3 Aggregated Log-normals
In this section we consider the same hypotheses for the DTN

model as in the exponential case above, but we replace the individ-
ual exponential laws with parametersλi j by log-normals with pa-
rametersµi j andσi j. Similarly to the section above we would like
study how different distributions of the parameters yield aggregate
power law inter-contacts.

Limited analytical results exist on mixture of log-normals as they
do not lead as easily as exponentials to simple closed form formu-
las. Montroll and Shlesinger [20] show that a geometric mixture
of log-normals yields a power-law, and Reed [22] [19] show that
stopping a log-normal multiplicative growth at a random exponen-
tial time yields a power-law distribution. None of these results deal
with aggregate estimates nor do they apply directly. In this sec-
tion we are going to show that it is possible, for an appropriate
distribution of parameters, to regain here again a power-law from
log-normal pairwise inter-contacts.

As for the exponential study, let’s consider the continuous set-
ting. Let’s first consider the impact of the shape parameters, keep-
ing the scale constant. Callingpσ the PDF of theσ parameters,
one can write a similar equation to Eq. 2 for the PDFpΘ(t) of the
aggregateΘ:

pΘ(t) =
∫ ∞

σ=0

1√
2πσ t

e−
(ln t−µ)2

2σ2 pσ (σ)dσ (5)

Looking at the sigmoid shape of theσ distributions in the three
data sets in Fig. 4, it seems reasonable to consider modeling them
with a Weibull distribution, whose PDFpW is given by:

pW (t) =
k
λ

(
t
λ

)k−1e−( t
λ )k

(6)

In the Weibull distributionλ is a scale parameter andk a shape
parameter. We will now consider the specific case ofk = 2. Eq. 5
becomes after simplification:

pΘ(t) =
2√

2πλ 2t

∫ ∞

σ=0
e−

(ln t−µ)2

2σ2 e−
σ2

λ2 dσ (7)

This is of the form
∫ ∞

x=0 e−
b

x2 e−ax2
dx = 1

2

√

π
a e−2

√
ab with a = 1

λ 2

andb =
(ln t−µ)2

2 , which yields:

pΘ(t) =
1√
2λ t

e−
√

2
λ | ln t−µ| (8)

pΘ follows two different behaviors depending on whethert ≥ eµ

or t ≤ eµ .
Let’s now allow theµ parameter to vary as a random variable

independent ofλ , with a PDFpµ . Eq. 7 thus becomes, after sim-
plification using Eq. 8:

pΘ(t) =
∫ ∞

µ=−∞

1√
2λ t

e−
√

2
λ | ln t−µ|pµ (µ)dµ (9)

Sincet > 0, we have:

pΘ(t) =
1√
2λ t

(
∫ ln t

−∞
e−

√
2

λ (ln t−µ) pµ (µ)dµ

+
∫ ∞

ln t
e−

√
2

λ (µ−ln t) pµ (µ)dµ) (10)

and

pΘ(t) =
1√
2λ

(
1

t1+
√

2/λ

∫ ln t

−∞
e

√
2

λ µ pµ (µ)dµ

+
1

t1−
√

2/λ

∫ ∞

ln t
e−

√
2

λ µ pµ (µ)dµ) (11)

Supposing that
∫ ∞
−∞ e

√
2

λ (µ) pµ (µ)dµ converges, let’s show that
the first term dominates ast → ∞. Writing

r(t) =
∫ ∞

ln t
e−

√
2

λ µ pµ (µ)dµ =
∫ ∞

ln t
e

−2
√

2
λ µ e

√
2

λ µ pµ (µ)dµ (12)

And using the fact that functionµ 7→ e
−2

√
2

λ µ is decreasing, one
has:

0≤ r(t) ≤ t−
2
√

2
λ

∫ ∞

ln t
e

√
2

λ (µ) pµ (µ)dµ (13)

From Eq. 11, we have

pΘ(t)
√

2λ
t1+

√
2/λ

=
∫ ln t

−∞
e

√
2

λ µ pµ (µ)dµ + t
2
√

2
λ r(t) (14)

Using the hypothesis thatK =
∫ ∞
−∞ e

√
2

λ (µ) pµ (µ)dµ < ∞, one can
see that the first term in Eq. 14 converges toK ast → ∞. Using also
Eq. 13, one sees that the second term goes to 0 ast → ∞. With this
hypothesis we have:

pΘ(t) ∼C2t−1−C1 (15)

with C2 = K
√

2/λ andC1 =
√

2/λ which shows thatpΘ then
follows a power law. The condition that we use is that the inte-

gral
∫ ∞
−∞ e

√
2

λ (µ) pµ (µ)dµ converges. For instance, ifµ follows a
distribution with an exponentially decreasing tail with parameter
ν , the condition is ensured as soon asν <

√
2/λ , whereλ is the

scale parameter for the distribution of the shape parameters of the
log-normal family.

