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ABSTRACT
We formally define the aerial scanning problem. A set of un-
manned aerial vehicles (UAVs) cooperate to frequently scan
a given geographic area. Each UAV can only photograph a
small portion of it at a time. Each UAV maintains the neces-
sary information to create a global picture of the geographic
area. This global picture consists of smaller pictures that are
taken within small time of each other and also none is taken
too far in the past. UAVs exchange information over a syn-
chronous mobile ad-hoc network. For this network, we pro-
pose efficient solutions to the aerial scanning problem that
tolerate a bounded number of UAV failures.

Keywords
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1. INTRODUCTION
Unmanned aerial vehicles (UAVs) are aerial vehicles that mo-
ve without the existence of an on-board crew. UAVs are use-
ful for dangerous or monotonous missions. In such cases,
it would be risky for human pilots to fly on top of the ge-
ographic area of interest. UAVs are useful for collectively
keeping track of large geographic areas.

Using UAVs for geographic aerial scanning is a challenging
research topic [7]. The difficulties arise from the necessity of
photographing large geographic areas, while considering the
reduced cameras’ field of UAVs. The collected image must be
ideally constructed so that it is indistinguishable from a sin-
gle large image of the same area taken at once. Moreover,
complete refreshed pictures must be provided in real time in
order to be useful. Several applications (e.g. convoy protec-
tion) can advantage by using UAVs to photograph areas.

∗The work described in this paper was partially supported
by the Italian Ministry of Education, University, and Re-
search (MIUR) under the ISMANET project and by the Eu-
ropean Community under Resist Network of Excellence.

Current solutions consider the existence of a mobile ground
station or a static ground station to process the images col-
lected by each UAV independently. On the other hand, we
propose a solution which does not rely on a ground base sta-
tion and which is tolerant to the crashes of at most some fixed
number of UAVs. For our solution, we also assume a reason-
able upper bound on the frequency at which UAVs crash.
Communication between UAVs is achieved by exchanging
messages between wireless devices placed on the UAV. The
communication service that we use provides the UAVs with
inexpensive operations that allow them to broadcast mes-
sages to a small local area and receive messages previously
broadcast by UAVs that are not too far away.

Each UAV can take pictures of a subarea while cooperating
with the rest of the UAVs in composing such pictures to ob-
tain a global one. This is useful for basic operations (e.g. ob-
stacle avoidance) when a ground station does not exist. Such
a scenario could appear in military operations or after some
physical disaster. Our work focuses on the ability to pro-
vide global images to UAVs as frequently as possible while
guaranteeing some consistency (i.e., the pictures creating the
complete image must be taken within some given time). We
formally define this problem, that we call the aerial scanning
problem, in Section 2.

If too many UAVs are available, the aerial scanning problem
can be solved relatively easily. We propose such solutions in
Section 4. On the other hand, if there are not enough UAVs,
then it is impossible to solve this problem as we explain in
Section 4. For any number of available UAVs in between
these two extreme cases, we develop an efficient solution to
the aerial scanning problem and prove its correctness. Our
solution is efficient for multiple reasons: first, it does not
cause flooding in the network (this could have been caused
if global broadcasting were used instead to distribute easily,
but with large cost, local information among all UAVs); sec-
ond, the moving pattern of the UAVs is determined in real
time by performing exclusively local communication (i.e. lo-
cal broadcasts). The fact that no flooding is caused by our
solution is important because in wireless communication if
too many broadcasts happen concurrently (as it would be
necessary for our problem), communication can fail. This
behavior can be catastrophic for applications of the aerial
scanning problem. This is because it may cause the global
pictures maintained by the UAVs to be too inconsistent due
to lack of frequent communication. Determining the mov-
ing pattern of the UAVs in real time is important because if
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some UAVs crash, it may be necessary to replace them so
that all areas continue being frequently photographed. The
replacing UAVs may have to travel a long distance to reach
the area in need. To communicate this to distant UAVs, we
could have used existing routing or geocasting algorithms
(developed for mobile ad-hoc networks). Instead, we man-
aged to solve this problem by exclusively performing local
broadcasts which are less costly.

The main idea of our solution is that some UAVs are pro-
grammed to move within small subareas to photograph them
continually while the remaining UAVs are moving from sub-
area to subarea to verify and ensure that all such subareas are
being frequently photographed. These roles may change due
to crashes. These subareas are small enough so that each can
be photographed by a single UAV in a meaningful way (i.e.,
within small time so that the resulting global image that uses
these images is not inconsistent). To distribute the local im-
ages among all UAVs, we design virtual mobile nodes (that
we call agents) that are hosted on UAVs and that move be-
tween subareas collecting and broadcasting images. To make
our solution fault tolerant we initiate multiple such agents
which are never allowed to be hosted by the same UAV. In
this way, even if many UAVs hosting agents crash, there will
always be at least one agent in the system. Virtual agents
may move together with their hosting UAV (which requires
minimal communication), or move from UAV in one subarea
to another UAV in an adjacent subarea. Although the lat-
ter may cost more, it is still relatively inexpensive because
the subareas are small and hence, the UAVs that need to ex-
change information are located very close to each other.

In Section 2, we present a formal description of the aerial
scanning problem. In Section 3, we describe a mobile ad-
hoc model suitable for particular applications of the aerial
scanning problem. In Section 4, we propose solutions of the
aerial scanning problem in our mobile ad-hoc network. In
Section 5, we discuss related work, and finally, in Section 6,
we conclude the paper with some future work.

2. THE AERIAL SCANNING PROBLEM
The aerial scanning problem requires to frequently photo-
graph a given large geographic area A using a set of un-
manned aerial vehicles (UAVs). Because of the reduced cam-
eras’ field, each UAV cannot take a complete picture of the
area at once. But each UAV can photograph a subarea of A

to get its image when located directly on top of it. A com-
plete picture of A is a collection of images possibly taken at
different points in time by different UAVs.

To solve the aerial scanning problem, each UAV has to main-
tain a collection G of such frames, such that the following
properties hold:

PROPERTY 2.1. The images stored in G are non-overlapping
and their concatenation forms A.

