
R-P2P: a Data Centric DTN Middleware
with Interconnected Throwboxes

Francesco De Pellegrini, Iacopo Carreras,
Daniele Miorandi and Imrich Chlamtac

CREATE-NET
via Alla Cascata 56/c
38100, Trento, Italy

name.surname@create-net.org

Corrado Moiso
Telecom Italia Lab.

Via G. Reiss Romoli 274
10148, Torino, Italy

corrado.moiso@telecomitalia.it

ABSTRACT
In this paper we describe R-P2P, a novel system meant to
support the search and retrieval of data in a certain loca-
tion. R-P2P couples opportunistic wireless communications
between mobile devices with an interconnected network of
throwboxes. The set of throwboxes implements a distributed
and localized data storage.

Overall, the system integrates in an on-demand, delay-
tolerant fashion two main network extensions: a query for-
warding engine running on top of the opportunistic network
and a data retrieval mechanism performed on throwboxes.

We detail the building blocks of the proposed system, de-
scribing the functionalities and the interactions of the vari-
ous middleware modules. Finally, we illustrate the current
implementation of R-P2P.

Keywords
Middleware, Opportunistic Communications, Delay Toler-
ant Networks, DHT

Categories and Subject Descriptors
C.2 Computer-Communication Networks [C.2.1 Network

Architecture and Design]: Wireless communication

General Terms
Design

1. INTRODUCTION
The diffusion of electronic devices equipped with comput-

ing and wireless communications capabilities has changed
the notion of interaction with the technology in everyday

This work has been partially funded by the European Com-
mission within the framework of the BIONETS project EU-
IST-FET-SAC-FP6-027748, www.bionets.org.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Autonomics 2008, September 23 - 25, 2008, Turin, Italy 2008
Copyright 2008 ICST ISBN # 978-963-9799-34-9 .

life. The evolution of information technologies is not always
linear, though. One instructive example is the success of
guidance systems, traditionally based on the GPS technol-
ogy. GPS technology, in fact, was designed intentionally for
positioning systems, and requires an extremely expensive
satellite infrastructure. But, surprisingly, such technology
is facing unexpected competitors. Cellular phones, for ex-
ample, can provide positioning functionalities based on base
stations triangulation, and projecting detected positions on
a map. The resolution of this technique is on the order of a
kilometer at present, and of course it is not suitable for ve-
hicular road guidance systems. Nevertheless, it is applicable
to a range of less demanding location based applications: in
general, consensus exists on the fact that the massive de-
ployment of communicating and computing devices has the
potential to be exploited in novel and unplanned manners.

This relates to the need of coupling environmental or con-
text data to one or more services running on user devices. In
practice, data of interest for an application can be retrieved
via available sensor measurements or directly from devices
in the surroundings. For a wide class of applications, in par-
ticular, a key feature of the available data, e.g. the custom-
ary example of a temperature measurement or the position
of the closest Starbucks coffee, is the locality of such infor-
mation with respect to the user position. A self-explanatory
example is represented by the fast growing field of Bluetooth
advertisement (see for example http://www.kombok.it and
http://http://www.bluetooth-advertising.co.uk). To
this aim we use the generic term source to mean a wireless
device diffusing information pertinent to a given location.

Translated into networking requirements, location based
data distribution would require a fine-grained deployment,
bridging possibly different technologies in order to reach
the needed wireless coverage. But, at present, such a fine-
grained wireless coverage has a unique candidate, i.e. a cel-
lular network. The idea of injecting and distributing local
data into the operators’ networks, poses several technical
concerns though, especially in terms of scalability.

Nevertheless, alternative architectures are possible. Re-
cently, several legacy devices, i.e. standard cellular phones,
have been enabled with proximity wireless communications.
In particular, Bluetooth or IEEE802.11 interfaces would po-
tentially lead to systems composed of several handheld de-
vices coming now and then into radio range, forming a mo-
bile ad hoc network based on one-hop communications. These
systems are referred to as opportunist networks. Their con-

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.AUTONOMICS 2008, September 23-25, Turin, ItalyCopyright © 2008 ICST 978-963-9799-34-9DOI 10.4108/ICST.AUTONOMICS2008.4598

Nice Atmosphere
Free Drinks

Opening WHYBAR

Relaxing Atmosphere

Quartet Concert

Delayed to 6.pm

Panel
on Meritocracy in Italy

Interesting

Figure 1: A graphical representation of the use case, enriching traditional mapping systems with notifications

based on user-generated contents.

nectivity pattern is typically intermittent due to sudden and
repeated changes of environmental conditions: nodes mov-
ing out of range, drop of link capacity or short end-node duty
cycles [5, 9]. In this paper we consider a scenario where sev-
eral wireless mobile devices cooperate in order to feed local
data to applications leveraging opportunistic communica-
tions. The opportunities for pairs of nodes to communicate
are rather short and, to this respect, communication among
nodes is conveniently described by the set of nodes’ contacts
[4, 10].

The use of such systems appears promising for two main
reasons. First, there is no need for central data management.
Second, it is inherently localized, because only communica-
tions with nodes in radio range are possible. Of course, even
though they natively support data diffusion, opportunistic
communications have several limitations. In terms of delay,
for example, no guarantee can in principle be provided so
that applications running on top of such networks are re-
quired a certain degree of delay-tolerance. Furthermore, the
amount of data that can be exchanged per contact is dic-
tated by the finite duration of contacts, the need to trade
off device discovery duty cycles for energy savings, and, last
but not least, by the limited bandwidth of current technolo-
gies, e.g. Bluetooth. As it will be clear in the following,
for the above reasons we enforced the opportunistic network
with an interconnected network of throwboxes.

