
Verification and Semantic Parallelization of
Goal-driven Autonomous Software

Damian Dechev1, Nicolas Rouquette2, Peter Pirkelbauer1, and Bjarne Stroustrup1

dechev@tamu.edu, nicolas.rouquette@jpl.nasa.gov, peter.pirkelbauer@tamu.edu, bs@cs.tamu.edu

Texas A&M University 1

College Station, TX 77843-3112
Jet Propulsion Laboratory, California Institute of Technology 2

4800 Oak Grove Drive, M/S 301-270, Pasadena, CA

ABSTRACT
Future space missions such as the Mars Science Laboratory
demand the engineering of some of the most complex man-
rated autonomous software systems. According to some
recent estimates, the certification cost for mission-critical
software exceeds its development cost. The current process-
oriented methodologies do not reach the level of detail of
providing guidelines for the development and validation of
concurrent software. Time and concurrency are the most
critical notions in an autonomous space system. In this work
we present the design and implementation of a first con-
currency and time centered framework for verification and
semantic parallelization of real-time C++ within the JPL
Mission Data System Framework (MDS). The end goal of
the industrial project that motivated our work is to provide
certification artifacts and accelerated testing of the complex
software interactions in autonomous flight systems. As a
case study we demonstrate the verification and semantic par-
allelization of the MDS Goal Networks.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering
; D.2.4 [Software/Program Verification]: [validation]

General Terms
Algorithms, Languages, Verification

Keywords
Nonblocking Synchronization, C++, Semantic Paralleliza-
tion, Autonomous Space Software

1. INTRODUCTION
In this work we describe the design, implementation, and

application of a first concurrency and time centered frame-
work for verification and semantic parallelization of real-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Autonomics 2008, September 23-25, 2008, Turin, Italy
Copyright c©2008 ICST ISBN # 978-963-9799-34-9 .

time C++ within the JPL Mission Data System Frame-
work (MDS). MDS provides an experimental goal- and state-
based platform for testing and development of autonomous
real-time flight applications[18]. The end goal of the indus-
trial project that motivated our work is to provide certifi-
cation artifacts and accelerated testing of the complex soft-
ware interactions in autonomous flight systems. The pro-
cess of software certification establishes the level of confi-
dence in a software system in the context of its functional
and safety requirements. A software certificate contains the
evidence required for the system’s independent assessment
by an authority having minimal knowledge and trust in the
technology and tools employed[6]. Providing such certifi-
cation evidence may require the application of a number
of software development, analysis, verification, and valida-
tion techniques[16]. The dominant paradigms for software
development, assurance, and management at NASA rely on
the principle ”test-what-you-fly and fly-what-you-test”. This
methodology had been applied in a large number of robotic
space missions at the Jet Propulsion Laboratory. For such
missions, it has proven suitable in achieving adherence to
some of the most stringent standards of man-rated certifica-
tion such as the DO-178B[21], the Federal Aviation Admin-
istration (FAA) software standard. Its Level A certification
requirements demand 100% coverage of all high and low level
assurance policies. Some future space exploration projects
such as the Mars Science Laboratory (MSL), Project Con-
stellation, and the development of the the Crew Launch Ve-
hicle (CLV) and the Crew Exploration Vehicle (CEV) sug-
gest the engineering of some of the most complex man-rated
software systems. As stated in the Columbia Accident Inves-
tigation Board Report[3], the inability to thoroughly apply
the required certification protocols had been determined to
be a contributing factor to the loss of STS-107, Space Shut-
tle Columbia.
Schumann and Visser’s discussion in [22] suggests that the
current certification methodologies are prohibitively expen-
sive for systems of such complexity. A detailed analysis by
Lowry[16] indicates that at the present moment the certifica-
tion cost of mission-critical space software exceeds its devel-
opment cost. The challenges of certifying and re-certifying
avionics software has led NASA to initiate a number of
advanced experimental software development and testing
platforms, such as the Mission Data System (MDS)[18], as
well as a number of program synthesis, modeling, analysis,
and verification techniques and tools, such as The Java-
PathFinder[2], the CLARAty project[25], Project Golden
Gate[9], The New Millenium Architecture Prototype (New-

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post onservers or to redistribute to lists, requires prior specific permission and/or a fee.AUTONOMICS 2008, September 23-25, Turin, ItalyCopyright © 2008 ICST 978-963-9799-34-9DOI 10.4108/ICST.AUTONOMICS2008.4354

MAAP)[8]. The high cost and demands of man-rated cer-
tification have motivated the experimental development of
several accelerated testing platforms[1]. A great number of
the experimental faster-than-real-time flight software sim-
ulators require the parallelization of previously sequential
real-time algorithms. In this work we present the design
and implementation of a first concurrency and time cen-
tered framework for verification and semantic paralleliza-
tion of real-time C++ within the JPL Mission Data System
Framework. Our notion of semantic parallelization implies
the thread-safe concurrent execution of system algorithms
that utilize shared data, based on the application’s seman-
tics and invariants. As a practical industrial-scale applica-
tion, we demonstrate the parallelization and verification of
the MDS’ Goal Networks, a critical component of the JPL’s
Mission Data System.