PROPERTY 2.2. Each two images stored in G are taken within
k time units of each other.

PROPERTY 2.3. There is finite integer h > 0 such that each

image stored in G is taken at some time during the last h time
units.

Property 2.1 ensures that the images stored completely cover
the geographic area A. Property 2.2 ensures that the images
whose concatenation gives the global picture are not taken
too far apart. Finally, Property 2.3 ensures that every image
that is part of the global picture is not too old. The smaller
is the value of h, the smaller is the time to have the global
picture refreshed.

Practical Applications. Consider a military operation in
which UAVs are sent to photograph a distant enemy area
far away from their base station. While scanning the area
and while traveling to the area, they may crash. Further-
more, when they arrive at this area they cannot contact the
base station due to their distance. Another application for
this problem is to deal with a physical disaster where there
is no central base to coordinate movement and communica-
tion. Assume that in this area there are several help centers
that can get orders from the UAVs when those are in their
proximity. Scanning the area and passing the information
to all UAVs allows the UAVs to have a global view which
is used to direct help in a useful way. For example, as time
goes by it may be discovered that some areas may have some
survivors and then, help is directed towards these areas.

3. A MODEL FOR MOBILE AD-HOC NET-
WORKS

In this section, we present a model of a mobile ad-hoc net-
work that is suitable for the particular application of aerial
scanning. We consider a set of n mobile nodes (each of which
corresponds to a UAV) with unique identifiers which move
in a 2D environment in a continuous manner with the same
fixed speed. We consider a 2D environment because UAVs
usually fly at the same level with small variations to avoid
colliding with each other. Furthermore, in practice UAVs fly
with approximately the same constant speed with the excep-
tion of taking off and landing.

Each mobile node has access to a global clock and the system
is synchronous. For simplicity of presentation, the duration
of a (synchronous) round is one time unit (i.e., in [t, t + i],
i rounds have elapsed). To simplify the movement pattern
that we consider, we assume that the mobile nodes move on
a square grid covering the geographic area A as illustrated
in Figure 1. At the beginning of each round, each mobile
node is placed on a point of the grid. During one round a
mobile node can remain still or move from one grid point to
an adjacent one. There can be more than one mobile nodes
at each grid point at each time. Each node can take at most
one picture of a small area (i.e. an image) at the beginning
of each round. The image taken by a node placed on grid
point with coordinates (x, y) corresponds to the square of the
geographic area with points (x − 1
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When a node takes a picture of the above square, we say that
the node takes a picture of the grid point it is on.

Two nodes p and p′ are neighbours at some time t, if their
distance at time t is no more than r grid points away. We
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Figure 1: Grid placed on Area A.

assume that each node can have at most H neighbours at
each time. Mobile nodes can communicate with their neigh-
bours by broadcasting messages. At the beginning of each
synchronous round a node can perform receiving at most H

messages, broadcasting at most one message, and local com-
putation. To perform a local broadcast of a message x, a node
p is provided with a primitive denoted broadcast(x). If this
broadcast happens at the beginning of some round t, then x

will be received at the beginning of round t + 1 by all neigh-
bours of p at time t that did not fail. Then, these nodes would
generate a receive(x) event. If two or more nodes perform
broadcasts concurrently there may be interference and mes-
sages may be lost. We assume this problem to be dealt by a
lower level communication layer [1]. There is no other way
that messages can be lost.

Failures. We assume that at most f nodes can fail during
any execution. Nodes can fail only by crashing. An algo-
rithm is f -resilient if it works correctly even if at most f nodes
crash. We also assume an upper bound on the frequency of
failures. In particular, we assume that at most one failure can
happen during every F rounds.

4. ALGORITHMS FOR THE AERIAL SCAN-
NING PROBLEM

The goal of the aerial scanning problem is to continuously
deliver up-to-date images of a geographic area to all nodes
of the system that do not crash. The aerial scanning prob-
lem can be solved by a service, implemented by an algorithm
which runs on UAVs. As illustrated in Figure 2, on each UAV
there is a process running the aerial scanning algorithm and
the broadcast service we described in Section 3. We call such
UAVs (mobile) nodes.

Each node can take an image of k grid points in exactly k

rounds. Because of Property 2.2, every node can scan at most
k grid points in a useful way because otherwise the images
it would take it would be taken in more than k rounds apart.
We conclude that it suffices for a single node to move con-
tinually in a square of no more than k grid points and take
images to contribute to the global picture that will be dis-
tributed among all nodes. We divide the grid in squares,
called vicinities, of k grid points each (with the exception of
the last row and column which may have less). If a node
is assigned to move continually within a vicinity and take

UAV (Mobile Node)

BROADCAST SERVICE

WIRELESS NETWORK

Aerial Scanning Algorithm

receive(m)broadcast(m)

Figure 2: System Architecture.

pictures of its grid points, we say that it covers this vicinity.
Assume that there are m such vicinities, each identified by an
integer in [1, m]. The status of a vicinity can be uncovered, if no
node is covering it, or covered if at least one node is covering
it. Two vicinities are adjacent if they share an edge.

Parameter k, as described in Property 2.2, must be a small
time period. Otherwise, the global image that consists of
submimages taken within k rounds does not have practical
value. Because in reality it takes some time to move from
one grid point to another, then within k rounds, a UAV can-
not move too far away. As a result, it makes sense to assume
that the vicinities are small and in particular much smaller
than the areas covered by the transmission radius r. For the

rest of our paper, we assume that r ≥ 3
√

k. This implies that
the neighbourhood of a node that is moving within the grid
points of a vicinity contains all nodes in its vicinity and its
adjacent vicinities.

Whether the whole geographic area can be successfully pho-
tographed by the UAVs depends on the number n of the
available UAVs. We consider the following cases:

If n ≥ m(f + 1), then there can be at least (f + 1) nodes
assigned per vicinity. Even if f nodes fail each vicinity will
have at least one node to cover it. The node with identifier i

can be located in the vicinity with identifier i mod m + 1 to
cover it.

If n < m+ f , then there are not enough nodes to take images
often enough of the geographic area. The reason is that if
f nodes fail and n < m + f , to ensure Property 2.2, there
must exist a node that can take more than k pictures within
k rounds, which is impossible according to our model.