The main contribution of this paper is the description of
a system, namely R-P2P (Reverse Peer to Peer) and the re-
lated middleware interfacing mobile devices and throwboxes.
The baseline functionality provided by R-P2P is the retrieval
of data generated by sources deployed in the area of inter-
est to the user. R-P2P is novel since it decouples the query
diffusion and the data retrieval process using two separate
network extensions: an opportunistic network supports the
diffusion of queries and advertisements, whereas a network
of interconnected throwboxes supports the retrieval of data
injected into the system.

In the following description of the architecture, coopera-

tion and security issues are out of the scope of the paper;
nevertheless, enforcing users’ cooperation and ensuring se-
curity are a clear requirement for the R-P2P system.

Use case
As a reference scenario we represent a simple use case. Our
virtual user Sonia is visiting Trento, Italy, during the end of
May. She came to town in order to attend the Festival of the
Economy, a known event involving Italian institutions, the
local municipality and several Italian and foreign companies
who organize events for the whole duration of the 3-days fes-
tival.She knows that, apart from the scheduled institutional
events, there are several satellite social events occurring in
parallel, some of them with short or almost no-advice before.

This scenario fits the typical requirements for the usage
of the novel system described in the following:

• during a limited period, a high density of outside peo-
ple gather in town; they are typically interested in in-
formation relative to the specific location and in events
occurring in the area – this requires an easy to deploy
and lightweight architecture;

• visitors have a broad range of interests, covering events
related to the festival, but also satellite events occur-
ring on ad-hoc fashion, e.g. restaurants special offers,
wine bar or parties – this requires a general purpose
data sharing system;

• each user will use local information to decide on the
eligibility of some event for his/her schedule, but most
relevant contents will be generated by users on the fly,
including opinions, tastes and ratings – this excludes
web-based only publishing solutions;

R-P2P is designed to meet the above requirements. While
Sonia walks in Trento, her handheld device running R-P2P
will forward queries for certain information, which might
become available at some of other person’s devices running
R-P2P; R-P2P will also allow transparent exchange of data
during contacts. Sonia will verify from time to time the dis-

play of her handheld device: an application will integrate
fresh information on ongoing events and information gath-
ered by other users on a map, as depicted in Fig 1.

In the example, Sonia will be interested in a concert and
a talk: based on some user’s feedback, she will opt for the
concert. She will also obtain some multimedia material on
the place the concert will be hosted in, a nice palace down-
town Trento. At the concert, she will confirm the opinion of
other visitors, just filling a short rating form on her smart-
phone. Later on that evening, she also will be able to plan
an unexpected stop at wine bar, whose owner is promoting
the opening with free drinks; the owner just advertised the
happening over the R-P2P network, diffusing some adds and
storing some related multimedia material.

Paper structure
The work is organized as follows. In Sec. 2 we revise related
works, whereas in Sec. 3 we provide a general description
of the system architecture. In Sec. 4 and Sec. 5 we address
the functional blocks composing the two main devices of
the architecture, i.e., user nodes and throwboxes. In Sec. 6
we describe the initial implementation of the mobile oppor-
tunistic network, based on the U-hopper middleware. The
last section is devoted to conclusions and future directions.

2. RELATED WORKS
The possibility of running applications on top of oppor-

tunistic networks is recently gathering some attention. In
[16] the operation of application protocols such as HTTP or
email in delay tolerant networks (DTNs) is addressed: the is-
sue there is how to adapt them in order to run under a regime
of intermittent connectivity. A dedicated application-aware
module pilots storing and forwarding operations of DTN
modules using a suitable “application-hint” header protocol.
[15] describes general principles for such adaptation.

We notice that the system considered in this paper is not
end-to-end, but data centric, so that traditional end-to-end
DTN techniques do not apply.

Other authors have explored the technical feasibility of
P2P systems in presence of intermittent connectivity. The
work in [17] proposes a system, namely 7DS, which runs
as an application over mobile hosts. The aim of 7DS is
to provide enhanced Internet connectivity sustaining coop-
erative data exchange with mobile peers and a mechanism
for data dissemination. 7DS implements a passive/active
scheme and mobile host rely on local peer connections to
retrieve data from local servers. In [11], authors introduce
passive distributed indexing (PDI), a P2P overlay designed
for mobile applications. PDI provides a query diffusion pro-
tocol on a restricted overlay of mobiles covering a few hops.
The work in [22] proposes a delay-tolerant overlay for a mo-
bile ad-hoc network, namely ASOS, with the aim of accom-
plishing disruption tolerant operations. In ASOS queries
and data are disseminated on a MANET: several issues are
explored on data diffusion and optimization of data retrieval.

Several related works, in particular, proposed solutions
to cope with frequent disruptions using cooperative caching
techniques [18, 23, 12, 7]. The main effort is to sustain data
flows even in presence of high route failure rates, inherently
due to mobility [7]. Authors of [18] proposed an hybrid tech-
nique using both peer-to-peer communications and APs in
radio range. Also, in [23], authors describe existing trade-
offs depending on the mobility and cache size trading off

local caching and queries issued to central-servers. Tech-
niques for probabilistic quorum construction are applied to
ad-hoc networks in [12], based on the seminal work [13].

