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ABSTRACT
The Internet is one of the largest artificial network in the
world, and it is desired to make the large-scale complex In-
ternet into higher quality. Clues to the high quality can
be found in human brain functional networks (BFNs) that
show various functions at high level. In this paper, we ana-
lyze the topological structure and reveal advantages of BFNs
from communication network perspective. Results of analy-
sis show that BFNs have properties of fractality and disas-
sortativity, and many superior paths at module-level topol-
ogy.

Categories and Subject Descriptors
C2.1 [Computer-Communication Networks]: Network
Architecture and Design—network communications, network
topology

General Terms
Measurement

Keywords
Brain Functional Networks, Fractal, Internet, Topological
Structure, Communication Quality

1. INTRODUCTION
The Internet is one of the largest artificial network in the

world consisted of interconnections of many Autonomous
Systems (ASes). It plays an important role as social infras-
tructures such as shopping, banking and trading systems.
It is desired to make the large-scale complex Internet into
higher quality because it becomes more important year after
year. The high quality here means necessary properties for
comfortably using and persistently managing the Internet,

such as high communication performance, high energy effi-
ciency, and robustness against node and link failures and
traffic changes. ASes, however, construct connections to
other ASes selfishly, not considering the global structure of
the Internet. It has been pointed out that a lot of traffic
will concentrate on some ASes such as Hyper Giant in the
future [13]. That is why the Internet is now on the way to
fragileness.

Our research group focuses on human brain functional
networks (BFNs) as clues to make the large-scale complex
Internet into higher quality. BFNs show a wide variety of
functions and exhibit human’s rich behaviors. These func-
tions are not innate, but acquired on the process of human’s
autonomous growth from child to adult. BFNs can manage
and control itself with very small energy consumption by
optimizing itself depending on the stage of growth [6]. In
addition, it has been revealed that BFNs are organized for
ensuring high efficiency of global communication within the
overall network [16]. The Internet also grows and evolves
autonomously as well as BFNs. However, total energy con-
sumption in the network increases exponentially with enlarg-
ing its scale [4]. Moreover, it is difficult to say communica-
tion in the Internet is highly efficient because, for example,
packets loss occurs due to traffic concentration.

As researches for BFNs’ properties, many researchers gen-
erate brain functional network topology by using brain mea-
surement data obtained from functional Magnetic Resonance
Imaging (fMRI), and analyze the voxel-level topology with
graph theory [5, 7, 9, 12]. These results show BFNs have
four fundamental properties: (1) power-law degree distri-
bution; (2) small-world property where average hop count
between nodes is small against the network scale; (3) hierar-
chical modular structure where nodes are tightly connected
locally, and modules are connected in a hierarchical manner;
and (4) fractality. Fractality is thought to be essential to
attain coexistence of highly modular structure with broad
global integration. That is, functional modules are suffi-
ciently isolated to achieve independent computations and
globally connected to achieve integration of each function.

Fractality is a self-similar property or repeating patterns
at every scale. Originally, fractal is a geometric concept, but
is extended for network topology [14]. A network topology
is fractal when fractal dimension DB in the topology is finite
value. For calculating DB , box-counting algorithm is widely
used. This algorithm tiles whole nodes in the network topol-
ogy by “boxes” with size lB . The size of box is defined by



the maximum hop count between all node pairs in the box is
less than lB . Then, the fractal dimension DB is calculated
by following relationship,

NB(lB)/N ∼ lB
DB , (1)

where NB(lB) is the minimum number of boxes and N is
the number of nodes in the network topology. When the
value of DB is finite, the relation between box size lB and
number of boxes NB(lB) is scale-invariant. In other words,
fractality in network topology is the property of preserv-
ing the proportion of the number of boxes to the box size.
AS-level topology of the Internet shares two properties with
BFNs in terms of having power-law degree distribution and
small-world [8, 10]. On the other hand, it does not have hier-
archical modular structure and fractality [15]. We therefore
analyze the BFNs’ topological structure and its advantages.
The rest of this paper is organized as follows. Section 2

shows results of analysis of the topological structure of brain
functional networks, and Section 3 shows its path quality. In
Section 4, we conclude this paper and refer to future works.