2. CHALLENGES FOR MISSION CRITICAL
AUTONOMOUS SOFTWARE

In [17] Perrow studies the risk factors in the modern high
technology systems. His work identifies two significant sources
of complexity in modern systems: interactions and coupling.
The systems most prone to accidents are those with complex
interactions and tight coupling. With the increase of the size
of a system, the number of functions it has to serve, as well
as its interdependence with other systems, its interactions
become more incomprehensible to human and machine anal-
ysis and this can cause unexpected and anomalous behavior.
Tight coupling is defined by the presence of time-dependent
processes, strict resource constraints, and little or no pos-
sible variance in the execution sequence. Perrow classifies
space missions in the riskiest category since both hazard
factors are present. In this work, we argue that the notions
of concurrency and time are the most critical elements in
the design and implementation of an embedded autonomous
space system. According to a study on concurrent models of
computation for embedded software by Lee and Neuendorf-
fer[14], the major contributing factors to the development
and design complexity of such systems are the underlying
sequential memory models and the lack of first class rep-
resentation of the notions of time and concurrency in the
applied programming languages.

2.1 Parallelism and Complexity
The most commonly applied technique for controlling the

interactions of concurrent processes is the use of mutual ex-
clusion locks. A mutual exclusion lock guarantees thread-
safety of a concurrent object by blocking all contending
threads trying to access it except the one holding the lock.
In scenarios of high contention on the shared data, such
an approach can seriously affect the performance of the
system and significantly diminish its parallelism. For the
majority of applications, the problem with locks is one of
difficulty of providing correctness more than one of perfor-
mance. The application of mutually exclusive locks poses
significant safety hazards and incurs high complexity in the
testing and validation of mission-critical software. Mutual
exclusion locks can be optimized in some scenarios by uti-
lizing fine-grained locks[12] or context-switching. Often due
to the resource limitations of flight-qualified hardware, op-
timized lock mechanisms are not a desirable alternative[16].
Even for efficient locks, the interdependence of processes im-

plied by the use of locks, introduces the dangers of deadlock,
livelock, and priority inversion. The incorrect application of
locks is hard to determine with the traditional testing pro-
cedures and a program can be deployed and used for a long
period of time before the flaws can become evident and even-
tually cause anomalous behavior.

2.1.1 Nonblocking Synchronization
To achieve higher safety and enhance the performance of

our implementation, we consider the application of lock-free
synchronization. As defined by Herlihy[11], a concurrent
object is non-blocking (lock-free) if it guarantees that some
process in the system will make progress in a finite amount
of steps. Non-blocking algorithms do not apply mutually ex-
clusive locks and instead rely on a set of atomic primitives
supported by the hardware architecture. The most ubiqui-
tous and versatile data structure in the ISO C++ Standard
Template Library [23] is vector, offering a combination of
dynamic memory management and constant-time random
access. In our framework for verification and semantic par-
allelization of real-time C++ we utilize the design of the
first lock-free design and implementation of a dynamically-
resizable array in ISO C++[5]. It provides linearizable op-
erations, disjoin-access parallelism for random access reads
and writes, lock-free memory allocation and management,
and fast execution.

2.2 Motivation and Contributions
As discussed by Lowry[16], in July 1997 The Mars Pathfinder

mission experienced a number of anomalous system resets
that caused an operational delay and loss of scientific data.
The follow-up study identified the presence of a priority
inversion problem caused by the low-priority meteorologi-
cal process blocking the the high-priority bus management
process. It has been determined that it would have been
impossible to detect the problem with the black box test-
ing applied at the time to derive the certification artifacts.
A more appropriate priority inversion inheritance algorithm
had been ignored due to its frequency of execution, the real-
time requirements imposed, and its high cost incurred on
the slower flight-qualified computer hardware. The subtle
interactions in the concurrent applications of the modern
aerospace autonomous software are of critical importance to
the system’s safety and operation.
Despite the challenges in debugging and verification of the
system’s concurrent components, the existing certification
process[21] does not provide guidelines at the level of detail
reaching the development, application, and testing of con-
current programs. This is largely due to the process-oriented
nature of the current certification protocols and the com-
plexity and high level of specialization of the aerospace au-
tonomous embedded applications. In the near future, NASA
plans to deploy a number of diverse vehicles, habitats, and
supporting facilities for its imminent missions to the Moon,
Mars and beyond. The large array of complex tasks that
these systems would have to perform implies their high level
of autonomy. In [18] Rasmussen et al. suggest that the
challenges for these systems’ control is one of the most de-
manding tasks facing NASA’s Exploration Systems Mission
Directorate. Some of the most significant challenges that
the authors identify are managing a large number of tightly-
coupled components, performing operations in uncertain re-
mote environments, enabling the agents to respond and re-

