
mKernel: A manageable kernel for EJB-based systems

Jens Bruhn
Distributed and Mobile Systems Group

Feldkirchenstr. 21
96052 Bamberg, Germany

jens.bruhn@wiai.uni-bamberg.de

Guido Wirtz
Distributed and Mobile Systems Group

Feldkirchenstr. 21
96052 Bamberg, Germany

guido.wirtz@wiai.uni-bamberg.de

ABSTRACT
Due to the ever increasing complexity of todays Enterprise
Applications (EA), component technology has become the
major means to keep the development of such applications
under control. Although container technology provides tools
to deploy component-based EAs, high demands regarding,
e.g., availability, security and fault-tolerance combined with
constantly changing user demands, varying loads and rapid
change of business processes, introduce the need for adjust-
ing systems in regular intervals without halting, restructur-
ing and re-deploying the system as a whole. Consequently,
the administration of EAs is a very complex task which has
to be performed during runtime of the managed system.
Hence, techniques from the area of Autonomic Computing
(AC) that allow for controlling and changing a running sys-
tem without the need to go back to development can become
highly useful. This paper presents the design rationale and
overall architecture of a manageable kernel that equips the
broadly accepted Enterprise Java Beans 3.0 (EJB) compo-
nent standard for enterprise applications with additional fa-
cilities in order to make EJB components AC manageable
at runtime. The system was realized EJB 3.0-compliant and
provides container infrastructure enhancements as well as a
tool needed to adapt standard EJB components.

Keywords
Enterprise Applications, EJB, Management, mKernel

1. INTRODUCTION
Enterprise Applications (EA) represent a family of very

complex software systems used for supporting the business
of companies. Their complexity emerges from the different
application areas within which they are used in combination
with a high degree of interrelation among those areas, e.g.
ordering and warehousing. Additionally, the environment
of an EA constantly changes due to strategic and opera-
tive aspects. An EA might on the one hand be extended to
integrate solutions for demands arising from new business

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Autonomics October 28-30, Rome, Italy.
Copyright 2007 ICST 978-963-9799-09-7.

areas of the operating company. On the other hand, certain
parts of an application might be deactivated in case they
should not be provided anymore. If workload increases, de-
creases, or shifts, administrators of an EA might face the
need to reorganize the system in response. Certain parts of
an EA might be provided to external users, e.g. to suppli-
ers or customers. Especially those parts must be isolated
and protected to a very high degree regarding security as-
pects. Types of threats will probably change over time lead-
ing to constant administrative demand. The manifold areas
of possible adjustments, in combination with the inherent
complexity of systems render the task of administration very
complex. Additionally, the very high demands on availabil-
ity of EAs leads to the need to perform adjustments of a
system during runtime. A complete system shutdown in
combination with an offline re-configuration would be very
costly and probably lead to a loss of reputation, even when
the downtime is very short. Consequently, this option seems
to be unacceptable, especially if it has to be carried out in
more or less regular intervals.

The concept of Component Orientation (CO) [22] repre-
sents one approach for establishing a software system in a
modular way. The modules – called Components – a sys-
tem is built from, encapsulate functionality and expose it
through well defined Interfaces to their environment. In re-
turn they can make use of other components through their
provided interfaces. An interface required by a component
is called Receptacle. Consequently, a component-based sys-
tem can be seen as a collection of loosely-coupled modules
which collaborate among each other through their interfaces.
Therefore, different functional aspects of a system can be
treated in isolation and a modular design of software sys-
tems is promoted. Normally, a component is developed with
respect to a certain Component Standard. A standard de-
fines different obligations regarding the implementation of
components. In return, a component implementation can
rely on concepts provided by the standard. Besides other
aspects, e.g. the target programming language or applica-
tion area, component standards differ with respect to the
number and type of included features. While some stan-
dards might only standardize formats for message exchange,
others might also include specifications for services and fa-
cilities, or deployment formats for components. An imple-
mentation of a component standard is called Component
Platform. A platform must implement at least all recom-
mended parts of the underlying standard and can realize
the optional ones. Moreover, it is possible to enhance the
underlying standard with additional features. Relying on

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copies arenot made or distributed for profit or commercial advantage and that copiesbear this notice and the full citation on the first page. To copy otherwise, torepublish, to post on servers or to redistribute to lists, requires prior specificpermission and/or a fee.AUTONOMICS 2007, 28-30 October 2007, Rome, ItalyCopyright © 2007 ICST 978-963-9799-09-7DOI 10.4108/ICST.AUTONOMICS2007.2222

optional or non-standard features for the development of
components imposes the risk for the implementation of not
being usable with all standard-compliant platforms. Typi-
cally, a platform includes a runtime environment for com-
ponents, called Container, which provides the services and
facilities of the corresponding standard. One broadly ac-
cepted standard for component-oriented EA systems based
on the Java programming language is the Enterprise Java
Beans-standard (EJB), currently available in version 3.0 [8,
9]. This standard provides a reasonable component-model
and a rich set of services and facilities, e.g. for persistence
management and transaction control. Additionally, the iso-
lated treatment of different aspects – e.g. application logic
and security – allows separation of concerns for development,
execution, and administration.
While the concept of CO facilitates the development and
initial configuration of complex systems, the vision of Au-
tonomic Computing (AC) [13, 16, 18] was developed to find
a solution for handling the constantly increasing complex-
ity of todays and future computer systems during runtime.
Its main idea relies on the assignment of low-level adminis-
trative tasks upon the managed system itself. A promising
approach for addressing the complexity of EAs during devel-
opment and runtime could consequently be to bring together
the concepts of CO with the vision of AC. Therefore, a com-
ponent platform must be enhanced with facilities and ser-
vices allowing managing entities to gather information about
the structure and behavior of the underlying component-
based EA. Additionally, the manipulation of the component
system must also be supported. The enhancements should
be highly generic to ensure that they can be used within lots
of contexts with respect to self-management properties [21].

