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ABSTRACT
The difficulties in dealing with increasingly complex infor-
mation systems that operate in dynamic operational envi-
ronments ask for self-management policies able to deal intel-
ligently and autonomously with problems and tasks. Biol-
ogy has been a key source of inspiration in the definition of
self-management approaches in the area of computing sys-
tems. In this paper we show how some biologically inspired
self-organization algorithms have been incorporated into a
framework that supports development of autonomic com-
ponents called SelfLets. The features of a SelfLet include
the ability to dynamically change and adapt its internal be-
haviour according to modifications in the environment, to
interact with other SelfLets, in order to provide high-level
services, and to make use of autonomic reasoning in order to
enable self-* capabilities. In this context, self-organization
features represent one of the SelfLets autonomic abilities,
and allow them to create groups of SelfLets individuals able
to cooperate between each other. The work is complemented
with a performance study whose goal is to give insights
about strengths and weaknesses of these algorithms.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.10 [Software Engineering]: Design; J.m [Com-
puter Applications]: Miscellaneous

Keywords
Autonomic Computing, distributed and adaptable systems,
clustering algorithms, performance analysis

1. INTRODUCTION
The today increasingly complex information systems oper-
ating in dynamic operational environment ask for manage-
ment policies able to deal intelligently and autonomously
with problems and tasks. To find the solution to this prob-
lem IBM has identified a new research discipline called Au-
tonomic Computing [20] in which the maintenance and the

decisions on a generic system occurs automatically without
any human interventions.

A different line of research takes inspiration from natural
adaptive systems, like bacterial colonies or insect colonies,
and their intrinsic capabilities to organize global activities
into highly adaptive functional patterns. These patterns
emerge autonomously from simple local activity rules and
local inter-component interactions. Several of these self-
organization natural phenomena find a natural mapping to
functional problems in modern and distributed information
systems and therefore their philosophy can be adopted to
build self-managing software systems.

In this paper we show how some biologically inspired self-
organization algorithms [27, 29] have been incorporated into
a framework that supports development of autonomic com-
ponents called SelfLets. A first definition of the SelfLet
model has been presented in [11]. The features of a Self-
Let include the ability to dynamically change and adapt its
internal behaviour according to modifications in the envi-
ronment, to interact with other SelfLets, in order to provide
high-level services, and to make use of autonomic reason-
ing in order to enable self-* capabilities. Autonomic ap-
plications and systems can thus be developed by deploy-
ing a number of SelfLets, customized and configured at a
high-level according to the task they need to perform, trust-
ing their self-managing abilities to take care of the more
complex, low-level details. In this context, self-organization
features represent one of the SelfLets autonomic abilities,
and allow them to create groups of SelfLets individuals able
to cooperate between each other. Input and inspiration
of this work come from the CASCADAS European project
(Component-ware for Autonomic Situation-aware Commu-
nications, and Dynamically Adaptable Services) [14].

The organization of the paper is as follows. In Section 2
we present the self-organization algorithms we have adopted
and highlight their possible uses. In Section 3 we present the
model for the SelfLet, outlining the internal architecture of
one of such elements and the relationships it can have with
other SelfLets. Section 4 discusses on how we have incor-
porated the self-aggregation algorithms in our framework.
In Section 5 we present some performance results that show
whether a self-organization algorithm is good or not in a
given situation. The purpose of this is to provide at the end
of the simulations enough data to set up an exhaustive sta-
tistical analysis. The results of this analysis can be used to
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design a SelfLet that can self-tune itself and behave always
in the optimal way. Section 6 presents an overview of the
state of the art in the fields of both Autonomic Comput-
ing and self-organization. Finally, Section 7 concludes the
paper.

2. SELF-ORGANIZATION ALGORITHMS
In general, a self-organization algorithm is defined as an al-
gorithm capable of making a spontaneous formation of well-
organized structures, patterns and behaviors without central
control [28].

In the following we consider two similar variants of self-
organization algorithms, i.e., clustering and reverse cluster-
ing algorithms [27, 29] that have been defined within the
CASCADAS project. The purpose of clustering is the cre-
ation of interconnected groups of nodes having the same
type (see figure 1). Such groups can be useful, for instance,
to achieve load balancing. In fact, the members of a group,
when overloaded, can exploit the knowledge of the group
and try to delegate their tasks to other members of the same
group.