Otherwise, n ∈ [m + f, m(f + 1)). For this case, we describe
an f -resilient algorithm in the next subsection.

4.1 An f-resilient algorithm for n ∈ [m+f,m(f +

1))
To solve the problem of aerial scanning, first, we need to
ensure that the UAVs completely cover the geographic area
(i.e., to take pictures of all subareas forming this geographic
area). Then, the most recently collected pictures must be
propagated among all UAVs in the system to construct the
complete picture of the geographic area. A complete picture
must be generated by each correct (i.e., that has not failed)
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UAV with some given frequency. Furthermore, this picture
must be consistent, (i.e., it must be composed by sub-pictures
taken within k rounds).

Coverage of the geographic area. Originally, m nodes
are assigned, each to cover exactly one of the m vicinities.
We call these nodes the covering nodes. Each covering node
moves continually from grid point to grid point in its vicinity
photographing them by following a simple path. This path,
ensures that each grid point of the vicinity is photographed
at least once every k rounds. This is possible because there
are at most k grid points in each vicinity and it takes one
round to move from grid point to grid point and take a pic-
ture. The node keeps a history of the pictures it takes. As
we will show in the proof of correctness, it suffices that it
keeps the last k + T ′′ pictures it has taken, where T ′′ =

2(2T + 10 + max{
√

k, 2m})m rounds.

Since at most f nodes could crash, we use the remaining (ex-
isting) nodes to ensure fault tolerance. These are at least f

such nodes because n ≥ m+f . These nodes are programmed
to move from vicinity to vicinity to ensure that each of them
has a node that covers it. We call such nodes vagabond nodes.
A vagabond node, moves from vicinity to vicinity according
to the ordering of vicinities given by C. C is a simple cycle
that contains all vicinities. The ordering of the vicinities ac-
cording to cycle C ensures that two consecutive vicinities in
the cycle are adjacent. An example of such cycle is illustrated
in Figure 3. Each vagabond node would move following a
shortest path from a vicinity to an adjacent vicinity if it did
not need to perform any computation in each vicinity it is in.
Otherwise, it would perform the necessary computation and
then move. In the worst case, the length of this shortest path

would be
√

k because each vicinity is a square of at most k

grid points.

When an uncovered vicinity is found, the vagabond node

with the smallest identifier among the ones currently in the
vicinity will cover this vicinity from there and on. This node
changes from being a vagabond node to being a covering
node. This procedure ensures that all vicinities will be cov-
ered by some node eventually.

Global picture delivering. As said above, to solve the aeri-
al scanning problem, we also need to ensure that enough in-
formation (i.e., enough images taken by the UAVs) get fre-
quently distributed among all nodes. Because frequent up-
dates are necessary, it is not efficient to globally broadcast
the information. This would cause frequent flooding in the
network.

We propose a solution where information circulates with vir-
tual nodes, called agents, among vicinities. Each agent is in-
carnated by a mobile node at each time. We initiate f + 1
agents that are always located on different nodes, to tolerate
f failures. In this way, even if f nodes with agents fail, there
will always be an agent in the system performing the neces-
sary operations. Each agent has a unique identifier from the
set {a1, . . . , af+1}.

Each agent has to move to visit all vicinities. We choose
to make the agents move from vicinity to vicinity accord-
ing to the order given by cycle C which is followed by the
vagabond nodes.

Choosing vagabond nodes to operate agents is convenient,
since agents can move from one vicinity to another one thanks
to the physical movement of the hosting nodes. On the con-
trary, an agent incarnated by a covering node, in order to
move, has to migrate to a different node.

Because of this observation, we assign as many agents as pos-
sible to vagabond nodes and the remaining agents to cover-
ing nodes. We note that there may not be enough vagabond
nodes to host all agents. Furthermore, a vagabond node host-
ing an agent could change to being a covering node, and
hence, it will never move out of the vicinity it covers.

During the execution of the algorithm, if a vagabond node
without an agent moves into a vicinity whose covering node
has an agent, then the agent moves from the covering node
to the vagabond node and travels with it from then and on.

Next, we present our algorithm in more detail. For the fol-

lowing, let T = (6 +
√

k)(m − 1), T ′ = (6 +
√

k)(m − 1)+ 2,

and T ′′ = 2(2T + 10 + 4m +
√

k)m rounds.

Data Structure
Each node pi locally stores the following variables:

• statusi specifies whether a node pi is covering or vaga-
bond. In particular, a covering node has its status variable
set to the identifier of the vicinity that it covers. A vagabond
node has its status variable set to ⊥ to point out that it is not
associated with any vicinity.
• IMAGESi is an array of size k + T ′′. Each entry of IMAGES
is a pair composed by a picture of a grid point and the time
this picture has been taken. Node pi updates IMAGESi iff



pi is a covering node of some vicinity v. Thus, it contains pic-
tures related to this vicinity. Each vagabond node also stores
this local structure but it does not update it unless it becomes
a covering node.
• GPi is an array used by pi to store the picture of the entire
geographic area to be covered. In this array, we keep exactly
one image per grid point.

Finally, node pi stores the following local variables which are
used when it incarnates an agent:

• agenti is a pair (ID,COLLECTIONID) where ID is the iden-
tifier of the agent incarnated by pi and COLLECTIONID is an
array of m arrays IMAGES, one for each vicinity in the grid.
In particular, ID is equal to aj when node pi incarnates some
agents aj . Otherwise it is equal to ⊥. COLLECTIONID[v]
is the array of k + T ′′ entries to store images of vicinity v.
COLLECTIONID is updated only if pi incarnates an agent.
Especially, if pi is in vicinity v, COLLECTIONID[v] is set
equal to IMAGESi.
• agentdonei is a boolean variable set to false if the agent
has not collected yet the images of a given vicinity and true
otherwise.
• waitAgenti is a variable used to check if pi is waiting for
the transfer of an agent or not. It takes either the identifier of
the agent it is waiting for, or value ⊥ otherwise.
• agentmovei is a boolean variable set to true if the agent is
on a covering node and it should move to the next vicinity,
and false otherwise.