cover from anomalies, guaranteeing the system’s correctness
and reliability, and ensuring effective communication across
the system’s components. In the rest of the paper we de-
scribe the definition, design, and implementation of a first
concurrency and time centered framework for verification
and semantic parallelization of autonomous flight software
within the JPL’s MDS Framework. We integrate a non-
blocking vector in our parallel implementation of the Mis-
sion Data System’s Temporal Constraint Network Library
(TCN) in order to achieve higher thread safety and boost
the performance of the MDS Goal Networks component. We
demonstrate how to specify, model, and formally verify the
TCN algorithms and their semantic invariants. Based on
our formal models and the application’s semantics, we de-
rive a technique for automatic and semantic parallelization
of the TCN library’s constraint propagation algorithm.

3. TEMPORAL CONSTRAINT NETWORKS
A Temporal Constraint Network (TCN) defines the goal-

oriented operation of a control system in the context of
a system under control. The Temporal Constraint Net-
works (TCN) application is at the core of the Jet Propulsion
Laboratory’s Mission Data System (MDS)[18] state-based
and goal-oriented unified architecture for testing and devel-
opment of mission software. The framework’s state- and
model-based methodology and its associated systems engi-
neering processes and development tools have been success-
fully applied on a number of test applications including the
physical rovers Rocky 7 and Rocky 8 and a simulated En-
try, Descent, and Landing (EDL) component for the Mars
Science Laboratory mission. A TCN consists of a set of tem-
poral constraints (TCs) and a set of time points (TPs). In
this model of goal-driven operation, a time point is defined
as an interval of time when the configuration of the system
is expected to satisfy a property predicate. The width of
the interval corresponds to the temporal uncertainty inher-
ent in the satisfaction of the predicate. Similarly, temporal
constraints have an associated interval of time correspond-
ing to the acceptable bounds on the interactions between
the control system and the system under control during the
performance of a specific activity. A TCN graph topology
represents a snapshot at a given time of the known set of
activities the control system has performed so far, is cur-
rently engaged in, and will be performing in the near future
up to the horizon of the elaborated plan initially created as
a solution for a set of goals. The topology of a temporal
constraint network must satisfy a number of invariants.

(a) A TCN is a directed acyclic graph where the edges rep-
resent the set of all time points (Stps) and the vertices
the set of all temporal constraints (Stcs)

(b) For each time point TPi ∈ Stps, there is a set of tempo-
ral constraints that are immediate successors (Ssucci) of
TPi and a set, Spredi , consisting of all of TPi’s immedi-
ate predecessors

(c) Each temporal constraint TCj ∈ Stcs has exactly one
successor TPsuccj and one predecessor TPpredj

(d) For each pair {TPi, TCj}, where TPi ≡ TCsuccj , TCj ∈
Spredi must hold. The reciprocal invariant must also
be valid, namely for each pair of {TPi, TCj} such that
TPi ≡ TCpredj , TCj ∈ Ssucci

(e) The firing window of a time point TPi ∈ Stps is repre-
sented by the pair of time instances {TPmini , TPmaxi}.
Assuming that the current moment of time is repre-
sented by Tnow, then TPmini ≤ Tnow ≤ TPmaxi , for
every TPi ∈ Stps.

General-purpose programming languages lack the capabil-
ities to formally specify and check domain-specific design
constraints. Direct representation and verification of the
TCN invariants in the implementation source code would
result in a slow and cumbersome solution. However, any
implementation (in C++, Java or another programming lan-
guage) must operate under the assumptions that the basic
TCN invariants are satisfied. Thus, prior to implementing
a solution to the TCN constraint propagation problem, it
is necessary to guarantee the correctness and consistency of
the topology of the goal network.