2. ANALYSIS OF THE TOPOLOGICAL
STRUCTURE OF BRAIN FUNCTIONAL
NETWORKS

For the purpose of making the Internet higher quality by
incorporating the BFNs’ properties, we analyze quality of
BFNs and clarify its advantages. Moreover, for the purpose
of analyzing quality, we analyze the topological structure
of brain functional networks. In this section, therefore, we
reveal BFNs’ topological structure, and give schematic view
of the brain functional network topology.

2.1 Topology Data
By using fMRI, we can obtain time-series data of brain

activities at each voxel. Voxel is a unit for fMRI measure-
ment. Voxels are considered that they brain-functionally in-
teracted with each other when they showed high-correlated
brain activity transition. This is because brain functions are
emerged as a result of brain activity aggregation. Thus, by
regarding a voxel as a node and by constructing a link be-
tween voxels where correlation value for brain activity tran-
sition is more than given threshold, we can obtain the brain
functional network topology that reflects brain-functionally
interactions [5]. Note that the obtained topology may be dis-
connected depending on threshold. In this case, only most
giant connected component is generally used for analysis.
We obtained the brain functional network topology for

analysis by using method explained above. We measured
subject’s brain activities with fMRI. There is one male sub-
ject under resting-state conditions.The number of voxels was
80130. Taking into account topology scale, we set the thresh-
old to 0.95, and obtained the topology with 11420 nodes and
44049 links. Here after, we call this topology as voxel-level
topology.

2.2 Decomposition of Voxel-level Topology
It is difficult to analyze the topological structure of the

voxel-level topology because its topology scale is very large.
To resolve this problem, we focus on hierarchical modular
structure brought by fractality of BFNs. Module-level and
inner-module topology at various grain scale can be obtained
by regarding module as a node, and we mainly analyze these

Table 1: # of nodes and links at each Path
Path # of nodes # of links
0 11420 44049
1 1989 3007
2 432 654
3 179 288
4 146 236

topologies. Analyzing module-level topology enable us to
focus deeply on“functions”which are the essentials of BFNs.
A voxel is merely a measuring point of fMRI and it does not
directly relate to brain functions. The module, on the other
hand, is aggregation of nodes, so this is highly correlated to
brain functions.

For obtaining module-level topology at various hierarchies,
we first detect hierarchical modular structure. We use so-
called “Louvain method [3]” for this purpose. This method
can find module identifier Mi(h) of node i at Path (hierar-
chy) h1. We obtained module-level topology at Path h by
following procedures:

Step.1 Generate initial topology. The number of nodes is
set to the number of modules at Path h. The number
of links is set to zero.

Step.2 Construct a link between nodes Mi(h) and Mj(h)
when a link exists between node i and node j at voxel-
level topology and satisfies Mi(h) �= Mj(h).

Note that we call voxel-level topology as module-level topol-
ogy at Path 0 for convenience.

Inner-module topology at Path h consists of voxel-level
nodes with same module identifier at Path h. That is, inner-
module topology can be obtained as subgraph of the voxel-
level topology. For each Path-level, the voxel-level topology
can be decomposed into a set of inner-module topologies.
We distinguish inner-module topologies by the rank of mod-
ule size in descending order of the size.

As an example, Figure 1 is the illustration of decomposi-
tion of voxel-level topology with 26 nodes. A group of nodes
surrounded by a circle is a module. The nodes in the same
module have same module identifier. This voxel-level topol-
ogy contains 6 modules at Path1, 3 modules at Path2, and
1 module at Path3. Module-level topology at Path1 and
Path2 obtained by applying procedures explained above is
illustrated at the left bottom of the Figure 1. Even if there
are multiples links between modules at voxel-level topology,
they are regarded as single link at module-level topology.
Thus we can obtain module-level topology with 6 nodes and
7 links at Path1 and with 3 nodes and 2 links at Path2. On
the other hand, inner-module topologies at Path2 is illus-
trated at the right bottom of the Figure 1. We can obtain 3
inner-module topologies at Path2 because there are 3 mod-
ules at Path2. The number of nodes of each inner-module
topology is 11, 9, and 6 from the left. Therefore, the rank
of module size is assigned 1, 2, and 3 from the left.