In the following, we describe the functions that we use in the
Aerial Scanning algorithm when called by node pi.

• nextgrid(l, v): returns the next grid point in vicinity
v following the grid point l according to a simple cycle
containing all grid points in v.

• take_picture(l): a mobile node invokes this func-
tion to take a picture of the grid point l. This call returns
a pair (image, time), where time is the round at which
the image it taken.

• move_to_grid(l, v): notifies the mobile node that runs
it to move from location l to the next grid point in vicin-
ity v, following a simple cycle that contains all grid
points in v.

• move_to_vicinity(v): notifies the mobile node that
runs it to move from vicinity v to the next vicinity ac-
cording to the ordering specified by cycle C.

• nextvicinity(v): returns the next vicinity after v

according to the ordering of the cycle C.

• UpdateGlobalImage(INFO): updates the (local) vari-
able GPi with new information stored in the variable
COLLECTION of some agent, if INFO=COLLECTION,
or with another global image GP , if INFO=GP . If it
uses the pictures in COLLECTION, it carefully chooses
a subset of them so that these pictures are not taken in
more than k time units apart, when possible.

• min(b): given a buffer b of messages, min(b) returns
the minimum identifier among the identifiers of the no-
des that broadcast the messages contained in b.

Aerial Scanning Algorithm
Initially, the m nodes with the greatest identifiers are assigned
to cover a vicinity (line 2 of the INIT procedure in Figure 4).
More precisely, node pi will cover the vicinity with identi-
fier equal to i − n + m. The remaining nodes are vagabond
nodes, i.e. no vicinity is assigned to them. Recall that statusi

denotes the vicinity covered by node pi. If statusi is equal to
⊥ then node pi is a vagabond node.

INIT
1 if (i ∈ [1, n−m]) then statusi ← ⊥;
2 else statusi ← (i− n + m); % pi covers vicinity (i− n + m) %
3 IMAGESi ← [⊥, . . . ,⊥];
4 if (i ≤ f + 1)
5 then COLLECTIONai

← [[⊥, . . . ,⊥], . . . , [⊥, . . . ,⊥]];
6 agenti ← (aj , COLLECTIONaj

)

7 agentdonei ← false;
8 else agenti ← (⊥, [[⊥, . . . ,⊥], . . . , [⊥, . . . ,⊥]]);
9 agentdonei ← true;

10 waitAgenti ←⊥;
11 agentmovei ← false;
12 GPi ← [⊥, . . . ,⊥]

Figure 4: Init procedure performed by process pi

AERIAL SCANNING (pi, v)
1 if(statusi 6= ⊥) then COV ER(pi)
2 else broadcast(coverREQ, v, i)
3 wait for 2 rounds
4 if ∃ (coverRES, q, statusq , agentq .ID, IMAGESq) ∈ Bi ::
5 statusq == v
6 then if(agenti.ID 6= ⊥) then UpdateAgent(IMAGESq , v);
7 if (agentq .ID 6=⊥)

V

(agenti.ID =⊥)
V

(waitAgenti ==⊥)
8 then waitAgenti ← agentq .ID;
9 broadcast(agentREQ, agentq .ID, i);

10 wait for 2 rounds
11 if receive(agentRES, agentq , i);
12 then agenti ← agentq ;
13 waitAgenti ←⊥;
14 MOV E_V ICINITY (v);
15 else
16 if (i == min(B′

i))
17 then statusi ← v;
18 if (agenti 6=⊥)
19 then agentdonei ← false
20 COV ER(pi)

Figure 5: Aerial Scanning procedure performed by pi in
vicinity v

If a node is a covering node it simply invokes the COVER
procedure (line 1 of Figure 5). The COVER procedure (see
Figure 6), makes the covering node that executes it to move at
take pictures of the grid points of the vicinity it covers (lines
1-6 of Figure 6). Each time a new picture is taken, pi updates
its agent with the new information (if any) and its global pic-
ture (lines 8, 9 of Figure 6).

The UpdateAgent procedure invoked in the COVER proce-
dure is shown in Figure 7.

The agent’s COLLECTION is updated with the new images
of the current vicinity (line 2 of Figure 7). These new images
replace the corresponding old images. To generate a consis-
tent picture, for each vicinity v the agent needs to store in
COLLECTION [v] all last k + T ′′ images taken by the cov-
ering node at v. But, it is possible that when the agent col-
lect the images of a vicinity from the corresponding covering



COVER(pi)
1 j ← 1;
2 Repeat
3 IMAGESi(j mod (k + T ′′))←< take_picture(l), time >;
4 move_to_grid(l, v);
5 l← next(l, v);
6 j + +;
7 if (agenti.ID 6=⊥) then
8 UpdateAgent(IMAGESi, v);
9 UpdateGlobalImage(COLLECTIONagenti.ID)

10 agentmovei ← true
11 Forever

Figure 6: Cover procedure at node pi covering vicinity v.

node, the covering node has not collected enough history of
images of the vicinity. In this case, the agent moves on with
any existing info and gets the rest in the next rounds.

UPDATEAGENT(IMAGES, v)
1 if ((agentdonei == false)

V

(agenti.ID 6=⊥)
2

V

(IMAGES 6= [⊥, . . . ⊥]))
3 then COLLECTIONagenti.ID [v]← IMAGES
4 agentdonei ← true

Figure 7: Local computation performed by a covering node
pi.

When a vagabond node pi enters a vicinity v, it executes the
pseudocode in Figure 5. First, it investigates whether vicin-
ity v is covered. It broadcasts a cover request message (cov-
erREQ,v,i) containing the identifier of the vicinity v and the
identifier i of the requesting node pi. Then pi waits for 2
rounds to collect cover response messages (lines 2-3 of Fig-
ure 5). According to our assumption on the broadcast com-
munication primitive (see Section 3), within two rounds from
the broadcast event, pi will receive a response of each node
which was in vicinity v. We assume all such response mes-
sages (broadcast in line 3 of Figure 8) to be atomically re-
ceived by pi at the beginning of the second round. Bi is the
buffer containing all such cover response messages, (line 4
of Figure 5). Each message buffered in Bi has the following
format:

(coverRES, q, statusq, agentq.ID, IMAGESq) where q is the
identifier of the sender node, statusq states if the sender cov-
ers some vicinity and which vicinity it covers; agentq.ID is
the identifier of the agent incarnated by node pq if any; and
IMAGESq are the images collected by node pq about the
vicinity it covers.