4. A FRAMEWORK FOR VERIFICATION
AND SEMANTIC PARALLELIZATION OF
REAL-TIME C++ IN MDS

In this section we describe the design, implementation,
and practical application of our framework for verification
and semantic parallelization of real-time C++ within JPL’s
MDS Framework (Figure 1). The input to the framework
is the MDS mission planning and execution module that
is based on the definition of temporal constraint networks.
At the core of the most recent implementations at JPL of
this critical module is an optimized iterative algorithm for
the real-time propagation of temporal constraints, developed
and described by Lou in [15]. Constraint propagation poses
performance challenges and speed bottlenecks due to the
algorithm’s frequent execution and the necessary real-time
update of the goal network’s topology. The end goal of our
work is, given the implementation of the optimized iterative
propagation scheme and the topology of a particular goal
network, to establish the correctness of the core TCN se-
mantic invariants (see Section 3) and automatically derive
an implementation that can be executed concurrently on one
of the JPL’s experimental testbeds for accelerated testing[1].
Our approach for achieving concurrent execution is based on
the idea of identifying Time Phases within a goal network,
which allow the semantic parallelization of the constraint
propagation algorithm. In this work, we define semantic
parallelization as the thread-safe concurrent execution of an
algorithm (whose operation is dependent on shared data),
derived from the application’s semantics and invariants. In
the following sections we describe how we reach our goal
of verification and semantic parallelization of the mission
planning and control module by constructing and executing
a formal verification model in Alloy[13] that represents the
implementation’s core semantics and functionality. We re-
fine a formal modeling and analysis methodology, initially
suggested by Rouquette[20], that helps us analyze the logi-
cal properties of the goal network model and automatically
derive a meta-model for our parallel solution.

4.1 The Problem of TCN Constraint Propa-
gation

A classic solution to the problem of constraint propaga-
tion in TCN is the direct application of Floyd-Warshall’s
all-pairs-shortest-path algorithm[4], offering a complexity of

C++ TCN
Implementation

Parallel C++ TCN
Implementation

Alloy Model

XSD

XML

automatic

manual

Contains a particular
Topology and the notion

 of Time phases

Used for :
1.Check graph invariants

2. Compute the time phases

Express the notions
Of TP, TC, TPH,

And model invariants

Topology with
Time phases

EMF

EMF

XSD to C++

XSD to C++

Lock-Free
Synchronization

Figure 1: A Framework for Verification and Semantic

Parallelization

O(N3), where N is the number of time points in the TCN
topology. Since, by definition, the goal of the TCN propa-
gation algorithm is to compute the real-time values of the
network’s temporal constraints, the algorithm is frequently
executed and, given the massive scale of a real world goal
network, can cause significant bottleneck for the overall sys-
tem’s performance. In [15], Lou describes an innovative and
effective TCN propagation scheme with a complexity close
to linear. Lou’s TCN propagation is based on the concept
of alternating forward and backward propagation passes. A
forward pass updates the time interval at each time point
by considering only its incoming temporal constraints (Al-
gorithm 1). Similarly, a backward pass recomputes the
time windows at each time point by considering only its
outgoing temporal constraints (Algorithm 2). The scheme
utilizes a shared container, named a propagation queue, to
keep track of all time points whose successor time points’
windows are about to be updated next (during a forward
pass) and all time points whose predecessor time points’
windows are about to be updated next (during a backward
pass). A forward pass begins by selecting all time points
with no predecessors and inserts them into the propagation
queue. A backward pass begins by selecting all time points
with no successors and inserts them into the propagation
queue. Each iteration is carried out until:

(a) An iteration completes without updating any temporal
constraints (thus indicating that there are no more up-
dates to be performed during the pass). In this case, the
TCN topology is considered to be temporally consistent.

(b) The iteration has stumbled upon a time window of neg-
ative value and the algorithm terminates with the out-
come of having a temporally inconsistent network.

As stated by Lou[15], prior to the execution of the optimized
propagation scheme, it is critical to guarantee the validity of
the core TCN invariants for the topology of the particular
goal network. For example, the propagation scheme operates
under the assumption that the goal network graph is cycle

free. Should there be cycles, the propagation would enter
into an endless loop.

Algorithm 1 Forward Pass. Arguments: a reference to the
time point about to the updated (tp) and a reference to the
global data structure recording the state updates (vstate)

1: mintmp ← tp.min
2: maxtmp ← tp.max
3: for j = 0 to tp.preds size do
4: mintmp ← std::max(mintmp, tp.preds[j].pred.min +

tp.preds[j].min)
5: maxtmp ← std::min(maxtmp, tp.preds[j].pred.max +

tp.preds[j].max)
6: end for
7: if tp.min! = mintmp then
8: ASSERT(tp.min < mintmp)
9: tp.min← mintmp

10: vstate.aIncr(vstate.count) {atomically increment the
state vector’s counter}

11: end if
12: if tp.max! = maxtmp then
13: ASSERT(tp.max > maxtmp)
14: tp.max← maxtmp

15: vstate.aIncr(vstate.count) {atomically increment the
state vector’s counter}

16: end if
17: return !(mintmp > maxtmp)

Algorithm 2 Backward Pass. Arguments: a reference to
the time point about to the updated (tp) and a reference to
the global data structure recording the state updates (vs-
tate)

1: mintmp ← tp.min
2: maxtmp ← tp.max
3: for j = 0 to tp.succs size do
4: mintmp ← std::max(mintmp, tp.succs[j].succ.min −

tp.succs[j].max)
5: maxtmp ← std::min(maxtmp, tp.succs[j].succ.max −

tp.succs[j].min)
6: end for
7: if tp.min! = mintmp then
8: ASSERT(tp.min < mintmp)
9: tp.min← mintmp