2.1 Novelty of the proposed architecture
The R-P2Psystem works based on diffusion of queries and

avertisements and on data retrieval. Most related works
mentioned before share the common view that both queries
diffusion and data retrieval occur top of the same MANET.
We take a different approach for two main reasons. First,
at the current status of the technology, measurements per-
formed on the field show that the duration of contacts is not
always such as to guarantee complete data exchange for large
data files [8]. Also, a further problem holds with respect to
data retrieval: at the time when a query reaches a node
able to retrieve the queried data, the potential return path
through which the query is forwarded likely disappeared.
For such a reason, all the above mentioned approaches typi-
cally foresee a large overhead in terms of data dissemination:
basically they try to reach back the source of the query via
controlled flooding.

In sight of the above technical concerns, the major novelty
of the proposed system architecture is that it couples a DHT
over an interconnected network to an DTN network of mo-
biles. The middleware described in the following, in particu-
lar, is meant to confine the forwarding of queries and adver-
tisements to the opportunistic part of the network, whereas
the data retrieval is operated through a set of interconnected
throwboxes. The net effect is that we split the forward and
the return path used in the query/retrieve data process. Also,
the proposed technique leverages the opportunistic part of
the network for queries and advertisements, which are typi-
cally very short messages, whereas data retrieval is operated
via the interconnected network. Another feature of the pro-
posed solution is that the system architecture is designed to
retrieve natively data from local sources in radio range, and
to maintain the local scope of the retrieved data.

We called this middleware Reverse Peer-to-Peer (R-P2P),
because the system resembles a P2P system, but opposite
to a regular p2p system, data are injected into the storage
system after the query is produced, whereas in regular p2p
system, queries match data already stored in the system.

3. SKETCH OF THE SYSTEM
The architectural skeleton of the proposed architecture is

depicted in Fig. 2. We consider three types of communi-
cation devices: throwboxes, user nodes and sources. User
nodes are mobile handheld devices, such as a mobile phone,
a PDA or a similar electronic device with communication ca-
pabilities, carried around by users. Typically, such devices
are equipped with a primary wireless interface connecting to
an operator network, and a secondary wireless interface, e.g.
Bluetooth or IEEE802.11. When in radio range of another
device, using these secondary interfaces, user devices can es-
tablish communications in a point to point fashion with no
need for the fixed infrastructure. This is usually referred to
as opportunistic communications (see [10, 9]).

Also, user devices can interact with sources in radio range,
namely devices acting as sources of local data: these data are
consumed by applications running on user devices. Sources
are depicted in Fig. 2 at the bottom layer: a typical exam-
ple of such a device can be a laptop equipped with an RF
interface acting as a bucket of user-generated content, but

query
query

data

Throwboxes

User Nodes

Local Information Sources

Th2

Th1Th3

contentcontent

data

Figure 2: Layered representation of the network

components: on the upper layer, throwboxes, in the

middle layer user nodes and in the lowest layer lo-

calized storage.

we plan to include sensors or RFIDs in the middleware as
well1. In some other cases, contents might be generated di-
rectly onboard of user nodes, e.g. this is the case of a video
or a picture taken with a video-phone.

A set of throwboxes occupy the third logical layer of the
system. Throwboxes can interact within themselves via a
conventional interconnected network, e.g. a mesh network.
User nodes communicate with a throwbox using the sec-
ondary wireless interface.

Notice that the basic architecture of the system described
here is similar to what proposed in [19] for data collection
with the use of “mules”. In that work, though, data col-
lected by “mules” are finally uploaded to the sink of a sensor
network; the use of a query-based mechanism makes R-P2P
different and novel, because queries are generated at user
nodes and the sink here does not correspond to the origin of
the sources. Also, R-P2P is meant to support both query

and publish operations. In particular, issuing a query, a
mobile device can retrieve data pertinent to the given lo-
cation where the user is located. Conversely a user node
can publish information relevant to the given location in the
form of an advertisement.

3.1 Query diffusion and data retrieval
In order to implement the two basic query and publish

operations, two main mechanisms have to be implemented:
query/ advertisement diffusion and data retrieval. The pic-
torial representation of the two mechanisms is reported in
Fig 3 in the case of query operation. The query/advert-
isement diffusion is carried at the user device layer by lever-
aging opportunistic forwarding. To this aim several variants
are possible, including K-relaying and spray and wait, see
[6, 2, 20] and reference therein. As we mentioned before,

1The issue in such cases is to have a suitable wireless card
for the user nodes to interface with those devices, which is
beyond the scope of the current work.

U1 U2

?A

?A

U2 U3

A U3

A

U1

U3

A
Th3 Th1

A

Th2

Th2

Th1Th3

(e) Data A retrieved at Throwbox Th3 by user node U1

(d) Data A stored to the DHT via Throwbox Th1 by U3

(c) Data A retrieved by used node U3 from a source

(b) U2 forwards the query to node U3

(a) U1 issues a query for data A to node U2

Figure 3: Sketch of the system operations. In the

example it is reported the set of interaction from the

query of a given data to the retrieval at a throwbox

some time after the query is issued.

in order to efficiently use the capacity of opportunistic net-
works, only queries or advertisements should be propagated.
In fact, data retrieval is performed only with devices in range
and no data are forwarded in a multihopping fashion (notice
that one hop exchange of data is possible though). The typi-
cal operations for query/advertisement dissemination follow:

• once a new query is issued, a unique query identifier
query-id is generated, and attached to the query; the
identifier will later on permit to the node issuing the
query to recognize the corresponding data once avail-
able; also, optional information released by the source
node will provide indication about the intended valid-
ity of the query and/or the data and the geographical
scope, i.e. the maximum distance within which the
query and the potentially retrieved data are consid-
ered of interest.