If there exists a message in Bi whose statusq is equal to v,
then there exists a node pq which is currently covering vicin-
ity v (line 4 of Figure 5). In this case, node pi continues to
be vagabond and has to move to the next vicinity by calling
MOVE_VICINITY (line 14 of Figure 5). Before moving, pi

checks (in line 7 of Figure 5) whether both pq incarnates an
agent (i.e., agentq.ID 6= ⊥) and it does not already incarnate
another (i.e., agent agenti.ID = ⊥). If so, pi requests to in-
carnate pq’s agent (line 9 of Figure 5) and waits for 2 rounds
for a response. If it has been selected, it takes the agent (lines
11-12 of Figure 5). If pi already incarnates an agent, it simply
updates its agent with the images taken by the covering node
(line 6 of Figure 5).

Otherwise, vicinity v is uncovered and a node must be elected
to cover v. Note that several vagabond nodes can concur-
rently enter the same vicinity and concurrently ask to cover
it. Concurrent requests (to check the status of vicinity v) gen-
erated by multiple vagabond nodes are lexicographically or-
dered according to the identifiers of the nodes that broadcast
the requests (line 16 of Figure 5). Each node that receives
these requests (broadcast concurrently with its own request),
it stores them in a buffer. Let B′

i be this buffer for node pi.
Once the information stored in either Bi or B′

i is used (in
lines 4 and 16 of Figure 5, respectively) then these buffers get
empty.

1 Upon B′′

q 6= ∅

2 if (statusq == v)
3 then broadcast(coverRES, q, v, agentq .ID, IMAGESq)

Figure 8: Receive thread at process pq to manage cover re-
quests

In Figure 8, we describe the response broadcast by a covering
node that covers vicinity v which is triggered by receiving at
least one message of the form (coverREQ, v, i) (for any i).
Note that it suffices that only one broadcast happens even
if multiple such messages are received concurrently. Such
multiple requests are stored locally by node pq in a buffer B′′

q

which gets empty immediately after it triggers the procedure
described above (see Figure 8).

Figure 9 shows the thread run by a covering node pq when it
receives requests (from vagabond nodes) for the agent it in-
carnates. Recall that all the requests broadcast at some round
j are received in burst at the beginning of round j + 1. For
sake of simplicity, we denote AMB the burst of agent request
messages which are of the form: (agentREQ, agentID, j),
(for any j) received at the beginning of each round (line 1 of
Figure 9). Node pq checks if the agent requested is the one
it incarnates (line 2 of Figure 9). Then, it chooses among the
concurrent requests, the node that will take care of its agent
(line 4 of Figure 9). This latter is the node with the minimum
identifier among the nodes that (concurrently) requested the
agent.

1 Upon receive (AMB)
2 if (agentq .ID == agentID)
3 then UpdageAgent(IMAGESq , v);
4 broadcast(agentRES, agentq , min(AMB))
5 agentq ←⊥

Figure 9: Receive thread run at covering node pq to manage
agent request messages from vagabond nodes.

When the vagabond node pi is ready to move to the next
vicinity of v it calls the procedure MOVE_VICINITY(v) (which
appears in Figure 10). If node pi has an agent, then before it
physically moves (by calling move_to_vicinity(v) in line 8 of
Figure 10) it broadcasts its agent information so that all other
(covering or not) nodes that receive it can update their global
image accordingly (Figure 11). It also updates its own global
image (line 3 of Figure 10). Otherwise, if pi has no agent, it
attempts to get refreshed images of vicinity v from v’s cover-
ing node (lines 4-7 of Figure 10).



MOVE_VICINITY(v)
1 if (agenti.ID 6=⊥)
2 then broadcast(COLLECTIONagenti.ID)
3 UpdateGlobalImage(COLLECTIONagenti.ID);
4 else broadcast(InfoREQ, v)
5 wait for 2 rounds
6 if receive(InfoRES, INFO, v)
7 then UpdateGlobalImage(INFO)
8 move_to_vicinity(v)
9 if (agenti 6=⊥)

10 then agentdonei ← false
11 AerialScanning(pi, nextvicinity(v))

Figure 10: Procedure to transfer vagabond node pi to next
vicinity

The response from the covering node contains either the cov-
ering node agent’s COLLECTION (line 4 of Figure 12) if it
has an agent, or the covering node’s global picture (line 5 of
Figure 12). Note that if the vicinity v has no covering node,
then pi simply does not perform any update. Once the above
is complete, pi physically moves to the next vicinity of v (line
8 of Figure 10) and if it has an agent it sets its agentdonei flag
to false (lines 9, 10 of Figure 10). The latter is performed so
that its agent gets updated with the new images of the newly
visited vicinity (this happens in line 6 of the procedure Aerial
Scanning of Figure 5). After all these are completed, then the
node calls the Aerial Scanning procedure (Figure 5) to per-
form all necessary checks in the new vicinity where it is now
located.

1 Upon receive (COLLECTIONaj
)

2 UpdateGlobalImage(COLLECTIONaj
)

Figure 11: Global Image update thread at node pq

1 Upon receive (InfoREQ, v)
2 if (statusq == v) then
3 if (agentq 6= ⊥)
4 then broadcast(InfoRES,COLLECTIONagentq.ID , v)

5 else broadcast(InfoRES,Gq, v)

Figure 12: Thread performed at node pq to manage the re-
quests of Global Picture information

When the agent in a covering node pi has been updated and
its information has been used to update the global picture
at pi, the agent can move to the next vicinity. This is trig-
gered by setting the variable agentmovei to true (line 10 of
Figure 6) which causes pi to execute (in parallel with its duty
to move and take pictures of its covering vicinity) the proce-
dure AGENT_MOVE (see Figures 13 and 14).