10: vstate.aIncr(vstate.count) {atomically increment the
state vector’s counter}

11: end if
12: if tp.max! = maxtmp then
13: ASSERT(tp.max > maxtmp)
14: tp.max← maxtmp

15: vstate.aIncr(vstate.count) {atomically increment the
state vector’s counter}

16: end if
17: return !(mintmp > maxtmp)

4.2 Modeling, Formal Verification, and Auto-
matic Parallelization

Alloy[13] is a lightweight formal specification and verifi-
cation tool for the automated analysis of user-specified in-
variants on complete or partial models. The Alloy Ana-
lyzer is implemented as a front-end, performing the role of
a model-finder, to a boolean SAT-solver. Formal verifica-
tion and modeling of JPL’s flight software has been previ-
ously demonstrated to be effective and successful by Holz-
mann[10]. We use the Alloy specification language[13] to
formally represent and check the semantics of the tempo-
ral constraint networks library (Algorithm 3) and its main

invariants (Algorithm 4). In our C++ goal networks imple-
mentation we have applied generic programming techniques
and concepts[19], so that we can maintain a higher level of
expressiveness. As a result we have achieved a significant
similarity in the way the main TCN notions and invariants
are expressed in our actual implementation and the Alloy
verification models. In the future, we intend to utilize a
static analysis tool such as The Pivot[24] in order to auto-
mate this transition (this is the last non-automated compo-
nent of the presented framework).

In addition, we utilize the Alloy Analyzer to implement
our semantic parallelization approach. Our method for se-
mantic parallelization of the goal network is based on the
observation that in a topology we can identify groups of
time points that would allow the concurrent execution of
the propagation passes. A possible criterion for identifying
such groups would be to identify the time points in a topol-
ogy that allow disjoin-access to the shared data. Given the
method used to compute the time window [TPmini , TPmaxi]
for each TPi ∈ Stps, we have observed that the functionally-
independent time points are the time points that are equidis-
tant (with respect to the longest path) from the root of the
graph. Thus, in our methodology, we define a Time Phase
Tphi as the set of the time points (STphi) in a topology
that are equidistant, with respect to the longest path, from
the root of the graph. In such a way, by definition, the
computations of [TPmina , TPmaxa] and [TPminb , TPmaxb]
for every pair of {TPa, TPb}, such that TPa ∈ STphi and
TPb ∈ STphi , are mutually independent and allow disjoin-
access to the shared data. With the support of Alloy Ana-
lyzer we define and identify the time phases in a goal network
graph (Algorithm 5 and Algorithm 6). Figure 2 provides
an example of a goal network containing 15 time points and
6 time phases.

Algorithm 3 Definition of the notions of Temporal Con-
straint and Time Point
1: sig TC {declaration of the Temporal Constraint sig-

nature}
2: tc pred: one TP,
3: tc succ: one TP
4: sig TP {declaration of the Time Point signature}
5: tp preds: set TC,
6: tp succs: set TC

Algorithm 4 Main TCN invariants expressed in the Alloy
Specification Language

1: all tc:TC | tc in tc.tc pred.tp succs
2: all tc:TC | tc in tc.tc succ.tp preds
3: all tc:TP | some tp.tp preds⇒ tp.tp preds.tc succ = tp
4: all tc:TP | some tp.tp succs⇒ tp.tp succs.tc pred = tp
5: no ∧(tc pred.tp preds) & iden {check for cycles}
6: no ∧(tc succ.tp succs) & iden {check for cycles}

Having identified the time phases in our temporal con-
straint network specification in Alloy, the aim of the rest
of our tool-chain is to automatically derive the C++ imple-
mentation of the parallel solution through a number of code
transformation techniques. Following Rouquette’s method-
ology[20] for model transformation through the application
of the Object Constraint Language (OCL) and the Eclipse
Modeling Framework (EMF), we are able to automatically

Algorithm 5 Definition of the notions of Time Phase and
Temporal Constraint Network (with time phases)

1: sig Tph {declaration of the Time Phase signature}
2: events: set TP,
3: next: lone Tph,
4: tcn: one TCN
5: sig TCN {declaration of the TCN signature}
6: epoch : TP,
7: tps: set TP,
8: tcs: set TC,
9: init: one Tph

Algorithm 6 Main Time Phase invariants expressed in the
Alloy Specification Language

1: all p:Tph
2: p.events.tp succs.tc succ in p.∧next.events
3: p.events.tp preds.tc pred in p.∧∼next.events
4: p in p.tcn.init.*next
5: p.events in p.tcn.tps
6: no p.events & p.∧(next).events

derive an intermediary XML and XSD representations of
the graph’s topology and the TCN semantic notions, respec-
tively. We apply an XML parser (XercesC) and a CodeSyn-
thesis XSD transformation tool to deliver the C++ imple-
mentation of the goal network and our parallel propagation
method.