• two user devices coming into reciprocal radio range
first check whether they possess data which fulfill the
other node pending queries, i.e. queries they generated
before; if so they exchange the corresponding data and

erase pending queries. As a second step, each user de-
vice forwards pending queries and registers new queries
received by the peer node (Fig 3(a) and (b));

• when in range of a source, a user device queries the
source in order to retrieve data of interest according
to stored queries (Fig 3(c)).2

Thus, in R-P2Pdata retrieval occurs on-demand; retrieved
data are thereafter made available over a distributed storage
system:

• when in radio range of a throwbox, a user node uploads
source data retrieved, and erase them from its local
storage (Fig 3(d)) – uploaded contents are associated
to the query-id that triggered their retrieval;

• at throwboxes layer, a complete overlay permits to
share data uploaded into the system;

• after disseminating queries, user devices coming into
contact with a throwbox check own pending query-

ids for matches with the data retrieved by the system
and download the corresponding data (Fig 3(e)).

A dual functionality is the diffusion of advertisements: a user
node can upload data into a throwbox, and advertise the
presence of such data in the throwbox storage system diffus-
ing an advertisement message. Advertisements are tagged
with a topic description and an identifier to retrieve (ad-
ditional) content on the throwboxes. We skip the detailed
description for space reasons.

4. FUNCTIONAL BLOCKS
The identified architecture has been in part implemented

by a set of functional blocks as depicted in Fig 4. As concerns
user nodes, 4 main modules exist:

• Service Container: it executes the service logic, which
includes services deployment, execution deprecation
and update. Furthermore, this component issues queries,
notifies events, and waits for replies to queries;

• Interaction Controller: this module regulates the in-
teractions with throwboxes and user nodes in order to
retrieve data; it also dispatches to the content man-
ager queries, either issued by the service container or
by other nodes. Two sub-modules specialize specific
functionalities: i) the sub-module Interaction with user
nodes regulates the temporary storage to the user node
data repository of data retrieved from sources in radio
range and processes queries coming from other user
nodes, ii) the sub-module Interaction with throwboxes
is charge of issuing the storage/retrieval of data to
throwboxes;

• Content Manager: it processes queries received from
peer nodes and verifies whether the required informa-
tion has to be retrieved (stored) from (to) the data
repository onboard of user nodes;

• Network Interface: provides the basic network func-
tionalities for one-hop communications.

As concerns throwboxes, we find:

• Interaction with user nodes: this module is in charge of
processing the requests coming from the user nodes in

2We assume that suitable mechanisms are used in order to
enforce cooperation

radio range of the throwbox to either store or retrieve
data; such requests are then forwarded to the throwbox
primitive module;

• Throwbox Primitives: it issues the appropriate com-
mands to the DHT system in order to handle data
to (from) the distributed storage on the set of throw-
boxes;

• Network Interface: this module provides basic network
functionalities for one-hop wireless communications;

• Distributed Hash Table (DHT): it is used to store data,
where data indexing occurs via identifiers plus a local-
ity based address of the DHT system3.

In the following we describe in detail the primitives imple-
mented by each of the modules described before, together
with the main operational features.

4.1 User nodes

4.1.1 Service Container
The service container provides the necessary programming

abstractions which allow services to utilize the R-P2P mid-
dleware. In particular, it executes services running inside
user nodes, and provides facilities for services deployment,
execution, deprecation and update. From the service con-
troller, services are able to (i) query for data, issuing a query

that is forwarded to the Interaction Controller (ii) generate
and advertise contents that can be of interests for other users
nodes. These functionalities are enabled through the follow-
ing primitives:

• search(query) → result: this primitive is invoked
by the Service Container towards the Interaction Con-
troller, whenever a service, running on a user node,
requires to retrieve some information specified by a
certain query. If the requested information is already
available in the device’s storage, it is returned through
the result variable as a contentList . If no local in-
formation is matching the specified query, a no-data

response is returned through the result variable. In
this second case, the underlying Interaction Controller
invokes an appropriate callback primitive as soon as
the queried content becomes available.

• publish(advertisement): this primitive is invoked by
the Service Container when some user/service-generated
information is available. Such information takes the
form of an advertisement, and is composed by its
content and a topic (e.g., food, entertainment, shops,
etc.), i.e. a meta-description of such content. As we
will see in the following, the content is then stored in
the Throwboxes storage system, while the topic only
is diffused among user nodes.

• notify(): this primitive is invoked the Interaction
Controller whenever a content matching a query pre-
viously issued by a service is found. In this case, the
Interaction Controller notifies the Service Container of
the retrieved contentList, and the Service Container
then notifies this to the various services hosted. It is
also possible that the Interaction Controller notifies an
advertisement to the Service Container.

3DHT uses a standard wired or wireless network.

Manager
Content

Data

 primitives
Throwbox

Interaction
with user nodes

user nodes
Int. w

ith

 throw
boxes

Int. w
ith

Interaction
Controller

Service
Container

Th
ro

w
bo

x
Data

Data

Data

Network
Interface

Network
Interface

DHT

User Node

DHT

DHT

Figure 4: Functional blocks representation for the network components: throwboxes and user nodes.