To perform AGENT_MOVE, pi keeps asking (by broadcast-
ing a request) the nodes in the next vicinity whether its cov-
ering node exists and also it does not hold an agent. Then
this covering node could accept its agent (lines 1-4 of Fig-
ure 14). This continues until either a vagabond node of its
vicinity or the covering node of the next vicinity accepts the
agent. This request may happen multiple times because first,
the next vicinity may be uncovered, and second, it may be

1 Upon agentmovei == true
2 AGENT _MOV E(pi, v)

Figure 13: Thread performed at pi covering vicinity v to call
AGENT_MOVE procedure.

covered but its covering node hosts an agent and hence it is
not able to accept another one. Either of these cases will be
eventually resolved as we prove in Section 4.2. When a new
hosting node is found, the agent is transferred (lines 5-6 of
Figure 14). Variable agenti gets updated (line 7 of Figure 14)
because pi no longer has an agent. Also (line 8 of Figure 14)
the variable agentmovei is set to false.

AGENT_MOVE(pi, v)
1 repeat
2 broadcast(MoveAgent, agenti.ID, v)
3 wait for 2 rounds
4 until ((agenti.ID ==⊥)

W

(receive(MoveAgentRES, ai, q))
5 if receive(MoveAgentRES, agenti.ID, q)
6 then broadcast(agenti.ID, COLLECTIONagenti.ID , q)
7 agenti ← (⊥, [⊥, . . . ,⊥], . . . , [⊥, . . . ,⊥])
8 agentmovei ← false

Figure 14: Procedure performed by covering node pi to
transfer its agent.

When a node pq that is covering next(v) receives the request
to incarnate an agent currently in vicinity v, it checks if it
already incarnates another agent or if it is already waiting
for another agent (lines 1-3 of Figure 15). If not, then it can
incarnate an agent. To do so, it sets its waitAgent variable
to the ID of the agent it is waiting for and sends its accep-
tance to the node that currently hosts the given agent (line
5-6 of Figure 15). Then pq waits for 2 rounds for a response
by the agent’s current host. If in the meanwhile pq receives
a message notifying it that it has been elected to incarnate
the agent (line 8 of Figure 15), it updates its variables related
to the agent management (lines 10-11 of Figure 15). Finally,
variable waitAgent gets value ⊥.

1 Upon receive (MoveAgent, aj , v)
2 if ((statusq == nextvicinity(v))

V

(waitAgentq ==⊥)
3

V

(agentq ==⊥))
4 then
5 waitAgent ← aj

6 broadcast(MoveAgentRES, aj , q)
7 wait for 2 rounds
8 if receive(aj , COLLECTIONaj

, q)

9 then
10 agentq ← (aj , COLLECTIONaj

)

11 agentdoneq ← false
12 waitAgentq ←⊥

Figure 15: Pseudocode performed by node pq when it re-
ceives a request to move an agent.

We note that during the AGENT_MOVE procedure it is pos-
sible that the node that has the agent fails. We do not need
to take care of this case during AGENT_MOVE because if it
happens we assume that then simply the agent has failed.
This does not cause a problem since we have f + 1 agents
and even if f of them fail one will be still in the system.



4.2 Correctness Proof
In this section, we prove correctness of our aerial scanning
algorithm.

LEMMA 4.1. At all times, there is at most one covering node
covering each vicinity.

PROOF. Initially, the lemma holds because we assign ex-
actly one node to cover each vicinity. This initial assignment
can only change after a failure happens and, as a result, a
vicinity remains uncovered. Assume that at some time t an
uncovered vicinity v gets covered by some new node pi (that
was a vagabond node). The request for this to happen is
broadcast by pi at round t − 2 (line 2 of Figure 5). Assume
that a set of (vagabond) nodes Q broadcast such requests at
time t−2. All such request will be received by all (not failed)
nodes in Q at time t− 1. Since pi’s request is the smallest, no
other node in Q will become a covering node of the uncov-
ered vicinity. If at least one node asked to cover this vicinity
(by broadcasting a request with its identifier) before round
t − 2, then unless this node has failed, the vicinity would be
covered by round t − 1. But then, at round t − 1, the cov-
ering node would have disallowed pi to become a covering
node as well, by broadcasting a message that contains (cov-
erRES, v) which would be received by pi by round t. If a
node broadcasts a request to cover v after round t− 2 then if
pi has not failed, pi would disallow it to become a covering
node by broadcasting a message that contains (coverRES, v)
at some time at or after t. This message would be received
by the trying node during the 2 rounds it is waiting (line 3 of
Figure 5), and hence, it will not become a covering node.

LEMMA 4.2. It would take at most 6+
√

k rounds for a vagabond
node to move from one vicinity to the next (adjacent) vicinity in the
order specified by cycle C.

PROOF. To physically move from one vicinity to another it

wold take at most
√

k rounds. This is the cost of move_to_vi-
cinity() which is called in MOVE_VICINITY (line 8 of Fig-

ure 10). Therefore, the cost of MOVE_VICINITY is 2 +
√

k (2
rounds for waiting in line 5 of Figure 10). According to the al-
gorithm this can be delayed by another 4 rounds in the worst
case. This is because it would take 2 rounds for a vagabond
node waiting to collect messages about the status of the vicin-
ity (line 3 of Figure 5) and if the vagabond node can take an
agent it would take an additional 2 rounds to do so (line 10
of Figure 5).

LEMMA 4.3. It would take at most T = (6 +
√

k)(m − 1)
rounds for a vagabond node to complete visiting all vicinities ex-
actly once.

PROOF. From Lemma 4.2, to perform a complete visit of

all m vicinities, it would take (6+
√

k)(m−1) rounds since the
path C they move on is a simple cycle of the m vicinities.

LEMMA 4.4. It would take at most T ′ = (6+
√

k)(m−1)+2
rounds for an uncovered area to become covered.

PROOF. If there is an uncovered area that means that there
is at least one vagabond node in the system. This is because
there can be at most m − 1 covered areas having at most one
covering node each (by Lemma 4.1) and there are at least
m + f nodes in the system out of which at most f of them
can fail. This vagabond node will find the uncovered area
within the T rounds it would take it in the worst case to visit
all vicinities (Lemma 4.2). It will take another 2 rounds to
become its covering node (line 3 of Figure 5).