Within this paper we discuss a system of component-based
enhancements on top of the EJB 3.0 standard, called mK-
ernel. It can be used to establish a sound and extensible
foundation for AC in the context of EAs. The system is
realized through a set of components which can be deployed
into an EJB-compliant container. The main contribution of
mKernel lies on its platform specific approach of providing a
generic manageable layer regarding applications developed
for the considered platform. It enables the provision of facil-
ities for monitoring and re-configuration on a unified foun-
dation. Compared to existing platforms for AC like [12, 14],
mKernel is not intended to be used for managing different
types of resources. Because of being platform specific, it
is possible to rely on guidelines of a standard which enable
the realization of very fine-grained and rich opportunities
for analysis and control in a homogeneous fashion. Uni-
fied sensors and effectors prevent from the need to address
characteristics of different types of managed resources, thus
reducing complexity for the management layer. Manage-
ability is integrated into managed resources automatically.
Therefore, autonomic management needs not be considered
for the core application logic and development is facilitated.
Moreover, mKernel is intended to control the participating
components of the managed layer on a low level for provid-
ing a very high degree of re-configuration freedom. Domain
specific approaches for the Java Enterprise Edition like [3,
4] address the management of J2EE-based systems on de-
ployment level. In contrast, mKernel focuses on the detailed
management of components during runtime. Moreover, our
realization does not require any adjustment of the underly-
ing container implementation.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses the different requirements of AC addressed
by the presented system. To get a grip on the advantages
and shortcomings of the underlying component-standard,
section 3 briefly introduces those parts of the EJB-standard
that are essential for the presented system. In section 4
the architecture of the constituting components for auto-
nomic management as well as the enhanced facilities needed
are discussed. Necessary extensions to EJB components
are treated in section 5. Afterwards, mKernel is evaluated
against the requirements stated in section 2, and the results
of first performance evaluations of the implementation are
discussed in section 6. The paper concludes with a summary
and a discussion of future work in section 7.

2. REQUIREMENTS
With his paper [16], Paul Horn established the foundation

for the vision of AC. As part of this paper, eight recom-
mended characteristics are stated for AC-systems, i.e. An-
ticipatory, Self-Healing, Self-Protection, Self-Optimization,
Self-Configuration, Self-Awareness, Context-Awareness, and
Openness. While there is no terminological consensus re-
garding these AC characteristics in literature yet, this core
collection has broadly been adopted [19]. Anticipatory ad-
dresses the ability of an AC-system to anticipate the goals of
its users. The four following characteristics are merely Ob-
jectives to reach the superior goal of Self-Management [18,
21]. They cover reactions of the system to certain situations,
like e.g. failures (Self-Healing), attacks (Self-Protection),
or varying resource needs (Self-Optimization). In this con-
text Self-Configuration can be seen as generic, supporting
the others via facilities for adjusting the system accord-
ingly. Self-Awareness and Context-Awareness both address
the information demand of an AC-system to fulfill its du-
ties. While the first one considers the introspection into
the internals of the system, the second one addresses the
need to gather information about its environment. Finally,
Openness can be seen as a generally desirable property for
AC-systems, i.e. an AC-system should be based upon open
standards in contrast to being proprietary.
While the aforementioned characteristics deal with the ques-
tion of what an AC-system should be capable of, the so-
called Control Loop represents a concept for realizing these
characteristics [10, 18]. It consists of the four stages as
shown in figure 1. The first stage (monitor) includes all steps
of information discovery addressing Self-Awareness and Con-
text-Awareness. Secondly (analyze), the gathered informa-
tion is analyzed regarding aspects of aggregation and detec-
tion of situations making modifications of the system nec-
essary. In case the need for re-configuration is identified,
the third stage (plan) assembles a collection of operations to
transfer the system from the current into the desired state
which should better fulfill the Objectives of the autonomic
system. Finally (execute), these operations are performed.
During execution of a control loop-cycle, internal Knowl-
edge is used which e.g. covers information about symptoms
of malicious behavior and options for re-configuration. It
has to be pointed out that the control loop is not a one-way
process. It is e.g. also conceivable that – during planning
– additional information is needed which must be obtained
from the managed system or its environment. This may
lead to a selective execution of the monitor- and maybe the
analyze-stage. Consequently, an autonomic system concep-

monitor

analyze plan

execute

Know-

ledge

Sensor Effector

Application Layer

Management Layer

Managed Layer

Environment

Figure 1: The control loop-concept

tually consists of two main layers. The original services a
system provides to its users are allocated inside a Managed
Layer which is supervised and manipulated by the Man-
agement Layer. Interaction with the managed layer takes
place at the first and the last stage of the control loop.
During monitoring, information is obtained via so-called
Sensors while during execution Effectors are applied for re-
configuration. Figure 1 also covers the interaction with the
environment of the considered system during these stages of
the control loop. This environment might also contain other
autonomic systems. There are also architectures conceivable
that make coordination among planning entities of different
Management Layers necessary, like e.g. [6]. These are not
covered explicitly in figure 1.

To provide a foundation for autonomic management of
component-based EA systems, a manageable layer must be
established on top of an existing component standard. The
remainder of this section discusses three different classes of
requirements for such a manageable layer: Manageability Re-
quirements ensure sufficient functionality of the layer itself.
Platform Requirements prevent the system from becoming
proprietary. Development Requirements address the desired
property of an AC-platform to hide manageability aspects
from developers of the original business logic by means of
preventing them from the need to program in a manner that
is explicitly aware of manageability issues. Whereas the first
class guarantees the overall functionality of the system, the
latter ones should ease its wide-spread use for different con-
tainers as well as for existing components.
Manageability Requirements (MR) subsume all require-
ments directly related to the provided functionality for the
management layer. Because they are essential for the estab-
lishment, they are indispensable.
MR-1: The manageable kernel must provide facilities or
services to allow the management layer to gather informa-
tion about the structure of managed EAs. This covers the
constituting components and connections among them. The
requirement is subsumed under the term structural inspec-
tion .
MR-2: Support for behavioral inspection must also be
part of a manageable kernel. Interactions among compo-
nents inside a container and across its boundaries must be