Table 1 shows the number of nodes and links of the ob-
tained module-level topology. Figure 2 show lB versus NB

distribution with box-counting analysis, and Figure 3 shows
degree distribution of module-level topology. Figures reveal
that the module-level topology has fractality, and its degree

1We call the level of hierarchy as “Path” by following [3].
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Figure 1: Illustration of decomposition of voxel-level
topology
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Figure 2: lB versus NB distribution of module-level
topology with box-counting analysis

distribution follows power-law. In addition, we examined
degree distribution of the inner-module topology, and con-
firmed that the inner-module topology with sufficient num-
ber of nodes also has power-law degree distribution.

2.3 Metrics
We decomposed the large-scale voxel-level topology into

the module-level and inner-module topology in the previous
subsection. By using it, complex topological structure is
also decomposed into module-level, inner-module and inter-
module structure. Here we use following three metrics to
reveal these three topological structure.

Degree-Correlation.
This is correlation of degree of node which constructs link.

We use two methods in [11] and [15]. Method in [15] can
analyze in detail, on the other hand it is difficult to apply
this method to small-scale topology. So we do not apply
this method to inner-module topologies since many of them
are small-scale, and only apply to module-level topologies.
Method in [11] is applied to both of module-level and inner-
module topology. We explain overview of these methods
below.
Method in [15] can reveal degree of node pairs which have
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Figure 3: Degree distribution of module-level topol-
ogy

more (or fewer) links compared to corresponding random
topology. Degree-correlation R(k1, k2) is defined as:

R(k1, k2) = P (k1, k2)/Pr(k1, k2), (2)

where the value P (k1, k2) is probability of finding a node
with k1 links connected to a node with k2 links. The value
Pr(k1, k2) is random uncorrelated counterpart, which is ob-
tained by random swapping of the links preserving the de-
gree distribution.

Method in [11] can reveal how many links there are be-
tween high or low degree nodes. Degree-correlation l is de-
fined as:

l = (L− Lmin)/(Lmax − Lmin), (3)

where L =
∑

(i,j)∈E kikj . Lmax and Lmin are maximum and
minimum value of L among all topology with same degree
sequence. The value of l is ranged from 0 to 1. When value
of l of the topology takes high, high-degree nodes tend to
be connected with other high-degree nodes and low-degree
nodes tend to be connected with other low-degree nodes.
When value of l of the topology takes low, high-degree nodes
tend to be connected with low-degree node.

Correlation between module size and the number of
inter-module links.

We calculate the number of links between modules. To
reveal which module has many or few links to other modules,
we introduce the module size. The size of module is defined
as big if corresponding inner-module topology has a lot of
nodes.

Correlation between node degree and the number of
inter-module links.

To reveal which degree of node at voxel-level has many
or few inter-module links, we calculate the number of inter-
module links among all node pairs based on node degree.
Note that node degree is defined by degree in the inner-
module topology, that is, node degree is kin if there is a
node with kout links to other modules and kin links to same
module.

2.4 Results of Analysis
As results of analysis, we got similar results over all Paths.

Here we refer to the only topology at Path2 on behalf of the
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Figure 4: Degree-correlation of the module-level
topology at Path2

topology at other Paths.

2.4.1 Degree-Correlation
Figure 4 shows degree-correlation of the module-level topol-

ogy by the definition in [15]. Both axes are node-degree k1
and k2, and the color of plots shows the value of R(k1, k2).
The plots in the figure are bigger where the value of R(k1, k2)
is more than 2. Most of plots are located at the area where
both k1 and k2 are small, or one is small and the other is
big. It shows that the module-level topology have property
of hub-hub repulsion or disassortativity.
Figure 5 shows degree-correlation of inner-module topolo-

gies. Here, we use the definition in [11] instead of [15]
for calculating degree-correlation. This is because most of
inner-module topologies are too small to apply the method
in [15]. An x-axis is rank of module size and y-axis is degree-
correlation l. The figure shows the inner-module topology
with large number of nodes has high degree-correlation. Av-
erage value of degree-correlation l for inner-module topol-
ogy with more than 100 nodes is 0.726. Note that degree-
correlation l of module-level topology is 0.561. This means
inner-module topology has more links between high-degree
nodes than the module-level topology. Note that the value
of degree-correlation l varies where the rank of module size
is more than 100. When the number of nodes is relatively
small, the difference between Lmax and Lmin in equation
(3) becomes small. Therefore the value of l greatly changes
by the slight difference of node pairs which construct link.
In this case, the value of l cannot reflect accurate degree-
correlation, so modules where the rank of module size is
more than 100 are not worth consideration.