TP0(epoch)

(1,7)

TP3

TP2

TP5

TP11

TP10
(2,5)

(6,6)

(4,15)

(1,4)

(0,8)

(1,4)

(3,11)

TP1

TP4
TP6

TP7

TP8

TP9 TP12

TP13 TP14

(1,7)

(0,9)

(0,4)

(2,5)

(3,8)

(2,5)

(3,4)
(5,6)

(2,5)

(2,5)

(1,6)

Figure 2: A Parallel TCN Topology with 15 Time Points

and 6 Time Phases

To achieve higher safety and better performance, our par-
allel propagation scheme employs a number of innovative
multi-processor synchronization techniques. In our imple-
mentation we have encountered and addressed the following
challenges:

(1) Achieving low-overhead parallelization. Our experiments
indicated that the wide-spread Pthreads are computa-

tionally expensive when applied to the parallel propa-
gation algorithm. Given the frequent real-time changes
in the graph topology, employing a thread per itera-
tion for the computations of each time phase comes at a
prohibitive cost. To avoid this problem, we have incor-
porated in our design the application of the Intel tasks
from the Threading Building Blocks Library[12]. Our
experiments indicate that the Intel tasks provide low-
cost overhead when applied in the concurrent execution
of the forward and backward passes of the propagation
scheme.

(2) Allowing fast and safe access to the shared data. The
parallel algorithm requires the safe and efficient concur-
rent synchronization of its shared data: the propagation
queue and the vector containing control data (reflecting
the updates during an iteration). By the definition of
our algorithm, the propagation queue is synchronized by
allowing only disjoint-access writes. While the access to
the shared vector is less frequent, its concurrent syn-
chronization is more challenging since we do not have a
guarantee that the concurrent writes would be disjoint.
The application of mutual exclusion locks is a possi-
ble but likely an ineffective solution due to the risks
of deadlock, livelock, and priority inversion. Moreover,
the interdependency of processes implied by the use of
locks diminishes the parallelism of a concurrent system.
A lock-free object guarantees that within a set of con-
tending processes, there is at least one process that will
make progress within a finite number of steps. We have
employed the implementation of the lock-free vector de-
scribed in [5] in order to meet our goals for thread-safe
and effective non-blocking synchronization. The lock-
free vector provides the functionality of the popular STL
C++ vector as well as linearizable and safe operations
with complexity of O(1) and fast execution (outperform-
ing the STL vector protected by a mutex by a factor of
10 or more).

A number of graph properties, in a particular TCN topol-
ogy, have a significant impact on the application and perfor-
mance of the parallel propagation scheme. We expect bet-
ter performance (with respect to the sequential propagation
scheme) when:

(1) The computational load per time point is high. This
is the case of a real-world massive-scale goal network.
For instance, instructing the Mars Science Laboratory
to autonomously find its way in a Martian crater, probe
the soil, capture images, and communicate to Mission
Control will result in a goal network containing tens or
hundreds of thousands of time points. In a small exper-
imental graph topology with a low computational cost
per time point (such as a few arithmetic operations), a
single processor computation will perform best (when
we take into account the parallelization overhead).

(2) Time phases with large number of time points: a topol-
ogy implying a sequential ordering of the planned events
will not benefit from a parallel propagation scheme. The
parallel propagation algorithm is beneficial to goal net-
works representing a large number of highly interactive
concurrent system processes.

4.3 Framework Application for Accelerated Test-
ing

The presented design and implementation of our parallel
propagation technique enable the incorporation of the opti-
mized propagation approach described by Lou[15] in an ex-
perimental framework for accelerated testing currently still
under development at NASA. Accelerated testing platforms
suggest a paradigm shift in the certification process em-
ployed by NASA from system testing with the actual flight
hardware and software to accelerated cost-effective certifi-
cation using hardware simulators and distributed software
implementations (Figure 3). Such frameworks aim faster-
than-real-time testing and analysis of the complex software
interactions in JPL’s autonomous flight systems. A number
of these platforms require automated refactoring of previ-
ously sequential code into modular parallel implementations.
Preliminary results reported in academic work[1] as well as
experience reports from a number of commercial tools (such
as Simics by Virtutech and ADvantage BEACON by Ap-
plied Dynamics International) suggest the possible speedup
of the flight system testing by a significant factor. We have
followed Rouquette’s methodology[20] that suggests the ap-
plication of formal modeling and validation techniques that
provide certification evidence for a number of functional de-
pendencies in order to compensate for the added hazards in
establishing the fidelity of the simulators. Due to the incom-