observable in a fine-grained fashion. This does not only cover
the occurrence of method calls itself but also information
about call chains, potentially spanning multiple participat-
ing components.
MR-3: While structural inspection mainly address static
aspects of the managed layer, behavioral inspection deals
with dynamic aspects regarding the occurrence of different
situations. To address the particular specifics of the differ-
ent kinds of inspection, a manageable kernel should provide
pull- and push-oriented information provision . While
the former type involves information acquisition via the us-
age of different sensor-interfaces, the latter type relies on
information supply through invocation of callback methods
or capturing of events. A pull-oriented approach is desirable
for obtaining static information, e.g. the set and structure
of deployed components. For the occurrence of situations,
e.g. the invocation of a method, push-oriented information
of the management layer is preferable, both for timeliness-
and performance reasons. Otherwise, the management layer
has to poll for the occurrence of relevant situations in regu-
lar intervals. This would imply the risk of missing them.
MR-4: A managed layer must support a management layer
with a rich set of opportunities for structural re-configu-
ration of EAs during runtime. This covers the possibility to
re-organize the internal architecture of an application via re-
connecting its parts. Re-configuration should be supported
on component- and instance-level, meaning that it should
be possible to apply manipulation-instructions generally or
for a concrete connection.
MR-5: In addition to the previous requirement which deals
with the establishment of new connections, behavioral re-
routing addresses the need to manipulate already existing
connections. For this purpose it must be possible to re-route
the invocation of a certain method to a new target. In case
certain parts of the system should be isolated or protected,
a manageable kernel must additionally provide the possibil-
ity to prevent the execution of incoming or outgoing
method calls.
In summary, the previous requirements together address the
need to support structural and behavioral reflection [20].
MR-6: The information used in the context of the previ-
ous requirements has to be based on a sound information
model . It should be possible to identify related parts for
information items and to put them into a context like, e.g.
identifying the source of a method-call. Additionally, a rela-
tion must be established between the information obtained
from sensors and the information needed at effectors.
MR-7: Extensibility is needed for the collection of pro-
vided sensors and effectors to cope with future needs. While
a manageable kernel should provide a degree of manageabil-
ity as high as possible, one must expect that the included
facilities and services are not sufficient for all considerable
future application areas. It should be possible to integrate
extensions during runtime to prevent the need for a restart
of a productive system. Furthermore, potential extensions
should get by without any adjustments of certain compo-
nents of the affected applications which would result in the
need to un-deploy, adjust, and redeploy them. In particular,
a solution which implies a partial or complete reboot of EAs
would be unacceptable.
Platform Requirements (PR) include two aspects for
broad usability of a provided kernel.
PR-1: For integration of autonomic management facili-

ties, there should be no need for adjusting the imple-
mentation of the underlying platform and its corre-
sponding container . Otherwise – in case a concrete imple-
mentation is manipulated – each new release has to be ad-
justed accordingly. Moreover, the solution would be limited
to a concrete container implementation for the addressed
component-standard.
PR-2: No use of specific platform- or container-pro-
vided enhancements is permitted. This should lead to the
usability of the kernel inside many environments. Similar to
the previous requirement, the use of container-specific APIs
or services as well as relying on optional parts of a standard
provided by some containers would lead to a commitment
to a concrete implementation which is not desirable.
In summary, these requirements postulate that the integra-
tion of manageability should solely rely on the underlying
component-standard. Basically, a violation of one of these
requirements points out shortcomings in the implementa-
tion of the kernel or indicates that the underlying standard
does not specify all aspects needed for the establishment of
a manageable kernel.
Development Requirements (DR) address the develop-
ment stage of the lifecycle of components and the influence
of the manageable kernel onto their execution. Their fulfill-
ment should support its acceptance.
DR-1: The insertion of sensors and effectors into
components should be transparent for developers, i.e.,
developers are not responsible for ensuring manageability of
their applications, e.g. via the usage of a recommended API.
Generally, the integration of capabilities for autonomic man-
agement into containers as well as into components should
not hinder the tasks of developers.
DR-2: No limitations regarding the use of services
and facilities provided by the standard should be im-
posed on developers. They should be enabled to develop
components as if there is no autonomic management per-
formed.
DR-3: For the management of components there should
exist no additional information needs. Consequently, a
developer should not be enforced to write additional arti-
facts besides those recommended by the underlying compo-
nent standard. Note that this requirement only refers to the
basic aspects covered by a kernel. It does not imply that it
should be generally avoided to include additional informa-
tion about entities being target of autonomic management.
This might be reasonable for concrete application areas of
AC, but the fulfillment of the generic manageability require-
ments should get by without them.
DR-4: The preparation of components should be au-
tomated to a very high degree. It should be possible
to provide a standard-compliant, deployment-ready compo-
nent for which the integration of enhancements should be
performed automatically.
DR-5: For the integration of a component into a container
no complicated deployment process should be needed .
Instead of that, the deployment should be realizable as in-
tended by the provider of the original target container.

3. ENTERPRISE JAVA BEANS 3.0
Enterprise Java Beans represent a standard for distributed,

component-oriented EAs implemented with the object-orien-
ted programming language Java. The synonym Write Once,
Run Anywhere ([8], P. 27) stands for two main goals of the

development of the standard, namely interoperability and
re-usability. It means that a component should be deploy-
able into each container following the EJB-standard without
the need to manipulate its source code anymore. Version
3.0 of the standard is available since May 2006. In [9] as-
pects of persistence management are covered which are of
minor relevance for the kernel presented here. Therefore, [8]
was considered as foundation for this paper which includes
all aspects relevant for development, deployment and run-
time of components. The standard was specified under the
leadership of Sun Microsystems and is supported by well-
known companies, e.g. IBM Corporation and Oracle Cor-

poration. In the following, different aspects of the EJB 3.0
standard are discussed as far as they are relevant for the
implementation of mKernel.

Building Blocks of Components: EJB-based compo-
nents consist of a collection of so-called Enterprise Beans or
Beans for short. Within the standard there are three differ-
ent types of beans considered. Namely these are Message
Driven Beans, and Stateless- and Stateful Session Beans.
Message driven beans can be used via sending asynchronous
messages and provide no additional interfaces. Session beans
provide interfaces of which the standard considers different
types. The main difference between the two types of ses-
sion beans lies within the provision of a client-specific state.
Instances of stateful session beans are exclusively used by
a single client and retain their state across multiple invoca-
tions. Consequently, this state is specific for a single client.
Moreover, a client can rely on interacting with the same
instance in case it uses the same reference for multiple invo-
cations. Stateless session beans in contrast are usable by the
container for handling method invocations originating from
different clients. Furthermore, it is not guaranteed that a
client, performing more than one method invocation on the
same reference, is always interacting with the same session
bean instance. An instance might keep its state during its
lifetime. This client-neutral state might be the source of
performance benefits, e.g. in case an open database connec-
tion is kept for reuse. One important property of session
beans is, that they are by definition non-reentrant. There-
fore, it is not possible that more than one method call is
active on a session bean instance at any given time. More-
over, bean instances are not allowed to perform any kind of
thread handling like e.g. starting new threads. A component
is provided in terms of a so-called Bean-module. Besides the
constituting beans, such a module covers additional artifacts
like, e.g. a Deployment Descriptor (DD).