For the next lemma, we assume that n ≥ 2f + 2 and that
the parameter describing the frequency of failures F is larger

than 2(2T + 10 + 4m +
√

k). This implies that at most one

failure can happen during any period of 2(2T +10+4m+
√

k)
rounds.

LEMMA 4.5. An agent would require at most T ′′ = 2(2T +

10+4m+
√

k)m rounds to complete visiting all vicinities exactly
once.

PROOF. First, we will calculate the time it takes for an
agent in a node in vicinity v at time t to move to a node in
the next vicinity v′. Let τ be this time. Then, since there are
m vicinities, the time an agent requires to visit all of them is
T ′′ = τm.

To calculate τ , we consider the following cases:

If the agent is on a vagabond node in v at time t it will re-
main on this vagabond node until this node fails. In this case,
the agent moves together with the vagabond node. From

Lemma 4.2, it would take τ = 6 +
√

k rounds for the agent
to move from v to v′ on its hosting vagabond node. Other-
wise, the agent is on the covering node of v at time t. Since
covering nodes do not move outside the covered vicinity, to
move the agent in a new vicinity, we need to migrate this last
from the current hosting node to a new node which is either
vagabond or covering the next vicinity.

Because each node in each given round can incarnate at most
one agent, it is necessary, that there is always a node without
an agent. Otherwise, the agents would not possibly move
away from their hosting nodes because there would not be
any available node without an agent to accept them. The ex-
istence of a node without an agent follows by our assumption
that n ≥ 2f + 2. Then, there are at least f + 2 nodes in the
system even if f nodes have failed. Because there are at most
f + 1 agents at any time, this implies that at all times there is
at least one node in the system without an agent.

Let q be such a node (that we call an empty node) at time t.
We have two possible subcases: q is a covering node, or q is
a vagabond node. Let us assume that in the following time

period ∆ := [t, t +(2T +10 + 4m +
√

k)] no failures happen.

• Assume that the empty node q is a covering node. Af-
ter T ′ rounds (i.e., by time t + T ′), no vicinity remains
uncovered in ∆ because of Lemma 4.4 and the assump-
tion that no more failures happen during ∆. By the al-
gorithm, since no vagabond node ever gives an agent



to a covering node, there will always be an empty cov-
ering node during ∆.

Consider two consecutive vicinities (in the ordering C)
such that the first has a non-empty covering node and
the second has an empty covering node. The non-empty
covering node will try to move its agent to the follow-
ing vicinity which may be waiting for some previous
agent (i.e., its waitAgent variable is not equal to ⊥).
This will be resolved in exactly 2 rounds (line 7 of Fig-
ure 15) after which the empty covering node sets its
variable waitAgent to ⊥ (line 12 of Figure 15). Note,
that at this point, waitAgent can only be set to the iden-
tifier of the agent hosted by the covering node of the
previous vicinity. This is because there is only one cov-
ering node per vicinity, and the covering node of the
empty vicinity would never get an agent from a vaga-
bond node. After that, it will take at most another 2
rounds (line 3 of Figure 14) for the non-empty node to
receive notification (i.e., a message containing MoveA-
gentRES), from the empty node. This will immediately
trigger the non-empty node to broadcast a message con-
taining the agent. This will cause the covering node of
the preceding vicinity to become empty. Note that it is
possible that this vicinity becomes empty earlier (than
these 4 rounds) if an empty vagabond node visits it
first. We conclude that, it will take at most 4 rounds for
a non-empty covering node of some vicinity to become
empty if the following vicinity has an empty covering
node.

In the worst case, at most (m − 1) vicinities with non-
empty covering nodes will have to become empty, be-
fore v becomes empty. Hence, it can take up to 4m

rounds for the agent in v to be broadcast by its host-
ing covering node of v.

We conclude that, v will send its agent to the empty
covering node of v′ within at most T ′ + 4m = T +
2 + 4m (i.e., T ′ rounds to ensure that all vicinities are
covered, 4m rounds to ensure that the covering node
of v is empty). Within that time it is also possible that
a vagabond node will get v’s agent from its covering
node. In either case, v’s covering node will be empty
within T + 2 + 4m rounds.

Next, we calculate the time it takes for the agent to
move to v′. If the agent was sent to the covering node
of v′ (line 6 of Figure 14) then it will only take one ad-
ditional round for v′ to receive the message contain-
ing the agent (line 8 of Figure 15). Otherwise, if v’s
agent went to a vagabond node, it will take an addi-

tional 6 +
√

k rounds for this agent to move to v′ on
this vagabond node (by Lemma 4.2). We conclude that
in the worst case, the agent will be moved from v to

v′ within at most τ = (T + 2 + 4m) + (6 +
√

k) =

(T + 8 + 4m +
√

k) rounds.

• Otherwise, the empty node q is a vagabond node. Since
there is at least one non-empty covering node in the
system (i.e., the covering node of v), then some empty
vagabond node will get the agent from a non-empty
covering node and cause it to be empty. This will hap-
pen within T rounds it takes for the empty vagabond
node to visit all vicinities (Lemma 4.3) and an addi-
tional 2 rounds to wait for the requested agent (line 10

of Figure 5). Therefore, within T +2 rounds, some cov-
ering node will be empty and, from the previous case,

it will take another (T + 8 + 4m +
√

k) rounds for v

to transfer its agent to v′ (either on a vagabond node,
or from covering node of v to covering node of v′). In

total, τ = (2T + 10 + 4m +
√

k).

From the above case analysis, if no failures happen during ∆,

we conclude that τ = max((6+
√

k), (T +8+4m+
√

k), (2T +

10+4m+
√

k) = 2T +10+4m+
√

k. Therefore, if no failures

happen during ∆ = [t, t + (2T + 10 + 4m +
√

k)], v will be
able to transfer its agent to v′ within at most (2T +10+4m+√

k) rounds. If failures can happen during ∆, then because

F > 2(2T + 10 + 4m +
√

k), no failures will happen during

[t + (2T + 10 + 4m +
√

k), t + 2(2T + 10 + 4m +
√

k)]. The
agent is guaranteed to move from v to v′ within this time by

the same arguments applied for time t+(2T +10+4m+
√

k)
instead of time t. Hence, we conclude that in either case,
the agent will be able to move from v to v′ within at most

τ = 2(2T + 10 + 4m +
√

k) rounds.