Each query and advertisement issued by the Service Con-
tainer is accompanied by some control information (query-
info and advertisement-info) adding some additional infor-
mation such as the spatial/temporal validity of the query/
advertisement(e.g. timeouts and/or a maximum distance
for the forwarding of the query/advertisement). This pre-
vents devices from propagating messages exceeding a given
timeframe or outside a given spatial range.

4.1.2 Interaction Controller
The Interaction Controller “glues together” the various

system components and regulates the interactions and flows
of information inside the system. In particular, this module
is in charge of processing the messages received from a user
node or a throwbox: the module recognizes the incoming
message as originated by a throwbox or a user node, and
it then delegates other system components to process the
request. In particular, it communicates with the Content
Manager for resolving querys and retrieving/storing con-

tents. Clearly, the Interaction Controller is linked to the
Service Container for interfacing with the hosted services,
thus invoking appropriate call backs whenever queried con-
tent or advertisements are received. Finally, as detailed in
the following, it handles the interaction flow with both user
nodes and throwboxes.

The data types used by this modules are the queryList,
which is list of query items, and the contentList, which is
a set of content items.

Interactions with user nodes
This submodule rules the interactions with user nodes. In
particular, it provides the following primitives:

• search(queryList)→ result: this primitive triggers
the transmission of a search message to user nodes

in the communication range. Such message is com-
posed as <search; queryList>, where search speci-
fies the operation, while queryList the list of queries
for which the user is asking content. In particular, the
queryList will contain user node’s own queries, for
which content is possibly expected, and other users’
queries, for which other users are expected to simply
relay such querys. In case content is returned, this will
be contained in the result variable;

• send(contentList)→ result: this primitive issues the
transmission of the content to be sent to the peer node
to fulfill some of the queries; basically it passes to
that module the message <send; contentList>. It
receives the result of the operation, e.g. success or
communicationfailure in case a communication error
is reported, the result is then passed to the Content
Manager for dispatching data and in case a communi-
cation failure occurs, a basic control flow functionality
processes retransmissions or drops the data transfer;

• event(advertisement-info): this primitive sends the
message <advertisement-info> to all the user nodes
in radio range, thus notifying to interested user that
a publish() primitive has been invoked by the Service
Container some user node, with some content poten-
tially interesting.

Interactions with throwboxes
This sub-module rules the interaction of a user node with a
throwbox in radio range in order to store and/or retrieve
data. We assume that identifiers of pending queries are
passed to the sub-module by the Interaction Controller: the
node own pending queries are matched with corresponding
data on the throwbox; conversely, data corresponding to

Table 1: Summary of the data types that are used inside the system.

Name Description Modules

query A query specifies the content that a service is requesting. A query
is alway associated with (i) a unique query identifier query-id, which
is determined by the node issuing the query (ii) a query-info, which
contains side information such as the spatial/temporal validity of the
query, and the ID of the node issuing the query.

Service Container

content A content represents the information requested by a service through
a query, or through the subscription to some interest.

Service Container, Content
Manager

advertisement An advertisement contains some user/service generated information.
Any advertisement is accompanied by some control information, and
in particular (i) a topic description (e.g., food, entertainment, shops,
etc.) (ii) the advertisement body (e.g. a short text message) (iii) an
identifier for the retrieval of associated data on the throwboxes.

Service Container, Interac-
tion Controller

queryList A queryList contains a set of query. Typically, a queryList includes
queries issued by a a node itself, and queries issued by other nodes.

Service Container, Interac-
tion Controller

contentList A contentList contains a set of contentitems. This are sent as a
response to a specific query issued by a user node.

Service Container, Interac-
tion Controller

queries of other nodes are pushed to throwboxes. In par-
ticular, three primitives are implemented by the module:

• store(content)→ result: sends the message <store,
content, query-id> to a throwbox in radio range to
store contentin the DHT, and associates it to the iden-
tifier query-id; then it waits for a return value re-
porting on the result of the operation (e.g., success,
alreadypresent when another content is already asso-
ciated to the same query-id, communicationfailure
in case a communication error is reported);

• get(query)→ content/exception: it sends the mes-
sage <get, query-id> to a throwbox in radio range;
the effect is to retrieve from the DHT the content

associated to the identifier query-id. This primitive
waits for a return message with the content or an ex-
ception indication (e.g., content not yet/no more avail-
able, communicationfailure); it also removes content
from the DHT.

• get(advertisement)→ content/exception: the same
as get(query), retrieves the content linked to adver-

tisement.

Notice that, the user node exits the range of the throw-
box, the exception communicationfailure is passed to the
Content Manager in order rule the partial upload/download
of a content.

4.1.3 Content Manager and Data
The content manager is in charge of the storage and dele-

tion of contents from the local Data storage. Periodical
refreshes permit to free storage: in particular querys, ad-
vertisements and contents are associated with a limited
spatial or/and temporal lifetime. The content manager com-
pares periodically the information on the position of the
node and the internal clock in order to free Data from con-

tents out of scope. The Content Manager is accessible from
other modules through the following primitives:

• search(query) → contentList: this query is used
by the Interaction Controller for querying data that
are possibly stored in the permanent repository.

• store(content): this primitive is utilized for storing

a content item in the permanent storage of the device.