Component Composition: For gaining access to ses-
sion beans and their interfaces, the container must – ac-
cording to the standard – provide two alternative facilities
which can be used in combination. On the one hand, an
implementation of the Java Naming and Directory Inter-
face (JNDI) [2] must be provided by each container which
enables the lookup of bean references during runtime by
submitting their name. It has to be pointed out that the
entries of this naming facility can not be manipulated di-
rectly. On the other hand, in the context of the so-called
Dependency Injection, dependencies of enterprise beans can
be declared during development. This, amongst others, also
covers the specification of receptacles. During execution,
these are bound to a concrete session bean instance.

Interaction Control: To each enterprise bean an arbi-
trary number of Interceptors can be attached which includes

a specification of methods the interceptor is interested in. In
case a method should be invoked upon a bean instance, the
invocation is firstly directed to the matching interceptors, if
any. These interceptors gather full control over the control
flow and the submitted parameters. They might e.g. ana-
lyze or change parameters, or prevent the invocation from
reaching its original target. The return value can also be
subject of inspection and manipulation.

Component Specification: During implementation of
a certain bean, developers can integrate different Metadata-
Annotations into the source code for configuring the corre-
sponding bean. It is e.g. possible to specify interfaces and
receptacles as well as interceptors to attach. Through an
XML-based DD, included in the component, it is possible to
configure the beans of the corresponding component. The
options for configuration cover all aspects of the metadata-
annotations and open up additional opportunities on compo-
nent-level, e.g. to attach a certain interceptor to all beans
of a module. In case certain annotations refer to the same
aspects of a bean as parts of the DD, the content of the DD
is privileged. Hence, it is possible to adjust the configura-
tion of a component and its constituting beans respectively
without the need to manipulate their source code.

Component Lifecycle: After the development of the
constituting beans is completed, they are assembled into
a module. As preparation for its integration into the tar-
get container, a subsequent configuration can be performed
upon the component. There is no procedure designated
within the standard to adjust the configuration of a compo-
nent during runtime. Consequently, the deployment is the
latest time for the specification of configuration aspects dis-
cussed above concerning a certain module. A re-configuration
must be performed outside the container and applied via re-
deployment of the affected module.

Lifecycle of Enterprise Bean Instances: For the in-
stantiation of beans the EJB-standard specifies a special pro-
ceeding. A detailed discussion of the corresponding states,
methods, and the specifics for the different bean types is
omitted here for brevity. It has to be pointed out, that the
injection of references for dependencies and the authoriza-
tion to use them is performed in two separate steps consec-
utively. Only if the injection phase has finished completely,
the bean instance is allowed to invoke operations upon the
provided references. The beginning of the usage phase can
optionally be identified by receiving the invocation of a so
called PostConstruct-method. No method invocations re-
garding its application logic will be forwarded to the bean
instance before the usage phase has started. All other state-
transitions during the lifecycle of a bean instance are observ-
able through similar method invocations, too. Moreover, all
of these invocations are firstly directed to interested inter-
ceptors attached to the instance, if any.

Within the EJB-standard there are no subordinate as-
pects included which allow the supervision of the current
state of a container regarding instances of beans, established
connections among them, or ongoing method invocations.
Moreover, it is not intended to re-configure components af-
ter their deployment.

4. ARCHITECTURE
This section presents the architecture of mKernel and the

different components which have to be integrated into a con-
tainer for making it ready for autonomic administration ac-

cording to the requirements discussed in section 2. mKernel
was built and tested on top of the Glassfish Application

Server [1] which provides, amongst others, facilities for the
Java Platform Enterprise Edition, an EJB container, and
has proven itself of being compliant to the EJB standard to a
very high degree. Therefore, it was considered a good foun-
dation for the development. The facilities presented here,
are realized as standard-compliant EJB modules and make
use of the infrastructure provided by the container.

Naming: The implementation of JNDI, which is manda-
tory for each EJB-compliant container, is used to lookup ref-
erences to session bean instances via submitting their name.
Because mKernel is developed for usage in a multi-container
environment, the lookup of session bean instances residing
in a remote container is also be supported. Regarding this
aspect, the EJB-standard has a shortcoming in that there
is no specified standard-compliant way of how to dynam-
ically access a session bean instance residing in a remote
container through its Remote Business Interface. In fact,
the Glassfish Application Server does not even provide
a container-specific opportunity for dynamic connection es-
tablishment for this type of interface across container bound-
aries. Because remote business interfaces are the preferable
choice for using the application logic of session beans, a solu-
tion had to be found. As foundation for naming, the dyName
system was applied which we developed as independent so-
lution for dynamic naming in EJB-based systems. dyName
provides, amongst others, the required functionality. It is
solely based on facilities specified by the EJB-standard, re-
quires no enhancements of the applied container, and is en-
capsulated inside mKernel. Consequently, the application of
dyName does not violate any of the requirements stated in
section 2. For a detailed discussion of dyName, refer to [5].
The Naming facility is neither a sensor nor an effector but
used as infrastructure for connection establishment.

Connector: While the Naming facility enables the ac-
tual establishment of connections, the Connector facility
supports the specification of targets for connections during
runtime. A request is submitted to the Connector includ-
ing the originator of the request and a target mapped name
as used for connection establishment in the context of the
EJB-standard. As response the Connector delivers infor-
mation processible by the Naming facility. Managing en-
tities can define connection targets on different granularity
levels, namely on container-, module-, bean- and instance
level. Moreover, the Connector also provides the opportu-
nity to re-route existing connections. In combination, this
allows a fine grained steering of interactions taking place
among managed beans. The Connector does not support
any kind of state transfer from the original to the new tar-
get of a connection which would especially be critical in case
a connection to a stateful session bean instance should be
switched. We assume this of being application specific and
not being solvable in a generic fashion. Consequently, the
Connector facility provides an effector with a rich variety of
options for controlling interconnections inside the managed
layer. Therefore, the Connector is an effector allowing to
re-configure the architecture of a component system during
runtime.

Deployment Information: The Deployment Informa-
tion facility is part of each module deployed in an auto-
nomously manageable container. It provides information
about included enterprise beans. The information covers all

relevant aspects of enterprise beans including amongst oth-
ers interfaces, receptacles, and simple environment entries.
Consequently, this facility delivers information about de-
ployed components on type level. This also includes unique
identifiers for each particular interface and concrete bean
implementation. Consequently, it is possible to, e.g., iden-
tify all deployed implementations of a given interface to find
candidates for a certain receptacle. In case of the identifica-
tion of an error inside one bean implementation, the affected
components can be easily found. Because of the allocation of
the deployment information inside the corresponding mod-
ule, it implies a built-in up-to-dateness. On removal of a
component, its part of the information about the overall
structure is implicitly removed, too. With the Deployment
Information facility, a sensor is provided which allows – in
combination with the information covered within the Con-
nector – structural inspection of the managed layer.