Simulated hardware

Actual hardware

Acceleration
Limited to Single
Processor Execution

Acceleration
Extended by Software
Semantic Parallelization

Simulated hardware

“Test what you Fly and
Fly what you Test”

test time

Figure 3: Testing Scenarios of Mission Software

plete status of the accelerated testing framework as well as
the lack of the actual flight hardware, it is difficult to mea-
sure a priori the effect of our parallel propagation scheme
in achieving acceleration (with respect to the execution on
the actual flight hardware) in the process of flight software
testing. To gain insight of the possible performance gains
and the algorithm’s behavior we ran performance tests on a
conventional Intel IA-32 SMP machine with two 2.0GHz pro-
cessor cores with 1GB shared memory and 4 MB L2 shared
cache running the MAC OS 10.5.1 operating system. In
our performance analysis we have measured the execution
time in seconds of two versions of our parallel propagation
algorithm (one applying mutually exclusive locks and the
other relying on nonblocking synchronization) and the orig-

inal sequential scheme presented by Lou[15]. In the exper-
iments (Figure 4), we have generated a number of TCN
graph topologies (each consisting of 4 to 8 Time Phases),
in a manner similar to the pseudo-random graph generation
methodology described in [7]. In the presented results on
Figure 4 the x− axis represents the average measured ex-
ecution time (in seconds) of each propagation scheme and
the y− axis represents the number of time points in the ex-
ponentially increasing graph size (starting with a graph of
20000 TPs and reaching a TCN having 160000 TPs). In the

Performance

0

1000

2000

3000

4000

5000

6000

20000 40000 80000 160000

Graph Size (number of time points)

E
x
e
cu

ti
o

n
 T

im
e
 (

in
 s

e
co

n
d

s)

Sequentail

Paralell (lock-based)

Parallel (lock-free)

Figure 4: Performance Analysis. x-axis represents the

number of TPs in each experimental TCN topology, y-

axis represents the execution time in seconds of each of

the three propagation algorithms

experimental setup we observed that the parallel propaga-
tion algorithm offers effective execution and a considerable
speedup in all scenarios on our dual-core platform. We mea-
sured performance acceleration reaching 28% in the case of
the nonblocking implementation and 20% for our algorithm
relying on mutually exclusive locks. Lock-free algorithms
deliver significant speedup in applications utilizing shared
data under high contention[5]. In a scenario like our parallel
TCN propagation scheme with medium or low contention
on the shared data, besides safety and prevention of prior-
ity inversion and deadlock, a lock-free implementation can
guarantee better scalability. As our experimental results
suggest, the gains from the lock-fee implementation gradu-
ally progress and we observe better scalability with respect
to the blocking propagation scheme. Based on the experi-
mental results, we expect that the integration of our parallel
propagation algorithm in the accelerated testing framework
(consisting of several dozen processing units) will deliver sig-
nificant benefits in reaching cost-effective and reliable flight
software certification of control modules based on massive
real-world goal networks.

5. CONCLUSION
The notions of time and concurrency are of critical impor-

tance for the design and development of autonomous space

systems. The current certification methodologies do not
reach the level of detail of providing guidelines for the devel-
opment and validation of concurrent and real-time software.
The increasing number of complex interactions and tight
coupling of the future autonomous space systems pose sig-
nificant challenges for their development and man-rated cer-
tification. A number of platforms for accelerated testing sug-
gest a paradigm shift by applying a combination of modeling
and verification methods, code generation tools, and soft-
ware parallelization for establishing a cost-effective and reli-
able certification process. In the light of the challenges posed
by the design and development of these highly experimen-
tal approaches, we presented in this work a first time- and
concurrency-centered framework for validation and semantic
parallelization of real-time C++ within JPL’s MDS Frame-
work. We demonstrated the application of our framework
in the validation of the semantic invariants of the Temporal
Constraint Network Library. Temporal constraint networks
are at the core of the mission planning and control architec-
ture of the Mission Data System framework. In addition, we
presented an approach for automatic semantic paralleliza-
tion of the propagation scheme establishing the consistency
of the temporal constraints in a goal network. Our parallel
propagation scheme is based on the identification of time
phases within a goal network and is implemented through
the application of model transformation and formal analysis
techniques to the model specifications of the TCN semantics.
We have relied on innovative lock-free synchronization tech-
niques to achieve better performance and higher safety of
our parallel implementation. Our preliminary tests indicate
that our parallel propagation approach, upon integration in
the accelerated testing framework, can support cost-effective
and reliable flight software certification of control modules
based on massive real-world goal networks. In our future
work we plan to focus on developing a component for au-
tomatic derivation of the model specification directly from
implementation source code. This can be accomplished by
utilizing the high-level internal program representation and
the analysis tools provided by The Pivot[24], a framework
for static analysis and transformations in C++.

6. ACKNOWLEDGEMENTS
We thank Kirk Reinholtz and David Wagner from the

Jet Propulsion Laboratory for their collaboration and the
provided directions on this work.