2.4.2 Correlation between module size and the num-
ber of inter-module links

Figure 6 shows correlation between module size and the
number of inter-module links. Both axes are the rank of
module size, and the color of plots reflects the number of
inter-module links. Most of plots are located at the area
where the value of one axis is low, which means modules
with large number of nodes construct many links to various
modules. On the other hand, a few plots are located at the
area where the value of both axes is not low, which means
modules with medium or small number of nodes construct a
few links to small variety of modules. These results suggest
most of modules have two types of inter-module links; one
for connecting with large modules and the other for con-
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Figure 6: Correlation between module size and the
number of inter-module links

necting with medium or small modules. The number of the
former links is more than that of the latter links.

2.4.3 Correlation between node degree and the num-
ber of inter-module links

Figure 7 shows correlation between node degree and the
number of inter-module links. Both axes are the value given
by dividing degree of node i which have inter-module links
by the average degree of inner-module topology which node
i belongs to. The color of plots reflects the number of inter-
module links. The plots are concentrated in the area of
around (1, 1). Therefore inter-module links exist between
nodes whose degree is average degree in each inner-module
topology.

2.4.4 Schematic view of the brain functional network
topology

We show schematic view of the brain functional network
topology in Figure 8 that reflects topological structure as
summary of analysis in this section. The thickness of lines
between modules indicates the number of inter-module links.
The node filled in the black at voxel-level corresponds to hub
node, or node with high degree, in the module.

According to analysis results of topological structure and
schematic view, it is conceivable that BFNs can globally
perform efficient communication via hub node at module-
level topology. We consider BFNs are also able to locally
perform such communication thanks to fractality at module-
level topology.
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Figure 7: Correlation between node degree and the
number of inter-module links

3. PATH QUALITY EVALUATION
For applying BFNs to information network, it is important

to reveal impacts of the fractality on communication quality.
In this section, we focus on path quality as communication
quality at module-level topology, and evaluate it.

3.1 Topologies for comparison
In this paper, we evaluate path quality by comparing hop

count of various topologies. We examined following topolo-
gies obtained by network generation models for comparison.
These models are used in the field of neuroscience and/or
reflect a part of structural properties of BFNs.

• Random model

• Barabási-Albert (BA) model [2] which reflects the struc-
tural property of power-law degree distribution.

• Watts-Strogatz (WS) model [17] which reflects the in-
tegration of local optimality and global efficiency [16].

• Waxman model [18] which reflects the property that
functional modules in anatomically close position are
densely connected [1].

We evaluate the module-level topology from Path1 to Path4
respectively. The topologies for comparison are generated
with models so that the number of nodes and links of those
corresponds to module-level topology at each Paths. Note
that WS and Waxman model have several parameters. WS
model have parameter p which is proportion of random swap-
ping of links. We calculated the average hop count H(p) and
clustering coefficient C(p) against p, and obtained the result
shown in Figure 9. Regarding high clustering coefficient as
local optimality and the low average hop count as global
efficiency, the value of p should be around 0.1 to integrate
high clustering coefficient and the low average hop count.
Therefore we assign parameter p to 0.1 for WS model. On
the other hand, Waxman model have parameters α and β.
They influence the probability to have a link between node
u and node v defined by

P (u, v) = αe−d(u,v)/βL, (4)

where d(u, v) is the distance between u and v, and L is
the maximum distance between any two node. The value
of α affect the number of links of the topology. When the
value of α is higher, the generated topology has more links.
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Figure 8: Schematic view of the brain functional net-
work topology that reflects analysis results of topo-
logical structure

However, the number of links of the comparison topology
corresponds to that of module-level topology in this paper.
Hence, we assign α to 1.0 and modify WS model to generate
topology with given number of links. The value of β affect
the probability to have a link between nodes with certain
distance. When the value of β is lower, the less links are
constructed between nodes with long distance, or nodes with
short distance have more links. Therefore, we assign β to
0.1 for reflecting property that nodes in close position are
densely connected.

3.2 Results
We take a hop count as path quality. This is because the

hop count can reflect the topological static performance. We
also focus on the redundancy of the paths. For this purpose,
we use Yen’s K shortest paths algorithm [19] for deriving
paths, and calculate the hop count from shortest path to
300th path. Defining HK as the average hop count of K-th
shortest path between arbitrary node pair, we take distribu-
tion of H1, H2, ... and H300 as metrics for path quality.