Events: This facility represents a broker for event pro-
ducers and -consumers. The event types provided for bean
instances correspond to the lifecycle of beans as specified
in the EJB-standard. Namely, these are the construction
and destruction of all bean types, and additionally the pas-
sivation and activation of stateful session beans. Moreover,
events for business calls on session bean instances and for
message reception at message driven bean instances can be
captured. The occurrence of exceptions in all of these con-
texts is also supported via corresponding events. The infor-
mation provided for each event includes aspects of the con-
text of its occurrence, like e.g. identifiers for the correspond-
ing bean instances as well as for establishing a relation to the
information of the Deployment Information facility. Addi-
tionally, for business calls, it is possible to deduce call chains
spanning multiple bean instances which also covers the iden-
tification of the invoked methods. The non-reentrancy prop-
erty of enterprise beans, in combination with the prohibition
of starting new threads, leads to the opportunity to clearly
identify dependencies among methods observed in the man-
aged system. Local sequence numbers as well as informa-
tion about the time and duration of an invocation are also
included, which in combination allow an ordering of cap-
tured method invocations and an analysis of the fractions
of the overall processing time of each call with respect to
the different sub-calls, if any. Event consumers can register
at the Events service through the provision of identifiers for
producers of events in combination with a set of event types
they are interested in. Again – as discussed in the context
of the Connector – a fine-grained specification of producers
is possible on container-, module-, bean-, and instance level.
As a result a consumer receives a lease which it can renew
on expiration if it is interested in obtaining the correspond-
ing events further on. Producers are instructed to throw
events via two complementary ways. On each registration
of a consumer and on lease expiration, the affected modules
are identified and instructed to start or stop producing the
corresponding events. In case a module is deployed, there
might already exist matching registrations. On first invoca-
tion of a bean instance of the new module, the submission of
matching registrations is requested from the Events service
for initialization. Afterwards, the module will be considered
during each subsequent registration of a consumer as well as
on lease expiration. Events are distributed via an approach
consisting of two steps. Firstly, events are stored locally
which allows a fast continuation of the method call under

consideration. Secondly, a stateless session bean, which is
integrated into each managed module, checks in regular in-
tervals if there are any events to distribute. If so, these are
published via Java Message Service (JMS) [15] applying a
corresponding topic which is bound at a well known name
inside the namespace of a container. This allows the asyn-
chronous distribution of events to multiple consumers. Con-
sequently, the Events service itself does not need to keep
track of the different consumers. For each producer-type-
pair it is only necessary to store the latest lease-timeout. In
summary, the Events facility provides a push-oriented sen-
sor for making the runtime behavior of a managed system
observable.

Interceptors: The facilities discussed up to now provide
sound effectors and sensors for the autonomic management
of an EJB-based container. The Interceptors facility repre-
sents a generic opportunity to integrate additional aspects
not already considered within mKernel. It allows the inte-
gration and removal of interceptors into a running compo-
nent system. Again, the targets of interception can be con-
trolled in a fine-grained way as discussed for the Events facil-
ity. Via interceptors it is possible to intercept any method-
invocation upon enterprise bean instances covering calls on
interfaces as well as calls regarding state transitions during
their lifecycle. In this context, it is possible to be informed
about the occurrence of a specific method invocation, to gain
insight into the parameters of the call, to manipulate those
parameters, or even to prevent the call from being forwarded
to its original target. The return from a method invocation
can also be intercepted which includes the opportunity to
analyze and manipulate the return value. mKernel provides
the opportunity to specify which of the different places of
possible interception are of interest for a certain intercep-
tor. It is e.g. possible to only intercept business method
before they are reaching their original target, or to only in-
tercept exceptions. Furthermore, context information for a
method invocation is provided also, e.g. an identification of
the caller, if known. The implementation was inspired by
the Interceptors facility already designated as part of the
EJB standard, but it provides a much higher degree of flex-
ibility w.r.t. the built-in feasibility to re-configure the set
of attached interceptors during runtime which is not pro-
vided by the EJB standard. mKernel-interceptors are real-
ized through session beans, which means that the provider
of an interceptor has to implement a certain interface and
deploy the implementation in form of a module. Afterwards,
the new interceptor must be registered at the Interceptors
service. Interceptors are intended to be used temporary,
e.g. during re-configuration or as reaction to failures. It is
also possible to attach interceptors to beans permanently,
but it has to be kept in mind that each invocation of an
mKernel-base interceptor implies the invocation of an addi-
tional session bean which leads to a certain overhead. With
the Interceptors facility a combined sensor and effector is
provided which allows a fine grained intervention into inter-
actions on Managed Layer.

Two of the facilities presented, namely Naming and In-
terceptors, can be seen as extensions of the facilities already
considered in the EJB standard. For those, serious limita-
tions were identified which had to be overcome for making
them usable in the context of runtime re-configuration. Con-
sequently, they were taken as foundation upon which the
mKernel-specific facilities were realized. Deployment Infor-

Managed Component

Deployment

Information

Service

Referencer

Bean EnvironmentBean Environment

Manged

Bean

Instance

Wrapped

Context

In
te

rc
e

p
to

r
3

In
te

rc
e

p
to

r
2

In
te

rc
e

p
to

r
1

W
ra

p
p

e
r

W
ra

p
p

e
r

W
ra

p
p
e
r

W
ra

p
p

e
r

W
ra

p
p

e
r

W
ra

p
p
e
r

Connector

Service

Interceptor

Service

Naming

Service

Event

Service

Session

Bean

Instance

Session

Bean

Instance

Session

Bean

Instance

Session

Bean

Instance

Session

Bean

Instance

Session

Bean

Instance

adjusted

DD

…

Management

Context

Configuration

Accesspoint

Event

Distributor

Event

Cache

Event

Topic

Figure 2: Elements of a managed component

mation was inspired by [17]. Because of the specific view,
mKernel takes on a managed system and because of limi-
tations identified, the standard was neither usable directly
nor as foundation. The other two facilities do not have any
corresponding counterpart in the EJB standard itself or in
related standards.