The important lesson that we can draw is that it is not necessary
to introduce pairwise power laws to generate aggregate power laws.
This is good news for routing in DTNs. Chaintreau et al. [3] have
reported that pairwise power-laws (in particular for degrees lower
than 2) have an adverse impact on the opportunistic Spray and Wait
routing strategy, casting some doubt on the mere possibility of effi-
cient finite-time delivery of messages across a network. With pair-
wise inter-contacts with both first moments (mean and variance)
finite, the picture looks much brighter.

Fitting a Weibull distribution to the shape parameter distribu-
tions in the data sets gives values ofk = 3.50356 for Dartmouth,
k = 4.88741 for MIT andk = 8.903 for iMote. In these data sets
the shape parameters are 2 to 5 times greater than 2. The power law
result that we demonstrated thus does not apply directly in these
cases. This may result from the fact that the data sets under study
follow a power-law behavior only on a finite range (although cover-
ing several orders of magnitude), but that their asymptotic behavior
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Figure 6: Log-log plot of the CCDF of aggregate inter-contacts with exponential pairs in Dartmouth.

is not a power-law and would be consistent with similar observa-
tions reported by Karagiannis et al. [15].

4. DISCUSSION AND RELATED WORK
The data sets may represent partial or biased real life interactions

as sampling methods were used for their collection. The iMote and
MIT data sets have been collected using periodic Bluetooth scans
which may have underestimated the overall number of contacts or
the contact times between nodes. In Dartmouth, the two main fac-
tors coming into play (see Sec. 2) are: 1) we infer that two people
are in contact whenever they are connected to the same AP which
might create unrealistic interactions, 2) mobility of laptops is not
really representative of human mobility. As a consequence, one
has to take carefully these results into account.

Power-law and log-normal distributions are closely related as
shown by Mitzenmacher [19]. Choosing one or the other from em-
pirical data only is often difficult. A priori or external information
(derived from the underlying phenomena at play, whether coming
from physics, biology, geology or other) may be needed to guide
statistical inference. Still we have found that the log-normal family
offers a synthetic model (with only two sets of parameters) that al-
lows to summarize a large proportion of pairwise inter-contacts. It
is the versatility of the proposed family that can make it an attrac-
tive model for capturing heterogeneity in inter-contact patterns.

Much ongoing research tries to understand and characterize the
mobility patterns in DTNs and mobile ad-hoc networks (MANETs).
Due to the limited number of data sets available and the fact that
they are generally specific to a scenario, studies often resort to syn-
thetic models. Models such as Random Walk (i.e., Brownian mo-
tion [6]) and Random Way-Point [13] have been very popular [10,
23]. More recent work has extended these initial models with pro-
posals to better match patterns observed in real mobility data. Mu-
solesi et al. [21] propose a model in which the movements of nodes
are driven by social relationships. Bohacek [16] designed a mobil-
ity model of individuals in urban settings based on a recent US
Bureau of Labor Statistics time-use study. Legendre et al. [17]
question whether microscopic mobility behaviors are valuable to
represent mobility with more realness and their influence on im-
portant characteristics (e.g., link duration distribution). Francois
et al. [9] proposes a framework for formalizing the behavior con-
tact patterns in situations in which each node knows the probability
distributions for its contacts with other nodes. Carreras et al. [2]

propose a graph-based model able to capture the evolution of the
connectivity between nodes over time.

The approach taken in our work is rather to put the stress on pair-
wise inter-contact patterns as one of the key enablers for the design
of routing algorithms in DTNs. This paper is the first to provide a
detailed analysis of the pairwise inter-contacts in a number of DTN
data sets, and the first to identify the log-normal family of distribu-
tions as a promising modeling candidate.

5. CONCLUSION AND FUTURE WORK
In this paper, we argue for the wisdom of using pairwise inter-

contact patterns to characterize DTNs. We have first provided a
statistical study using widely-used DTN data sets in which we char-
acterize heterogeneity of interactions between nodes. We show that
pairwise inter-contact times processes, which have a great impact
on routing, are heterogeneous and distributed in log-normal for a
large number of node pairs. Second, we describe the power-law
paradox and investigate analytically the relationship between pair-
wise and aggregate inter-contact times. In particular, we consider
both the exponential and log-normal cases and show analytically
how the aggregation of pairwise inter-contacts may lead to aggre-
gate inter-contacts with power laws of various degrees.

Future work along these lines might include studies of correla-
tions between processes, and of short and long term dependencies
in DTN data sets. Work on modeling has also to be conducted to
provide workable DTN models that integrate heterogeneity in pair-
wise interaction processes and the use of distributions such as the
log-normal.
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