Vice versa, the purpose of reverse clustering is to constitute
groups of nodes having different types. The constitution of
this kind of groups is particularly useful when the nodes
need to build communities of cooperating nodes where each
node has a specific task and rely on the fact that it can
delegate other tasks it is not able to execute to one of the
other members.

More in detail, the self-organization (reverse) clustering al-
gorithm applies to a situation where a number of nodes are
interconnected, forming a network: each node has a type
and a set of neighbours to which it is directly connected;
the number of links in the network is in general supposed to
be limited, so that a situation where each node is directly
connected to all the other nodes cannot happen.

Before clustering After clustering

1: The effect of clustering on a set of nodes. Colors indicate the
type of nodes.

Both clustering and reverse clustering algorithms can func-
tion in two modes: passive or active. In passive clustering,
a node (the initiator) tries to create a connection between
two of its neighbours; the method is called passive because
the process to connect two nodes does not start from the
nodes themselves. The initiator selects two neighbours hav-
ing the same type, tells each of them about the existence of
the other and orders them to setup a link; the initiator also

Algorithm 1 Passive Clustering Algorithm

1 initiator = LOCALNODE
2 for i=1 to NUM ITERATIONS
3 do
4 if ((initiator has two neighbors)

n1 and n2 such that n1.type == n2.type
and (n1 != n2)) then

5 add n1 to the neighbors list of n2
6 add n2 to the neighbors list of n1
7 remove initiator from the

neighbors list of n1
8 remove n1 from the

neighbors list of initiator
9 fi
10 od

Algorithm 2 Active Clustering Algorithm

1 initiator = LOCALNODE
2 for i=1 to NUM ITERATIONS
3 do
4 if (initiator has a neighbor n0

such that initiator.
type != n0.type) then

5 matchmaker = n0
6 if ((matchmaker has a neighbor

n1 such that n1.type ==
initiator.type) and
(n1 != initiator)) then

7 add initiator to the
neighbors list of n1

8 add n1 to the
neighbors list of initiator

9 remove matchmaker from the
neighbors list of initiator

10 remove initiator from the
neighbors list of matchmaker

11 fi
12 fi
13 od

removes the link to one of the two neighbours, in order to
keep the overall number of links constant. This process is
iterated on all nodes of the network, with random waiting
times, until a stop command is received (see Algorithm 1 for
a pseudo-code description of the algorithm).

In the active clustering, instead, the initiator node will ask
one of its neighbours, having a type different from its own,
to act as a matchmaker. The matchmaker will choose among
its neighbours a node which is compatible with the initiator,
and tell the two to establish a connection; after that, the link
between the initiator and the matchmaker is removed (see
Algorithm 2).

Also reverse clustering can be executed both in the active or
passive mode. The modifications with respect to the already
described case are minor: in passive mode the initiator needs
to select two neighbours of different types, rather than of the
same type; in active mode, instead, the initiator must choose
a matchmaker of its same type, and the matchmaker must
look for a node which has a different type with respect to
the initiator.

In [29] the characteristics of the algoritms have been evalu-



ated through simulation. In particular, the degree of homo-
geneity within the network has been used as an indicator of
the success of the algorithms. Homogeneity H is defined as:

H =

PN
i=1 v(i)

L

where N is the number of all nodes in the network, v(x) is
the number of nodes of the same type which are connected to
node x, and L is the number of all the links in the network.
Intuitively, the clustering algorithms are required to achieve
a high level of homogeneity, while those of reverse clustering
are expected to have a very low level of homogeneity. Fig-
ures 2 shows an example of the results presented in [14] that
highlight the performance of the active clustering algorithm
in terms of this metric (see [14] for a detailed analysis).

The first noticeable property is scalability, with the 1000-
strong population converging to similar or higher homogene-
ity values than the 100 nodes network. On the other hand,
it is possible to see how augmenting the number of different
types of nodes the reachable homogeneity level slows down
dramatically.