Table 2 show the values of H1, H300 and average and
variance from H1 to H300 at each Path. From this table we
observe that BFNs take the minimum average value in eval-
uated topologies at every Path. This means BFNs have high
quality paths in terms of the hop count. In the same way,
BFNs also take the minimum variance. This means BFNs
have a lot of paths with similar quality. These results show
BFNs have many superior paths compared to comparison
topologies at module-level.

We also observe that BA-model network take the second
minimum average value. BFNs and BA-model network differ
from the other evaluated topologies in degree distribution.
Figure 10 shows BFNs and BA-model network follow power-
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Table 2: Result of path quality analysis.
Brain BA Rand. WS Waxman

Path1

H1 5.68 5.07 7.52 14.50 10.99
H300 8.33 9.04 14.17 18.90 15.78
Avg. 7.85 8.35 13.11 17.96 14.88
Var. 0.20 0.42 1.11 0.70 0.69

Path2

H1 3.79 4.02 5.90 12.03 6.01
H300 7.14 8.81 12.53 17.70 12.52
Avg. 6.48 7.90 11.43 16.63 11.42
Var. 0.30 0.68 1.13 0.99 1.11

Path3

H1 2.91 3.46 4.73 8.35 4.56
H300 6.58 8.71 11.27 14.46 11.21
Avg. 5.81 7.69 10.16 13.28 10.10
Var. 0.40 0.82 1.10 1.21 1.13

Path4

H1 2.71 3.32 4.45 8.66 4.41
H300 6.49 8.71 10.89 14.46 10.63
Avg. 5.70 7.64 9.78 13.29 9.55
Var. 0.44 0.87 1.10 1.16 1.01

law while the other topologies do not. The network with
power-law degree distribution can communicate effectively
via hub node. Table 2 reflects this fact because H1 and
the average value over all paths are small in BFNs and BA-
model network. On the other hand, the hop count variance
of BFNs is half or less than that of BA-model network. This
indicates BFNs have more paths whose hop count is close to
average. Therefore we assume that fractality which is unique
to BFNs contributes to high communication efficiency.
We have concluded path quality taking whole network into

consideration before here. However, in the communication
on the information network, it is necessary to focus on path
quality of node pair with the long hop count. Assume that
node pair with short hop count communicate by using de-
tour paths due to, for example, link failure or traffic conges-
tion along the shortest path. In this case, the path for this
communication is replaced by paths with longer hop count
distance. Here we extract node pair whose hop count equals
to topology diameter × 0.8 from each evaluated topologies.
Then distribution of HK is calculated for extracted node
pair. Figure 11 shows the hop count transition against K.
An x-axis is the value of K and y-axis is the hop count at
K-th shortest path. The value in parentheses shows the
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Figure 10: Degree distribution of evaluated topolo-
gies

hop count of extracted node pair. We omit results of net-
work at Path3 and Path4 since they show similar result to
Path1. From this figure, we observe that BFNs can keep
down change of HK most. This means BFNs have the best
quality when considering only the paths with the long hop
count. On the other hand, BA-model network, which has
high quality paths in whole network, is inferior to Waxman-
model network at Path1. Therefore we consider that frac-
tality has good impact on communication on information
network.

4. CONCLUSION AND FUTURE WORKS
In this paper, we focus on BFNs as clues for making the

Internet into higher quality. We first analyze topological
structure. The results of analysis show BFNs have fractality
and power-law degree distribution at module-level topology.
The results also shows module-level topology is disassorta-
tive, on the other hand inner-module topology is more assor-
tative. The links at module-level mainly exist between large
modules. The inter-module links at voxel-level exist between
nodes whose degree is average degree in each inner-module
topology. Second we reveal the path quality of BFNs. The
results suggest that fractality of BFNs contributes to high
communication efficiency not only in whole network but also
in environment of information network. Therefore we obtain
a perspective of making the Internet higher quality by in-
corporating BFNs’ fractality.

As future works, we will reveal additional advantages of
BFNs such as robustness against node or module failures.
Furthermore, although we use model-based topology as com-
parison topologies in this study, we will use other topolo-
gies such as random-rewired brain functional network topol-
ogy. This approach enable us to reveal relationship between
topology property and communication quality in further de-
tail.
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