5. MANAGEABLE COMPONENTS
For making an EJB-module manageable, it has to be pre-

processed by a tool being part of mKernel. This tool ac-
cepts a standard-compliant Java Archive (JAR) containing
an EJB-module ready for deployment without any further
configuration being necessary. The content of this module is
manipulated and extended for making it autonomously man-
ageable. Analysis, manipulations and extensions on bean
level are performed via application of the Java Program-
ming Assistant (Javassist) [7] which contains, amongst oth-
ers, a very convenient API for analyzing and manipulating
Java bytecode. The DD of the module is processed with the
aid of the Java Architecture for XML Binding 2.0 (JAXB)
[23]. For the generation of a new DD, covering manageabil-
ity aspects, JAXB is also used. The steps performed upon
a module by the tool are discussed in the following. For
each enhancement performed, its particular contribution for
mKernel is explained. Figure 2 presents an overview over
the results of preprocessing a component. Additionally, it
covers relations between integrated parts and the services
discussed in section 4.
The first step during module preprocessing includes the ex-
traction of the submitted JAR. This is performed to keep
the submitted module in its original state for being usable
without mKernel.Secondly, all class-files of the application
are analyzed on bytecode-level – especially the metadata-
annotations of the included beans – to collect information
about the component regarding e.g. provided beans and de-
clared dependencies. With this information a representation
is generated that contains all relevant information. After-
wards, the DD of the module is parsed and a representation
is generated also. Via merging of the two representations
according to the demands of the EJB-standard a compre-

hensive image of the inspected module is gained.
All interfaces and receptacles are extended by means of en-
hancing all provided methods with an additional parameter
used by mKernel for forwarding context information along
call chains. The original methods are provided further on to
allow an external usage of the beans without even recogniz-
ing that they are managed by mKernel. The affected session
beans are extended accordingly. Internally, the new method
bodies solely consist of an invocation of the corresponding
original methods. Therefore, the submission of context in-
formation is not even noticed by bean instances.
For all receptacles Wrappers are generated. These are used
as replacement for connections to session beans during their
creation. As shown in figure 2, all interaction among bean
instances is performed through these wrappers, allowing the
interception of the control flow. On invocation, wrappers
contact the Connector which instructs them how to proceed.
In case the connection should be switched, the Naming ser-
vice is contacted for obtaining a new interaction endpoint.
To prevent the establishment of connections that bypass
mKernel, the usage of the container-provided naming facility
is replaced with an alternative implementation without any
effect on the container itself. This is done through integra-
tion of a Wrapped Context in combination with manipulating
each part of the bytecode trying to open a connection to the
naming facility of the container. This is redirected to the
Connector and the Naming service of mKernel.
As part of the class-files the component is enhanced with,
a Management Context is integrated. This class acts as con-
figuration cache for the corresponding module and its consti-
tuting beans. Amongst others, it holds configuration infor-
mation regarding aspects of the different services of mKer-
nel, e.g. information about interceptors to re-route invoca-
tions to and directives for event types to throw as discussed
in section 4. Configuration of a module is performed by
the corresponding service via addressing the so-called Con-
figuration Accesspoint which is realized as stateless session
bean and integrated into each managed module. The con-
text itself only caches this information and does not store
it permanently. All information covered can be requested
from the corresponding services at any given time.

Next, a so-called Referencer is configured and integrated into
the module in process. It is an additional stateless session
bean which provides references to session beans of the mod-
ule. It is used by the Naming service of mKernel for being
able to perform connection establishment.
Afterwards, the partition of the Deployment Information
service covering information about the component is con-
figured appropriately. It is integrated as stateless session
bean into the module.
To prohibit the direct injection of references during prepa-
ration of a bean instance, all dependency declarations are
removed from the bytecode as well as from the DD of the
module. Instead of those, an additional interceptor (Inter-
ceptor 1 in figure 2) is integrated as first interceptor of the
interceptor chain attached to any given bean. This inter-
ceptor imitates the dependency injection of the container by
contacting the Connector and the Naming service, and in-
jecting wrappers for all removed dependencies, if any. This is
performed on intercepting a method call indicating that the
usage phase of the lifecycle has started. Regarding the life-
cycle of a bean instance in combination with the proceeding
prescribed for the container, the target instance still believes
that it is in the dependency injection phase and consequently
does not make use of references designated for dependency
injection. After finishing the establishment of connections,
the interceptor forwards the lifecycle call to the target in-
stance. Through this proceeding, there is no difference rec-
ognizable for the implementation of the affected beans.
To provide the mKernel-based interceptors with sufficient
control over incoming method calls, another interceptor (In-
terceptor 2) is attached to each bean. This interceptor is in-
serted as second one in the interceptor chain. As discussed
above, the first one also belongs to mKernel, being only re-
sponsible for dependency injection. Consequently, no inter-
ceptor attached by a developer or deployer can gain access
to the original method parameters or, in case the invoca-
tion should not be forwarded, even realizes its occurrence.
Established connections to interceptors are kept for future
use. Consequently, it is easily possible to apply instance-
specific interceptors via stateful session beans even for man-
aged stateless session beans.
For tracking of events, a third interceptor is attached to each
pre-processed bean (Interceptor 3). It requests directives to
follow from the management context and stores the relevant
events inside the Event Cache. For distribution of events,
the Event Distributor is integrated into each managed mod-
ule as stateless session bean. It checks the event cache in
regular intervals for events to distribute and, if any, sends
them as messages through a JMS-based Event Topic. At
this topic interested event consumers can register for being
informed about events. This is not covered in figure 2. The
three dots following Interceptor 3 in figure 2 stand for the
interceptors attached by developers or deployers. The call
is transmitted to them afterwards.
During all of the processing steps, the image of the module
is adjusted accordingly. It is afterwards translated into a
corresponding DD and integrated into the target module.
After completion of the previous steps, all preparations of
the target module are finished. Finally, the resulting module
is packed into a JAR which is 100 % compliant to the EJB-
standard. The integration of enhancements is transparent
to the application logic of the beans inside and outside the
module, i.e. their runtime behavior is not affected.

6. EVALUATION
This section addresses two aspects. Firstly, mKernel is

evaluated against the requirements stated in section 2. Sec-
ondly, the results of a performance analysis are discussed.

With mKernel the functionality required by a managed
layer in the context of AC is provided. An evaluation against
the requirements stated in section 2 is shown in table 1. The
rating in the last column includes the possible values -, 0
and +. Here, - indicates that the corresponding require-
ment is not fulfilled by mKernel. A 0 is given in case the
requirement is addressed and supported, but there exists
a demand on improvement. If the requirement is fulfilled
completely a + is inserted.