Given the result of this evaluation, it emerges the opportu-
nity to experiment with the proposed self-aggregation algo-
rithms within a distributed context. To this end, we have
integrated the algorithms in our autonomic framework and
accomplished a preliminary evaluation of them.

3. SELFLET CONCEPTUAL MODEL AND
ARCHITECTURE

Our proposal is founded on the concept of SelfLet : a SelfLet
is a self-sufficient piece of software which is situated in some
kind of logical or physical network, where it can interact and
communicate with other SelfLets. In this section we provide
a high level overview of SelfLets and of the framework that
allows the designer to build them. A more detailed presen-
tation of the proposed conceptual model is given in [11].

In general, SelfLets require or offer some kind of services
to other SelfLets in order to comply with their specified
internal behaviour. SelfLets dynamically modify and adapt
this behaviour in reaction to changes in their internal state
or in the environment, in order to accomplish their high-
level goals. The conceptual model which is presented next
extends and polishes the one that has been presented in [19].

A SelfLet is characterized by a unique ID and one or more
Types. A type is not strictly defined and is in general ap-
plication dependant, for example indicating a SelfLet has a
specific behaviour or a certain service installed: therefore,
the types a SelfLet belongs to can change dynamically. At
any given time a SelfLet can also belong to a Group, con-
stituted by its neighbouring SelfLets, with which communi-
cation can take place. A SelfLet can belong to two or more
groups, but it can also belong to a single group, which is the
case when either all the SelfLets know each other or they
form isolated islands.

A SelfLet can store more than one Behaviour and execute
one at a time. Behaviors can be seen as workflows, consti-
tuted of states and transitions between states, which model

the way a SelfLet “behaves” in the environment. The ex-
ecution of behaviors can result in the invocation of one or
more services; these services are called Abilities, which are
generic applications that can perform one or more specific
functions. A SelfLet can have different Abilities installed,
can dynamically add or remove them and can pass them to
other SelfLets.

A behavior can result in the fulfillment of one or more Goals.
A SelfLet can advertise its capability to achieve a Goal, and
offer this capability to SelfLets who need it. Thus, execut-
ing a Behaviour can involve either the local execution of one
or more Abilities, or a remote request to find other Self-
Lets who can achieve a Goal needed for the execution of the
Behaviour.

Other fundamental features of a SelfLet are “intelligent”
rules that are executed whenever a change in the internal
state of the SelfLet or in the environment trigger them.
These are called Autonomic Rules. They can modify a Be-
haviour by adding, removing or editing states or transitions;
they can also install or uninstall Abilities and decide which
Goals will be offered and advertised by a SelfLet. For in-
stance, in case the SelfLet load factor gets too high, a rule
can be triggered to stop offering a certain Goal, in order
to try to reduce the overall workload. Finally, Autonomic
Rules can run Autonomic Abilities. These are specific kinds
of Abilities that perform some autonomic tasks, e.g., they
can create an aggregation of neighbours respecting certain
properties. Collectively, we call a set of Autonomic Rules
Autonomic Policy. In the following we present the internals
of a SelfLet architecture and we describe the life cycle of a
SelfLet.

3.1 Internal Architecture of a SelfLet

3: The internal architecture of a SelfLet.

The internal components which constitute a SelfLet are shown
in Figure 3. The Behaviour Manager is responsible for the
actual execution of the SelfLet Behaviours. In order to make
each SelfLet self-adaptable, its Behaviour needs to be de-
fined explicitly so that it can be modified at runtime. To
this end, finite state machines, possibly exploiting the State-
chart expressive power, can be used; and indeed our custom
implementation is able to execute Behaviours described in



2: Homogeneity over simulation time for two (A) and ten (B) node types. Dashed curves indicate extreme values observed in the 100
independent realisations per combination of parameter values.

terms of a StateChart coded in the XMI format generated by
ArgoUML [4]. The actions that can be performed in a state
or during a transition are implemented as Java code that is
dynamically loaded by using Javassist [8]. This allows us to
redefine actions while the system is running.