7. REFERENCES
[1] B. Boehm, J. Bhuta, D. Garlan, E. Gradman,

L. Huang, A. Lam, R. Madachy, N. Medvidovic,
K. Meyer, S. Meyers, G. Perez, K. Reinholtz,
R. Roshandel, and N. Rouquette. Using Empirical
Testbeds to Accelerate Technology Maturity and
Transition: The SCRover Experience. In ISESE ’04:
Proceedings of the 2004 International Symposium on
Empirical Software Engineering, pages 117–126,
Washington, DC, USA, 2004. IEEE Computer Society.

[2] G. Brat, D. Drusinsky, D. Giannakopoulou,
A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu,
A. Venet, R. Washington, and W. Visser.
Experimental Evaluation of Verification and
Validation Tools on Martian Rover Software. In
Formal Methods in Systems Design Journal,
September 2005.

[3] Columbia Accident Investigation Board. Columbia
Accident Investigation Board Report Volume 1.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. MIT Press,
Cambridge, MA, USA, 2001.

[5] D. Dechev, P. Pirkelbauer, and B. Stroustrup.
Lock-Free Dynamically Resizable Arrays. In A. A.
Shvartsman, editor, OPODIS, volume 4305 of Lecture
Notes in Computer Science, pages 142–156. Springer,
2006.

[6] E. Denney and B. Fischer. Software Certification and
Software Certification Management Systems. In
SoftCement05. Proceedings of the 2005 ASE Workshop
on Software Certificate Management, 2005.

[7] R. P. Dick, D. L. Rhodes, and W. Wolf. Tgff: task
graphs for free. In CODES/CASHE ’98: Proceedings
of the 6th international workshop on
Hardware/software codesign, pages 97–101,
Washington, DC, USA, 1998. IEEE Computer Society.

[8] D. Dvorak. Challenging encapsulation in the design of
high-risk control systems. In Proceedings of the 17th
ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’02),
2002.

[9] D. Dvorak, G. Bollella, T. Canham, V. Carson,
V. Champlin, B. Giovannoni, M. Indictor, K. Meyer,
A. Murray, and K. Reiinholtz. Project Golden Gate:
Towards Real-Time Java in Space Missions. In In the
Proceedings of the 7th IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing
(ISORC’04), 2004.

[10] R. Gluck and G. Holzmann. Using the spin model
checker for flight software verification. In Proceedings
of the 2002 IEEE Aerospace Conference, 2002.

[11] M. Herlihy. A methodology for implementing highly
concurrent data structures. In PPOPP ’90:
Proceedings of the second ACM SIGPLAN symposium
on Principles & practice of parallel programming,
pages 197–206, New York, NY, USA, 1990. ACM
Press.

[12] Intel. Reference for Intel Threading Building Blocks,
version 1.0, April 2006.

[13] D. Jackson. Software Abstractions: Logic, Language
and Analysis. The MIT Press, 2006.

[14] E. Lee and S. Neuendorffer. Concurrent Models of
computation for Embedded Software. In IEEE
Proceedings on Computers and Digital Techniques,
March 2005.

[15] J. Lou. An Efficient Algorithm for Propagation of
Temporal Constraint Networks. NASA Tech Brief Vol.
26 No. 4 from JPL New Technology Report
NPO-21098, April 2002.

[16] M. R. Lowry. Software Construction and Analysis
Tools for Future Space Missions. In J.-P. Katoen and
P. Stevens, editors, TACAS, volume 2280 of Lecture
Notes in Computer Science, pages 1–19. Springer,
2002.

[17] C. Perrow. Normal Accidents. Princeton University
Press, September 1999.

[18] R. Rasmussen, M. Ingham, and D. Dvorak. Achieving
Control and Interoperability Through Unified
Model-Based Engineering and Software Engineering.
In AIAA Infotech at Aerospace Conference, 2005.

[19] G. D. Reis and B. Stroustrup. Specifying C++
Concepts, ISO WG21 N1886, 2005.

[20] N. Rouquette. Analyzing and verifying UML models
with OCL and Alloy. EclipseCon 2008, 2008.

[21] RTCA. Software Considerations in Airborne Systems
and Equipment Certification (DO-178B), 1992.

[22] J. Schumann and W. Visser. Autonomy Software:
V&V Challenges and Characteristics. In Proceedings
of the 2006 IEEE Aerospace Conference, 2006.

[23] B. Stroustrup. The C++ Programming Language.

Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[24] B. Stroustrup and G. D. Reis. Supporting SELL for
High-Performance Computing. In Proceedings of the
International Workshop on Languages and Compilers
for Parallel Computing, LCPC 2005, 2005.

[25] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras,
and H. Das. The CLARAty Architecture for Robotic
Autonomy. In IEEE Aerospace Conference, March
2001.