Table 1: Functional evaluation of mKernel
Manageability Requirements (MR)

ID Remarks Rating
MR-1 Deployment Information Service

and Connector
+

MR-2 Events Service +
MR-3 pull-oriented: Deployment Infor-

mation Service
+

push-oriented: Events Service +
MR-4 Combination of Interceptors, Wrap-

pers, Connector and Naming Ser-
vice

+

MR-5 Combination of Interceptors, Wrap-
pers, Connector and Naming Ser-
vice

0

MR-6 Built-in assignment of identifiers
and tracking during interaction

0

MR-7 Interceptors Service +

Platform Requirements (PR)
ID Remarks Rating

PR-1 – +
PR-2 shortcomings of standard 0

Development Requirements (DR)
ID Remarks Rating

DR-1 automated via tool +
DR-2 – +
DR-3 EJB-compliant module is sufficient +
DR-4 automated via tool +
DR-5 only execution of tool needed +

As shown in table 1, mKernel fulfills most of the require-
ments completely. Regarding MR-5, it has to be pointed
out that the re-routing of existing connections is covered
by the implementation, but no support for state-transfer
among connection-targets is included. This was assumed to
be application specific and, hence, should be handled out-
side of mKernel. Identifiers are assigned to modules and
bean instances. During interaction context information re-
garding the control flow is also provided. This allows the
tracing of interactions inside a managed container. More-
over, the Deployment Information service delivers rich in-
formation about deployed modules of a container. However,
the underlying information model covers some shortcomings
and should be subject to revision. There is no facility pro-
vided by mKernel regarding tracking and provision of his-
torical data, i.e., there is no logging-facility. Altogether, this
leads to a rating of 0 for MR-6. It has to be pointed out,

that this aspect does not comprise any unsolved technical
aspects. It is solely addressable via processing of data al-
ready provided by mKernel. The EJB-standard does not
specify the deployment process of components itself includ-
ing the preparation of data source for persistence, but leav-
ing this open for vendor-specific solutions. Additionally, the
design of the naming schema for the JNDI-implementation
inside a container is not addressed by the standard. It is
not even specified how a name can be assigned to a bean
in a standard-compliant way that has to be followed by all
container implementations. Consequently, it was not pos-
sible to develop a management layer solely relying on the
EJB-standard. For mKernel the demands of the Glassfish-
container were preserved. In case a migration to different
container-implementations should be performed, these as-
pects must be addressed. Therefore, PR-2 was rated 0 .

For evaluating the performance impact of applying mK-
ernel in an EJB-container, there were two sample scenarios
used. Each of those was analyzed for stateful and stateless
session beans. The first one should show the overhead for us-
ing the different facilities of mKernel without any side effects
regarding application logic inside the module. Therefore, a
simple session bean, providing a single method without any
parameters was taken. The method delivers no return value
and no application logic is present. The second scenario
addresses the interaction with entities, because this is sup-
posed to be the case for most of the EJB-based applications.
In this scenario a session bean is used for accessing a data-
source. Therefore, an interface is used, providing methods
for creating, reading and deleting a single entity consisting
of a String-value. An entity manager is obtained through
dependency injection, and the entities are managed via con-
tainer managed persistency. Together, the scenarios should
grant a first insight of how performance is influenced by mK-
ernel for session beans. Each of the scenarios was analyzed
through four settings to get an insight into the impact of
the different facilities. As reference measurement, the mod-
ule itself was deployed and executed without extensions and
without any part of mKernel being installed in the container
(base). The second setting (silent) takes an installation of
mKernel without any of its facilities being equipped with di-
rectives, meaning that no consumers for events and no inter-
ceptors are registered. The two remaining settings address
the Event- and the Interceptor service. Within the first one
(event), the Event service is instructed to throw events for
all business calls. For the second one, an interceptor is reg-
istered which internally does not have any application logic,
because only the overhead for re-direction is of interest. It
intercepts any incoming method call before it is processed
by the target bean instance.
As hardware foundation for the evaluation runs, PCs were
used, equipped with a 2,4 gigahertz Pentium IV processor
with Hyper-Threading, 1 gigabyte random access memory,
and a 100 Megabit (MBit) ethernet card. As operating sys-
tem Windows XP was installed. The runs were performed
in a 100-MBit local area network where all hosts were con-
nected to the same switch. As application server GlassFish
v2 build 45 was chosen. Of this build the standard installa-
tion without any adjustments was taken as foundation. The
client side of the scenarios was connected to the application
server through the appclient being part of the build. For
each scenario a single client application performed a certain
number of method invocations upon the target bean. After

each single run, for the application server a new installation
was prepared.
It has to be pointed out that the evaluation performed should
by no means be interpreted as benchmarks for the underly-
ing configuration. Especially the application server itself
was not subject of any performance analysis. For measur-
ing the overhead caused by the application of mKernel, the
percental overhead (overhs) of each run with mKernel was
calculated via setting the arithmetic mean (xs) for each sce-
nario s in relation to the arithmetic mean of the run without
mKernel (xbase):

overhs =
xs

xbase
∗ 100%

For the first scenario, the client of the stateless session beans
performed 50000 subsequent method invocations. For the
stateful session bean case, a connection to a bean instance
was established. Afterwards, five subsequent invocations
were performed before connecting to a new instance. This
was repeated 10000 times, again leading to 50000 observed
invocations. For the second scenario, each client established
a connection to a session bean for the stateless and state-
ful case. Afterwards, each type of method – create, read
and delete – was invoked once. This was repeated 10000
times, leading to 30000 observations for each setting. Table
2 covers the results of the evaluation. Here, the ’.’ in the
percentage values is used as decimal place.

Table 2: Performance evaluation of mKernel
No application logic

s overhs(Stateless) overhs(Stateful)
silent 4.334 % 1.581 %
event 12.276 % 10.801 %

intercept 75.487 % 116.546 %

Database access
s overhs(Stateless) overhs(Stateful)

silent 0.942 % 0.408 %
event 4.364 % 2.678 %

intercept 30.05 % 49.945 %

Summarizing, one can state that the overhead for the ap-
plication of mKernel lies within acceptable boundaries. The
results derived for the application of the Interceptor service
can be explained by the fact that each invocation on an in-
stance of a session bean is re-directed to a separate session
bean instance, i.e. the interceptor. Additionally, for each
instance of a session bean, a reference to each interceptor
must be obtained on first invocation. This might have led
to the results for the intercept-settings in combination with
stateful session beans. It has to be pointed out that the
different number of subsequent invocations for the two sce-
narios also had an important influence on the results. For
the first scenario, each fifth invocation led to a connection
establishment for stateful session beans while this was the
case for each third invocation for the second scenario.