The Abilities of a SelfLet are managed by the Ability Exe-
cution Environment. It offers the primitives to install, store,
and uninstall Abilities without restarting the SelfLet. More-
over, it has to take into account potential dependency con-
straints between Abilities and to handle versioning and up-
dates while at the same time being as lightweight as possible,
because SelfLets are likely to be deployed on portable de-
vices. All these requirements has led us to the usage of an
OSGi Framework [24] as the technology for building this
component. OSGi, in fact, supports the dynamic installa-
tion of so called OSGi boundles, which are easily mappalble
to our Abilities.

The Negotiation Manager, instead, is used to interact with
other SelfLets by publishing the availability of certain Goals
or by requesting one if needed.

The communication is performed via the Message Handler
which is the access point for incoming and outgoing mes-
sages. The Message Handler has been implemented using
the REDS Framework [9], a framework of Java classes which
can be used to build publish/subscribe applications for large
and dynamic networks.

The Autonomic Manager has the task of monitoring all the
other components (and the communications between them)
and of dynamically adjusting the SelfLet according to a
given policy by firing Autonomic Rules: for example it can
change the Behaviour of the SelfLet or uninstall unused Abil-
ities. Thus, it needs to allow reasoning and possibly learn-
ing capabilities. To implement this component we exploited
Drools [18], a Java implementation of a Rules Engine.

Finally the Internal Knowledge is basically an internal repos-
itory which can be used to store and retrieve any kind of

information, needed by any of the SelfLet components: for
example the Autonomic Manager can store monitoring data
for future reference, or installed Abilities can record needed
parameters.

For further details about the implementation of the proto-
type, see [10].

3.2 The SelfLet life cycle
The proposed architecture allows to develop generic auto-
nomic applications and systems by configuring and develop-
ing only application dependent aspects.

In particular, for each type of SelfLet involved in the system,
at least a basic Behaviour must be defined by the developer
in order to define the SelfLet life cycle, the actions it needs
to perform, the Goals it has to use or achieve and, if needed,
some autonomic rules supporting application dependent self-
configuration.

As Behaviours are essentially represented as finite state ma-
chines, this translates to the design of a StateChart via Ar-
goUML.

The next step is the definition of the Actions and the Abil-
ities that are executed by the StateChart, and of the Goals
that the SelfLet offers to the others. Development of both
Actions and Abilities requires some coding because these are
the actual services which operate according to the applica-
tion’s necessities. Even if these services are already existing
and implemented, some code might be still needed to adapt
them to the Ability interface, in order to allow interoper-
ability with the SelfLets.

The last step to do is to assign an Autonomic Policy to the
SelfLets, by defining the desired high-level guidelines for the
SelfLet evolution: the more advanced the Autonomic Man-
ager implementation is, the more high-level the Policy spec-
ification can be. The manager will convert the guidelines in
actual Autonomic Rules, which will intervene on the SelfLet
as needed, installing and/or executing Abilities or changing



Behaviours; technically, rules can even create a Behaviour
from scratch if opportunely defined, but in general they will
operate on a standard Behaviour on which to build upon.

Once these phases are performed, a SelfLet is ready to be
run in its intended deployment environment.

4. CLUSTERING ALGORITHMS AS ABIL-
ITIES OF SELFLETS

The self-organization algorithms presented in Section 2 can
constitute a fundamental block of the SelfLet approach. They,
in fact, can be used to enable the creation of cooperating
groups of SelfLets starting from a condition where these
SelfLets do not have the possibility to know all the other
nodes that are present on a network, but are (physically or
logically) restricted to a certain number of neighbours.

When mapping the self-aggregation terminology to our Self-
Let model, we can say that a node corresponds to a single
SelfLet. The identifer of the node is the SelfLet ID, and the
type of the node is the SelfLet type. We know that SelfLets
can be organized into groups: this means that each SelfLet
can consider the members of the same group as its “neigh-
bors”. This information is stored in the SelfLet internal
knowledge.

Self-aggregation algorithms are implemented in our frame-
work as Autonomic Abilities. Thus, they are encapsulated
in a OSGi boundle that offers the methods to trigger the
execution of the algorithm and its termination. These Abil-
ities can be installed, either statically or at runtime in all
SelfLets participating into aggregation.