4.1.4 Network Interface
This module implements some basic network functionali-

ties above the Link Layer: it covers a primitive flow control
and a basic node discovery. In particular, it regulates bea-
coning in order to detect nodes in radio range (the rate of
beacon transmission influences on the probability of detect-
ing nearby user nodes/throwboxes).

Based on the beacon information, the Network interface
module advertises the node type, in order to discriminate ei-
ther a throwbox or another user node. Once the beacon trig-
gers a connection, this module is responsible for the binding
mechanism of the current communication with the Interac-
tion Controller.

Three main functions are implemented: a send primitive
to pass messages to the MAC/LL layer together with a frag-

ment/ reassembly primitive for the split and reconstruction
of long chunks of transmitted and received data and a no-

tify primitive which passes either received data or trans-
mission reports to the Interaction Controller.

The Network Interface module implements a basic flow
control mechanisms. In particular, when a large contentList
is transmitted, the communication may end due to the ex-
piration of the contact, e.g. nodes exited radio range; in
such cases a notification message will be passed to the In-
teraction controller which will pass the list of query-ids
successfully transmitted to the Content Manager: the cor-
responding content are erased from the local storage. The
transmission of the contentList will be restored at the next
contact with a throwbox. Also, when several devices are
transmitting to a throwbox, a backpressure messaging from
throwboxes can regulate concurrent upload flows.

5. THROWBOX NODES
5.1 Throwbox primitives

This module is the dual module of interaction with throw-
boxes present onboard of user nodes and implements two
dual procedures store and get, plus a take procedure. This
module is also in charge of interworking with the DHT by
leveraging features provided by the DHT modules.

in radio range
from a user node Manager

Content
 Interface
Network Controller

Interaction

(throwboxes) (user nodes)
Controller
Interaction

 Interface
Network

(user nodes)
Controller
Interaction

Controller
Interaction

(throwboxes) Manager
Content

in radio range
to a user node

take(query−id)
send(<take; query−id>)

notify(<not−available>)

take(query−id)
send(<take; query−id>)

notify(<not−available>)

in radio range
to a throwbox

in radio range
to a throwbox

in radio range
to a throwbox

in radio range
from a user node

in radio range
to a user node

User Node 2

notify(<search; query−id>)
search(query−id)

no−data
send(<search; query−id>)

User Node 3
notify(<search; query−id>)

search(query−id)
in radio range

content

Container
Service

search(query−id)

no−data
search(query−id)

send(<search; query−id>)

take(query−id)
send(<take; query−id>)

notify(<result>)
store(result)

notify(result)

User Node 1

notify(<result>)

send(<store; content; query−id>)

to a throwbox

Figure 5: Interaction diagram for the sequence of operations involving user nodes.

store(content)→ result: it is used to store into the
DHT the content; the indexing is performed by means of
the identifier content-id and the result of the operation
is returned (e.g., success, alreadypresent when another
content with the same content-idexists, DHT-failure);
get(query)→ content/ exception: it requests to the

DHT module to retrieve from the DHT the content indexed
with the identifier query; if the content is not available, it
returns an exception (e.g., content not yet/no more avail-
able);
take(query)→ content/exception: same as get but the

data corresponding to the identifier query is removed from
the DHT.

5.2 Network Interface
The functionalities of this component are similar to those

of the peer module on user nodes.

5.3 DHT
This module implements the local functions for the DHT.

We note that, in the proposed system, performance and
scalability issues are more relevant than handling of join-
ing/leaving of nodes since the the throwboxes belong to
a static network. Chord [21] is our reference DHT imple-
mentation on the throwboxes; the choice follows since in
R-P2P performance and scalability are more relevant that
handling joining/leaving throwboxes.

DHT is in charge of storing, retrieving, and removing con-
tents, indexed through identifiers. This module interacts
with similar DHT modules deployed in other throwboxes,
according to the interconnection topology adopted and im-
plemented by the specific DHT solution.

To improve the performance of the system, contents should
be stored by considering their locality: e.g., a content re-
lated to a given location L be stored in a throwbox deployed
close to L. In order to fulfill this requirement while main-
taining the strengths of DHTs (e.g., balancing node loads
and storage usage, fault tolerance and recovery, scalability),

the throwboxes are organized as a set of interconnected “lo-
calized” DHTs: all the throwboxes located in a given ge-
ographical area are part of the same DHT; a “localized”
DHT is named through a “location” identifier, such as down-
town.trento.it. Such identifiers are configuration param-
eters of the throwbox, and can be retrieved by user nodes.

The identifiers of stored contents (e.g., the answer to a
query) are structured as <location-id, content-id>, where
location-id is the location identifier of a “localized” DHT,
and content-id is the identifier to be hashed by the DHT.

When a throwbox receives a message from a user node to
get/take/store contents, the DHT module has to process
it. As a first step, DHT module checks whether content’s
location-id is the one of the throwbox; if yes (due to the
normal user node mobility, this is the most probable case),
the DHT module hashes the content-id and performs the
required operations to get/take/store the content. Other-
wise, the DHT module accesses a global naming service (e.g.,
a DNS) for retrieving the address of a throwbox belonging
to the remote“localized”DHT, identified by location-id, and
forwards the request to it. The procedure to recover the
DHT when a throwbox leaves a “localized” DHT (e.g., due
to a crash) must be enriched in order to update the entries
in the naming service.

In Fig 5 and Fig. 6 we reported the main interaction dia-
grams for R-P2P.