7. CONCLUSION AND FUTURE WORK
In summary, the implementation of mKernel showed that

the EJB-standard provides a sound foundation for exten-
sions making it manageable autonomously. However, be-
cause of the shortcomings found in the standard, it is not

feasible to provide an implementation solely relying on it.
Instead, it is necessary to deal with container-specific so-
lutions. All required aspects for manageability are realiz-
able to a high degree. Additionally, the results of the per-
formance evaluation showed that the overhead of integrat-
ing manageability into an EJB-container is justifiable. In
this context, mKernel provides a domain-specific manage-
able layer for EA on top of a broadly accepted standard.

However, the evaluation revealed different areas of possi-
ble extensions for mKernel: At the time of writing, a com-
prehensive API is under development. It should replace the
need to interact with the facilities directly for management
purpose. Currently, the manageability spans those compo-
nents deployed into the administrated container. It would
be desirable to expand manageability with options for ma-
nipulating the collection of deployed components itself. At
the moment, an additional facility for mKernel based on [11]
is realized. Additionally, it is considered in how far applica-
tion specific configuration of components can be supported
during runtime. As first idea, the manipulation of simple en-
vironment entries is planned similar to the way dependencies
are treated by mKernel already. Finally, it is planned to de-
velop broader sample applications to evaluate and show the
potential of mKernel for different application areas.

8. REFERENCES
[1] The Glassfish Application Server.

glassfish.dev.java.net.

[2] Java Naming and Directory Interface (JNDI).
http://java.sun.com/products/jndi/.

[3] T. Abdellatif and A. Danes. A simple approach to
autonomic J2EE servers. In IEEE International
Conference on Self-Organization and Autonomic
Systems in Computing and Communications
(SOAS’2006), Erfurt, Germany, 2006.

[4] S. Bouchenak, F. Boyer, S. Krakowiak, D. Hagimont,
A. Mos, S. Jean-Bernard, N. de Palma, and V. Quema.
Architecture-Based Autonomous Repair Management:
An Application to J2EE Clusters. In SRDS ’05:
Proceedings of the 24th IEEE Symposium on Reliable
Distributed Systems (SRDS’05), pages 13–24,
Washington, DC, USA, 2005. IEEE Computer Society.

[5] J. Bruhn and G. Wirtz. DyName: Enhanced Naming
for EJB. In Proceedings of the 2007 International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2007),
volume 1, pages 17–23, 2007.

[6] D. M. Chess, G. Pacifici, M. Spreitzer, M. Steinder,
A. Tantawi, and I. Whalley. Experience with
Collaborating Managers: Node Group Manager and
Provisioning Manager. In Proceedings of the Second
International Conference on Autonomic Computing
2005 (ICAC 2005), pages 39–50. IEEE, 2005.

[7] S. Chiba. Javassist.
http://www.csg.is.titech.ac.jp/˜chiba/javassist/.

[8] L. DeMichiel and M. Keith. JSR 220: Enterprise
JavaBeans, Version 3: EJB Core Contracts and
Requirements.
http://jcp.org/aboutJava/communityprocess/
final/jsr220/index.html, 2006.

[9] L. DeMichiel and M. Keith. JSR 220: Enterprise
JavaBeans, Version 3: Java Persistence API.

http://jcp.org/aboutJava/communityprocess/final/
jsr220/index.html, 2006.

[10] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith,
G. Kaiser, and D. Phung. Self-Managing Systems: A
Control Theory Foundation. In ECBS ’05:
Proceedings of the 12th IEEE International
Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS’05), pages 441–448,
Washington, DC, USA, 2005. IEEE Computer Society.

[11] J. Dochez. JSR 88: Java Enterprise Edition 5
Deployment API Specification, Version 1.2.
http://jcp.org/aboutJava/communityprocess/mrel/
jsr088/index.html, 2006.

[12] X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang,
S. Pavuluri, and S. Rao. Autonomia: An Autonomic
Computing Environment. In Proceedings of IEEE
International Conference on Performance, Computing,
and Communications (IPCC), pages 61–68, 2003.

[13] A. G. Ganek and T. A. Corbi. The dawning of the
autonomic computing era. In IBM Systems Journal,
volume 42, pages 5–18. IBM, 2003.

[14] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-Based
Self-Adaptation with Reusable Infrastructure.
Computer, 37(10):46–54, 2004.

[15] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and
K. Stout. JSR 914: Java Message Service (JMS) API.
http://jcp.org/aboutJava/communityprocess/final/
jsr914/index.html, 2002.

[16] P. Horn. Autonomic Computing: IBM’s Perspective
on the State of Information Technology.
www.research.ibm.com/autonomic/manifesto/
autonomic computing.pdf, 2001. IBM Corporation.

[17] H. Hrasna. JSR 77: Java 2 Platform, Enterprise Ed.
Management Specification.
http://jcp.org/aboutJava/communityprocess/mrel/
jsr077/index.html, 2006.

[18] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer Magazine,
36(1):41–50, 2003.

[19] P. Lin, A. MacArthur, and J. Leaney. Defining
Autonomic Computing: A software Engineering
Perspective. In ASWEC ’05: Proceedings of the 2005
Australian Software Engineering Conference
(ASWEC’05), pages 88–97, Washington, DC, USA,
2005. IEEE Computer Society.

[20] M. S. Sadjadi, P. K. Mckinley, B. H. C. Cheng, and
K. R. E. Stirewalt. TRAP/J: Transparent Generation
of Adaptable Java Programs. In Proceedings of the
International Symposium on Distributed Objects and
Applications (DOA’04), pages 1243–1261, 2004.

[21] R. Sterritt and D. Bustard. Towards an Autonomic
Computing Environment. In DEXA ’03: Proceedings
of the 14th International Workshop on Database and
Expert Systems Applications, page 699, Washington,
DC, USA, 2003. IEEE Computer Society.

[22] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, 1999.

[23] S. Vajjhala and J. Fialli. JSR 222: Java Architecture
for XML Binding (JAXB) 2.0.
http://jcp.org/aboutJava/communityprocess/final/
jsr222/index.html, 2006.