Aggregation can be started by a SelfLet Autonomic Rule for
various reasons. For instance:

• The rule is triggered and activates the clustering al-
gorithm because the SelfLet load has passed a cer-
tain threshold and there is not other known SelfLet
to which the first one could delegate some of its tasks.

• The SelfLet already belongs to a group but the rule is
triggered because it is not possible to contact some of
the members of the group. In this case, a new group
of neighbours has to be created.

• The rule realizes that the SelfLet frequently needs the
execution of a Goal that it is not able to fulfill au-
tonomously. In this case, the reverse clustering algo-
rithm can be started to establish a stable relationship
with those neighbors able to offer the required Goal.

Various other reasons for aggregation can be identified de-
pending on the specific application the SelfLets are built
for. Thus, new application-dependent Autonomic Rules can
be defined by the designer to trigger the execution of the
aggregation algorithms.

Independently of the reason why a self-aggregation Ability
of a SelfLet is activated, it makes the corresponding SelfLet
behaving as an initiator that will interact with other Self-
Lets that, in turn, following a domino approach, will start

interacting with others. While in the theoretical approach
described in Section 2 the algorithms are assumed to be exe-
cuted for a fixed number of iterations, in the actual case they
will have to stop as soon as reasonable groupings on SelfLets
are achieved. This is obtained through an Autonomic Rule
that monitors the evolution of the group a SelfLet is belong-
ing to and if this remains stable in terms of the type of the
participants then the SelfLet invokes the Ability operation
for stopping the algorithm execution.

The actual integration of the self-aggregation algorithms
into Abilities poses also some new issues deriving from the
need of distributing their execution over a network of Self-
Lets. More in detail, it might happen that some steps of
the algorithms remain incomplete because of the failure of
some participating SelfLets. In this case, we have defined a
rollback mechanism that allows the SelfLets to go back to
the situation previous to the incomplete interaction. More-
over, we have defined a locking mechanism that avoids that
a SelfLet is contacted by two different initiators that want
to start a (reverse) clustering algorithm. Finally, in a dis-
tributed setting the communication channels can be satu-
rated by high traffic of messages. To cope with this situa-
tion, we decrease the frequency of the interaction between
SelfLets in the case of high network and increase it again
as soon as the network load. This behavior is defined as
part of the algorithms implementation and, interestingly,
make them behaving as a full autonomic system in minia-
ture. This idea of nested autonomic systems is frequent in
the autonomic computing as well as it is in a human body: it
allows to create new levels of transparency that can simplify
the system design.

5. PERFORMANCE ANALYSIS
In this section we show the first results we have obtained
using our prototype to execute the SelfLet self-aggregation
algorithms. We have previously seen that by its definition a
self-organization algorithm should be able to adapt itself to
the situations in which it has to be executed. After having
verified that an algorithm actually works it is important to
study its behavior in different situations in order to iden-
tify its applicability fields. We have performed some pre-
liminary analyses to compare the results obtained using our
implementation in the autonomic framework with the ones
derived in [14]. The followed approach and the obtained
results are described in the subsection 5.1 and 5.2, respec-
tively.

5.1 Setting up the experiments
Since self-aggregation is executed by distributed SelfLets,
gathering global statistics is not easy at all without some
kind of centralized analysis tool. In [13] a Manager Ability
hs been defined that is executed by a single SelfLet which
has the task of detecting all the other SelfLets on the net-
work, informing them which type of clustering algorithm to
load, and creating an initial topology, i.e., a configuration of
nodes and links; the nodes set up their neighbours according
to this topology, and then they are ready to start the actual
algorithm. As the nodes exchange messages, the Manager
node monitors the whole network, tracks the number of mes-
sages, checks for changes in the topology and calculates the
overall values of homogeneity of clusters as this is the mea-
sure of the effectiveness of the algorithms.