6. PRELIMINARY IMPLEMENTATION
We implemented a preliminary version of the R-P2P ar-

chitecture over off-the-shelf components. In order to comply
with the requirements deriving from the specific application
scenario considered, we chose to rely mostly on commercially
available software/hardware platforms. The architecture is
composed by 2 parts: a mobile one, residing on users’ per-
sonal handheld devices, and a fixed one, acting as the Throw-
boxes of the R-P2P architecture and interfacing with the
fixed infrastructure. In the following, we provide a short
overview of both components.

Throwbox
 Primitives Interface

NetworkInteraction
user nodes

with

from a user node
in radio range

Throwbox
 Primitives Interface

Network Interaction
user nodes

with

from a user node
in radio range

according to a specific
retrieve a content

DHT nodes in order to
Interaction with other

DHT protocol

according to a specific
store a content

DHT nodes in order to
Interaction with other

DHT protocol

DHT

store(content)
store(content)

send(<result>)
result

result

notify(<store;content;query−id>)

DHT

send(<result>)

result
result

notify(<take;query−id>)

take(query−id)
take(query−id)

Throwbox Tb 1Throwbox Tb 3

Figure 6: Interaction diagram for the sequence of operations involving throwboxes.

Tab. 2 presents a concise summary of the technologies and
devices used in the R-P2P preliminary implementation.

6.1 U-Hopper: the mobile part of R-P2P
U-Hopper is a User-centric Heterogeneous Opportunistic

Middleware [3] residing on mobile nodes. It exploits prox-
imity communication interfaces (i.e., Bluetooth, Wi-Fi, etc.)
in order to (i) gather localized information originating from
sources embedded in the environment (ii) opportunistically
disseminate queries from other user nodes (iii) deliver data
to Throwboxes at any occasion. The content being ex-
changed by user nodes include data read from T-Nodes or
queries generated by user nodes.
U-Hopper provides the necessary programming abstractions
for implementation and deployment of R-P2P based ser-
vices, and is composed, and includes various modules of the
R-P2P architecture.

In order to embrace the largest number of “potentially
available” mobile devices, we selected smartphones as the
target platform to develop U-Hopper. In fact, smartphones
are nowadays typically carried around by users during their
daily activities; currently, also, they have reached a suffi-
ciently large computing and communication power to per-
form very complex operations 4.

4As it will be clear in the following, the U-Hopper middle-
ware can run also on other devices as long as the Java run
time environment and some form of proximity communica-
tions are supported. Smartphones posses just the minimum
set of hardware/software requirements to running the mid-
dleware platform.

HW platform Nokia E65, Nokia N80, Dell600
OS Symbian OS 9.1, Ubuntu 6.11

SW platform J2ME (MIDP 2.0), J2SE 1.5
BT version Bluetooth 1.2

Table 2: The R-P2P architecture implementation

details in a nutshell.

We developed U-Hopper as a Java Midlet running over J2ME
(MIDP profile 2.0), a widely diffused and standardized com-
puting environment currently available on most smartphones
shipped today.

We choose to rely on Bluetooth technology for achieving
localized peer-to-peer data exchanges among mobile nodes.
This is due to the large availability of this networking tech-
nology on mobile phones and to the available J2ME pro-
gramming APIs (such as the well-known JSR 82 [1]. Ob-
viously, Bluetooth is not properly designed for opportunis-
tic communications, given the amount of time typically re-
quired for establishing a connection between two devices.
To shorten up this connection time, we leveraged on some
assumptions and on few properties of the Bluetooth tech-
nology. As an example, we implemented a device caching
mechanism that inhibits consecutive meetings of nodes.

Permanent storage is obtained through the J2ME Record
Management Store (RMS), which allows to store information
as an arrays of bytes, and to retrieve data using easy-to-use
matching methods. We have extended these basic function-
alities, and implemented a J2ME query processors, which is
able to interpret queries and return the specified data. An
example of U-Hopper query is reported in Alg. 1.

Algorithm 1 Example of a U-Hopper content query.

1: SELECT time, location, other
2: FROM events.trento.bars
3: WHERE time > 21 AND date = ’21/06/2008’

6.2 Throwboxes
Throwboxes functionalities are implemented as a Java ap-

plication running on laptops. As for the U-Hopper imple-
mentation, we assumed Bluetooth as the proximity commu-
nication technology, utilizing the Avetana Bluetooth library
as the Bluetooth stack implementation. This allows us to
reuse much of the U-Hopper developed software.

In the current version of R-P2P, the Throwboxes imple-

mentation has been oversimplified: as a first step, in fact, we
assumed Throwboxes to be connected to an IP network and
to access to a shared centralized MySQL database. Through
this database it is possible to (i) store queried content and
(ii) store advertisements. Clearly, the spatial/temporal in-
dexing of data is simplified. In the next phase, the DHT
functionalities will be implemented replacing of the database
with a full DHT solution and instantiating the related prim-
itives accordingly.

The interested reader may refer to u-hopper.create-net.
org for details and code downloads.

7. CONCLUSIONS
In this paper we described R-P2P, a system reproduc-

ing a request-response model for distributed queries. R-
P2Pleverages a Delay-Tolerant Wireless Network: queries,
tagged with an identifier, are diffused through opportunistic
communications and responses are stored and retrieved (by
using the query identifier), through interconnected throw-
boxes equipped with a set of DHTs.