To prove correctness of our algorithm, we slightly decrease
the frequency of failures by choosing F > 2(T ′+k+3T ′′+3).

THEOREM 4.6. Properties 2.1, 2.2 and 2.3 hold.

PROOF. Assume that no failures happen during a period
of time of duration T ′ + k + 3T ′′ + 3. Within the first T ′

rounds of this period all vicinities have a covering node by
Lemma 4.4. Within the following k + T ′′ rounds all covering
nodes will have collected images of their vicinities for the last
k+T ′′ rounds. These images are stored in variable IMAGESi

of the covering node pi as described in line 3 of Figure 6.

Within the following T ′′ rounds at least one agent has moved
around visiting all covering nodes (by Lemma 4.5). During
this travel, it will collect the last k + T ′′ images stored in
each covering node at the time it visits it. Within another
T ′′ rounds it will perform another pass of all vicinities and
broadcast messages with the information it has collected so
far (which contains the k + T ′′ last images encountered for
each vicinity).

The agent gives the information it has to a covering node
either in line 2 of Figure 10 if the agent is on a vagabond
node, or in line 9 of Figure 6 if the agent if on the covering
node. If the agent was on a vagabond node, then it takes one
additional round for the covering node to receive the infor-
mation and update its global picture (Figure 11). In either
case, after at most one additional round each covering node
will be able to construct a correct global image of the area of
interest which satisfies properties 2.1 and 2.2 as we explain
next. Property 2.1 holds because of the way we divided the
area into vicinities. Property 2.2 holds because by collecting
sequences of images of each vicinity taken during the last
k + T ′′ rounds the nodes that get them during the T ′′ time it
takes to distribute them, they can always find a subsequence
of k images (one such set for each vicinity) that are taken
within the same subperiod of k consecutive time units. We



conclude that within T ′ + k + 3T ′′ + 1 rounds all covering
nodes have the correct global image.

Similarly, each vagabond node with an agent will also be able
to get a correct global image from the information it can take
from its own agent within T ′ + k + 3T ′′ + 1 rounds.

Finally, any vagabond node without an agent can get the cor-
rect global image that is stored in the covering node of the
vicinity it is in. This will happen within another 2 rounds
after all covering nodes have the correct global image (i.e.,
within T ′ + k + 3T ′′ + 3 rounds). This is performed in the
procedure MOVE_VICINITY (line 5 of Figure 10). This in-
formation is guaranteed to get to the vagabond node within
2 additional rounds because no failures happens, all vicini-
ties will be covered, and all covering nodes have already col-
lected the appropriate information.

We conclude that if no failure happens during a period of
time of duration T ′ + k + 3T ′′ + 3, then it would take up to
Ttotal = T ′ + k + 3T ′′ + 3 rounds for all nodes to get a cor-
rect image. Because F > 2Ttotal, then if one failure happens
during any Ttotal rounds, it is guaranteed that no failure will
happen in the following Ttotal rounds. Then, during the sec-
ond period of Ttotal rounds, all nodes will get correct global
images as explained above. We conclude that Property 2.3
holds for any h > 2Ttotal because each node can get a correct
global image at least once every 2Ttotal rounds.

5. RELATED WORK
Several solutions to aerial scanning of a geographic area us-
ing UAVs have been provided in the literature. To the best
of our knowledge all current solutions rely on UAVs to con-
tinuously take images of some geographic area. The global
image is composed like a mosaic of smaller images and this
is done by a mobile or static ground station [4], [8], [2], [7].

On the contrary, we provide a distributed solution where
UAVs cooperate to share a frequently refreshed complete im-
age of the geographic area of interest. We do not address
aspects related to image distortion caused by the physical
properties of cameras mounted of the UAV. These aspects are
treated in several papers in the literature, e.g., [4], [3].

Our solution coordinates the UAVs so that in total they cover
the whole geographic area of interest. Additionally, the UAVs
spread the images they take so that each can create a global
image that will be a mosaic of some of the images received.
To do so, we developed a virtual agent which travels through
the area collecting and spreading information to UAVs. The
virtual agent can be seen as a token continually circulating
between some subareas (that we called vicinities) in the mo-
bile ad-hoc network. In [5] token circulation algorithms are
presented for the mobile ad-hoc network. These latter re-
quest the token to pass through all the nodes in the system,
while in our case, either the agent moves together with a
node traveling between vicinities or in the worst case, it only
goes through one node for each vicinity. Hence, our solution
is efficient due to the reduced amount of messages that flow
the network and that have to be processed by each UAV com-
pared to token-passing solutions. Distributing information
can be achieved by performing global broadcasting [6]. This
simple solution would continuously flood the network with

messages. In a UAV system, energy consumption is strate-
gic due to their reduced physical resources. This makes ex-
pensive solutions not feasible. Our solution only uses local
broadcast to achieve the necessary communication.

6. CONCLUSION AND FUTURE WORK
In this paper, we formally defined and solved the aerial scan-
ning problem using UAVs (i.e., unmanned aerial vehicles).
The model we considered is a mobile ad-hoc network. Un-
like previous solutions, we did not assume the existence of
a central station which collects images of subareas taken by
UAVs. Instead, the global images constructed must be fre-
quently available to all UAVs in the system. Our solution is
fault tolerant and it is designed so that it exclusively uses lo-
cal communication which is inexpensive. This is important
when dealing with mobile UAVs which have limited capa-
bilities. The aerial scanning problem is useful for numerous
practical applications making efficient solutions valuable. We
did propose an efficient solution to this problem. A natu-
ral question which arises is whether our solution is optimal
considering different metrics such as communication cost, or
frequency of updates of the global image. To our knowledge
such important questions have not been answered consider-
ing the aerial scanning problem in the setting that we have
proposed.
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