To execute the algorithms, we have selected different kind
of starting topologies to analyze their impact on the overall
algorithms performance. The simplest one is the Random
topology, where the links between the nodes are generated
in a casual way, making it possible to have various types
of topologies like, for example, partitioned graphs and sin-
gletons. In this topology the number of neighbors of each
node has a very high variance, making it suitable to recreate
unpredictable environments. Then we have considered the
Torus topology where the links between nodes are created
in order to form a main donut-like loop. If the number of
links is greater or equal to the number of nodes, the addi-
tional links are created in such a way that the single loop
becomes a chain-shaped loop. The main property of this
topology is that the maximum distance between two nodes
is the half of the total number of nodes. Another property
is that the number of neighbors of each node is almost con-
stant. The last considered topology is the Spiral topology
that is very similar to the torus one, but it forms a “bro-
ken” loop. All nodes can be seen as part of a spiral, that
can become a chain-shaped spiral if the total number of inks
is greater than the number of nodes. This topology has the
same properties of the Torus one with the difference that the
maximum distance between two nodes is the total number
of nodes.

5.2 Analysis results
We have performed several experiments by analyzing the
influence of the execution time, the number of nodes, the
number of different kinds of nodes, the number of links
and the initial network topology on the overall behavior
of the algorithms [13]. This comparison highlighted that
the selected self-organization algorithms exhibit compara-
ble performance expressed as maximum level of homogene-
ity. Therefore the strengths and the weaknesses of the al-
gorithms are confirmed also in our implementation. For
example, as a positive fact, the algorithms present a good
scalability with respect to the overall number of nodes (like
in figure 2 A); while, on the negative side, the homogeneity
level drops off when the number of node types increases (like
in figure 2 B).

As an example, in the following we illustrate some of the
obtained results for the clustering (and reverse clustering)
algorithms, by considering both active and passive cluster-
ing and different initial network topologies. The following
figures refer to a configuration with 100 nodes, 1000 links
and 5 different node types. To give an idea of the algorithm
performance we have collected information about the num-
ber of exchanged messages (to measure the traffic over the
network) and the level of node homogeneity (defined in sec-
tion 2) achieved by the algorithms. All measures have been
taken assuming specific times for the termination of the ag-
gregation. More precisely, for the clustering algorithms we
show the results obtained for time intervals starting from 0
second and ending at 100 seconds with granularity of 25 sec-
onds, since, in this case the observed results are close to an
asymptote. Whereas, for the reverse clustering algorithms
we have observed quite stable results also ending the exe-
cution at 20 second. For this reason we show the obtained
results starting from 0 second and ending at 20 seconds with
time intervals of 5 seconds only.

Tables in figures 4 and 5 show the number of messages on
the network for the clustering and reverse clustering respec-
tively.

 

    Active Passive 

Topology Time (s) Msg (103) Msg (103) 

Random 0 0 0 

 25 19 19 

 50 35 36 

 75 50 52 

 100 64 66 

Torus 0 0 0 

 25 21 19 

 50 37 36 

 75 55 51 

 100 72 68 

Spiral 0 0 0 

 25 20 19 

 50 36 34 

 75 55 51 

 100 72 67 

 

    Active Passive 

Topology Time (s) Msg (103) Msg (103) 

Random 0 0,0 0,0 

 1 3,0 2,9 

 5 5,1 5,6 

 10 5,8 9,2 

 20 6,5 15,8 

Torus 0 0,0 0,0 

 1 2,9 2,8 

 5 5,6 5,4 

 10 8,9 9,0 

 20 11,8 15,8 

Spiral 0 0,0 0,0 

 1 2,9 2,9 

 5 5,7 5,3 

 10 9,2 8,9 

 20 13,1 15,6 

4: Clustering algorithms: Number of messages vs execution
time.

 

    Active Passive 

Topology Time (s) Msg (103) Msg (103) 
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 25 19 19 

 50 35 36 

 75 50 52 

 100 64 66 

Torus 0 0 0 

 25 21 19 

 50 37 36 

 75 55 51 

 100 72 68 

Spiral 0 0 0 

 25 20 19 

 50 36 34 

 75 55 51 

 100 72 67 

 

    Active Passive 

Topology Time (s) Msg (103) Msg (103) 

Random 0 0,0 0,0 

 1 3,0 2,9 

 5 5,1 5,6 

 10 5,8 9,2 

 20 6,5 15,8 

Torus 0 0,0 0,0 

 1 2,9 2,8 

 5 5,6 5,4 

 10 8,9 9,0 

 20 11,8 15,8 

Spiral 0 0,0 0,0 

 1 2,9 2,9 

 5 5,7 5,3 

 10 9,2 8,9 

 20 13,1 15,6 

5: Reverse clustering algorithms: Number of messages vs exe-
cution time.