The described solution does not account for the fact that
the requested data might be already available on the throw-
boxes, e.g., because stored as an answer of some previous
query. In this case a new query should not be issued, but
data could be simply retrieved from the throwbox system.
Future research will address this cases: a possible solution is
to replace DHTs, now based on data indexing, with an un-
structured P2P architecture, such GIA, Edutella, where the
stored contents are labeled with keywords used to retrieve
them. Thus, throwboxes would form an unstructured P2P
storage network. Edutella [14] is a possible initial candidate:
through metadata schema and attributes, defined in RDF,
it would be possible to handle not only files, as in GIA, but
also generic data and complex queries. The target will be
to enhance the P2P system by forcing the Throwbox traffic
to adhere to data localization.

8. REFERENCES
[1] JSR-000082 JavaTM APIs for Bluetooth.

[2] Carreras, I., Miorandi, D., and Chlamtac, I. A
framework for opportunistic forwarding in
disconnected networks. In Proc. of Mobiquitous (Palo
Alto, USA, July 17–21, 2006).

[3] Carreras, I., Tacconi, D., and Miorandi, D.

Data-centric information dissemination in
opportunistic environments. In MASS (Pisa, Italy,
October 2007).

[4] Chaintreau, A., Hui, P., Crowcroft, J., Diot,

C., Gass, R., and Scott, J. Impact of human
mobility on the design of opportunistic forwarding
algorithms. In Proc. of INFOCOM (Barcelona, Spain,
April 23–29, 2006).

[5] Fall, K. A delay-tolerant network architecture for
challenged internets. In Proc. of ACM SIGCOMM
(Karlsruhe, Germany, March 25–29, 2003).

[6] Khelil, A., Becker, C., Tian, J., and

Rothermel, K. An epidemic model for information
diffusion in MANETs. In Proc. of ACM MSWiM
(Atlanta, Georgia, Sept. 28, 2002), pp. 54–60.

[7] Lau, W. H. O., Kumar, M., and Venkatesh, S. A
cooperative cache architecture in support of caching

multimedia objects in manets. In WOWMOM (New
York, NY, USA, 2002), ACM, pp. 56–63.

[8] LeBrun, J., and Chuah, C. Bluetooth content
distribution stations on public transit. In MobiShare
(2006).

[9] Lee, U., Magistretti, E., Zhou, B., Gerla, M.,

Bellavista, P., and Corradi, A. MobEyes: smart
mobs for urban monitoring with vehicular sensor
networks. Tech. Rep. 060015, UCLA CSD, 2006.

[10] Leguay, J., Lindgren, A., Scott, J., Friedman,

T., and Crowcroft, J. Opportunistic content
distribution in a urban setting. In Proc. of ACM
Chants (Florence, IT, September 15, 2006).

[11] Lindemann, C., and Waldhorst, O. P. A
distributed search service for peer-to-peer file sharing
in mobile applications. In P2P (Washington, DC,
USA, 2002), IEEE Computer Society, p. 73.

[12] Luo, J., Hubaux, J.-P., and Eugster, P. T. Pan:
providing reliable storage in mobile ad hoc networks
with probabilistic quorum systems. In MobiHoc (New
York, NY, USA, 2003), ACM, pp. 1–12.

[13] Malkhi, D., Reiter, M., and Wright, R.

Probabilistic quorum systems. In PODC (New York,
NY, USA, 1997), ACM, pp. 267–273.

[14] Nejdl, W., Wolf, B., and et al., C. Q. Edutella:
a p2p networking infrastructure based on rdf. In 11th
International Conference on World Wide Web (2002).

[15] Ott, J. Application protocol design considerations for
a mobile internet. In MobiArch ’06 (New York, NY,
USA, 2006), ACM, pp. 75–80.

[16] Ott, J., and Pitkänen, M. Dtn-based content
storage and retrieval. In IEEE WoWMoM Workshop
on Autonomic and Opportunistic Communications
(Helsinki, 18-21 June 2007).

[17] Papadopouli, M., and Schulzrinne, H. Effects of
power conservation, wireless coverage and cooperation
on data dissemination among mobile devices. In ACM
MobiHoc (Long Beach, NY, 2001).

[18] Sailhan, F., and Issarny, V. Cooperative caching
in ad hoc networks. In MDM (London, UK, 2003),
Springer-Verlag, pp. 13–28.

[19] Shah, R., Roy, S., Jain, S., and Brunette, W.

Data mules: Modeling a three-tier architecture for
sparse sensor networks. In IEEE SNPA Workshop
(May 2003).

[20] Spyropoulos, T., Psounis, K., and Raghavendra,

C. S. Spray and wait: An efficient routing scheme for
intermittently connected mobile networks. In
SIGCOMM WDTN (2005), ACM.

[21] Stoica, I., Morris, R., Liben-Nowell, D.,

Karger, D. R., Kaashoek, M. F., Dabek, F., and

Balakrishnan, H. Chord: a scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM
Trans. Netw. 11, 1 (2003), 17–32.

[22] Yang, G., Chen, L.-J., Sun, T., Zhou, B., and

Gerla, M. Ad-hoc storage overlay system (asos): A
delay-tolerant approach in manets. In IEEE MASS
(Vancouver, October 2006).

[23] Yin, L., and Cao, G. Supporting cooperative
caching in ad hoc networks. IEEE Trans. on Mobile
Computing 5, 1 (2006), 77–89.