The results in Figures 4 and 6 seem to indicate that the
Random topology is the best suited to achieve a high level
of homogeneity (goal of the clustering) with a substantial
equivalence with the other topologies in the number of ex-
changed messages.

Considering the active clustering (figure 7) we observe again
a superiority of the Random topology with respect to the
others. In particular, the Random topology for active clus-
tering offers results that are comparable with the ones ob-
tained for the Passive Clustering. Instead the Torus and
Spiral topologies reach for active clustering a lower level of



 

6: Passive Clustering: Homegeneity level vs algorithm comple-
tion time.

homogeneity with respect to the case of passive clustering.

7: Active Clustering: Homegeneity level vs algorithm comple-
tion time.

Considering the reverse passive clustering (figures 5, 8), the
three different topologies present similar performance in terms
of both homogeneity level (in this case it should be as low as
possible) and number of exchanged messages with a slight
dominance of Random topology.

The active reverse clustering algorithm (figure 9), shows
a complete convergence (0% of homogeneity level) reached
with the Random topology in a very short time (10 seconds).
Torus and spiral topologies exhibit good performances as
well (even if not optimal), which confirm a superiority of
the active versus the passive version of the algorithm.

By summarizing, we can roughly say that for clustering al-
gorithms the Random topology achieves a good level of ho-
mogeneity both with active and passive version, while torus
and spiral topologies show lower performances that slightly
decrease in the case of active clustering. For reverse cluster-
ing algorithms, instead, it is possible to clearly indicate the
Random topology and the active version of the algorithms
as the combination that shows the best performance: com-
plete convergence with a low number of messages and with

8: Passive Reverse Clustering: Homegeneity level vs algorithm
completion time.

9: Active Reverse Clustering: Homegeneity level vs algorithm
completion time.



a short completion time.

This experimentation gives evidence to some critical situa-
tions that deserve further investigations. Let us consider, for
example a network with two nodes of type A and one node
of type B connected using three links: it has an immutable
homogeneity H=33.33%, therefore H is the optimal (unique
admissible) value for both clustering and reverse clustering
algorithms. Another critical case is represented by network
containing isolated group of nodes that cannot be reached
by the (reverse) clustering steps so altering the global level
of homogeneity. These examples show that the maximum
level of homogeneity is often far from its bounds 0 and 1, so
this index has not a fixed “goal” value (i.e. a value of 1 may
be unreachable).

To overcome some of the observed shortcomings, we are in-
vestigating both the definition of new ad-hoc performance
indexes and the improvement of the algorithms themselves.
Some work on this direction is in progress [13]. Further-
more, we intend to use these results to write new autonomic
rules and heuristics that can be used by a SelfLet running
the clustering ability.

6. RELATED WORK
The IBM autonomic computing initiative exemplifies the ap-
plied industrial perspective on self-management [23]. This
vision starts from the premise that implementing self-managing
attributes involves an intelligent control loop. This loop col-
lects information from the system, makes decisions and then
adjusts the system as necessary. The academic community,
on the other hand, gives raise to a project, called Auto-
Mate [26], whose underlying philosophy is the same control
loop. Its overall goal is to develop conceptual models and im-
plementation architectures that can enable the development
and execution of self-managing Grid applications. Other
autonomic computing approaches involve or take into ac-
count GRID infrastructures [25], [22], [15], control theoret-
ics [1], [2], negotiation theories from the economy world and
even psychological or legal factors and theories [5]. All these
different approaches, though, are just different facets of the
same problem: there is not one approach to be preferred to
the others, but all will have to be taken in consideration to
build autonomic applications.

Different lines of research taking inspiration from natural
adaptive systems give rise to approaches like the emergence
[16], [3], [6] and the multi-agent systems ones [17], [30], [12].
Their basic idea is that a global, complex and dynamic be-
haviour for the whole system is very hard to define, while it
is more likely to obtain such a behaviour from the interac-
tion among the components of the system, so that the global
observed behaviour emerges from these interactions. One of
the most common natural examples of this is the behaviour
of an ant colony, which led to several models applied to
distributed computation. In general, design principles for
these models are quite standard; local rules should be in-
volved most of the time, meaning that each agent should
act only according to local, low level rules, and with no
need for a global view on the problem: agents usually do
not have enough information to solve a high-level problem
by themselves, and when cooperating to produce an emer-
gent behaviour they are not aware that a collective choice

is actually being made. Each agent should also have some
independent management capabilities: the agents are often
thought of as “dumb” units, with a small set of available be-
haviours, giving rise to something complex only by interact-
ing; but, going back to nature, ants are not simple organisms
per se, and are actually more complicated than the machines
which can be built by man at the time; so artificial agents,
too, should sport more complex behaviours of their own. A
promising field of application is that of network-based ser-
vices, which are by nature very complex, unpredictable and
hard to manage in a centralized fashion or with standard
technologies. Indeed several studies exist trying to use a
peer-to-peer approach to produce self-organizing networks,
like AntHill [7] or T-MAN [21].

Another thing to consider is that self-organization in dy-
namic situations evidently requires active cooperation among
entities; biologically, this is an interesting problem because
altruistic cooperation, which is what leads to emergent be-
haviours, seems to contradict Darwinian natural selection,
and this translates in a similar contradiction in artificial
systems. The cooperation problem has been mainly stud-
ied through the game theory, first proposed by Von Neu-
mann and Morgenstern [31], and the well known Prisoner’s
Dilemma. A rational behaviour by a single agent is by na-
ture egoistic, but this poses a problem in a cooperative envi-
ronment, because the overall benefit of the system is lessened
when the agents composing it “play it safe” by following ra-
tional reasonings rather than risking an altruistic behaviour:
this is justifiable because in an open, unsafe environment
malicious agents can exist. Since a single interaction does
not allow for cooperative behaviours because of the agents’
rationality, a way to overcome this is considering the concept
of trust, built upon a number of previous interactions: like in
nature, an agent can study the behaviour of another agent
and learn which agents can be trusted and which cannot,
possibly punishing “traitorous” agents but also “forgiving”
them if they resume an altruistic behaviour. This approach
to the cooperative problem has led to the development of
reputation based mechanisms, some of which are also em-
ployed in P2P sharing programs or in the eBay system, and
trust establishment schemes, which also involve the dissem-
ination of trust information on an unsecure network [14].

In this paper we have tried to cope with the limitations
of both current self-organization approaches and of auto-
nomic computing by suggesting that an alternative approach
combining the autonomic and self-organization perspectives
could be the right solution to enforce effective management
in complex systems. To this end we have exploited and
improved the work done so far in the CASCADAS Euro-
pean project. The proposed solution is built upon existing
elements that are intended to interact and aggregate on a
distributed environment, giving rise to collective behaviours
on a larger scale. In order to verify the feasibility of such
an approach, an implementation has also been developed,
trying to get to a working, albeit simplified, prototype.

7. CONCLUSIONS
In this work we have introduced the concept of self-organization
algorithms in the context of autonomic systems. Specifi-
cally, the algorithms integrate into the SelfLet model with
the role of autonomic abilities, i.e., service specialized in the



implementation of the so-called self-* proprieties.

In particular we have realized and executed a specific case
of self-organization algorithms that aims at building neigh-
borhoods of SelfLets on the basis of some property shared
by all participating elements.

The work is complemented with a performance study whose
goal is to give insights about strengths and weaknesses of
these algorithms. The results of this analysis can also be
used to design a SelfLet that can self-tune itself and behave
always in the optimal way.

The work can be expanded in several directions, serving as a
base upon which more refined architectures and implementa-
tions can be developed. More adaptive clustering algorithms
can be defined taking into account changing environments
and goals. The clustering algorithms can also be generalized
so to be able to deal with domains in which the nodes have
multiple types. A more ambitious objective is to provide
a framework that is able to manage the input parameters
for the algorithms execution by itself using some adaptable
heuristic to find the critical values.
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