

Autonomic Supervision of Stigmergic Self-
Organisation for Distributed Information Retrieval

Kieran Greer1,
Matthias Baumgarten1

,

Maurice Mulvenna1
,

Kevin Curran2,
Chris Nugent 1,

1. School of Computing and Mathematics,
2. School of Computing and Intelligent Systems,

Faculty of Computing and Engineering,
University of Ulster,

Northern Ireland, UK.

krc.greer;m.baumgarten;md.mulvenna;kj.curran;cd.nugent@ulster.ac.uk

ABSTRACT
This paper will consider how a network of information

sources might be autonomously monitored to allow it to self-

optimise with respect to querying. While future networks will

need to be able to self-adapt, the dynamic and autonomous

nature of such networks will make the supervision process

more difficult to implement in programming terms.

Stigmergic linking is a lightweight and flexible way to

provide some form of optimisation. If evaluation functions

can also measure the success of any query, then it may be

possible to monitor the performance of the self-optimisation.

A supervision system could adjust the link update method

until an acceptable balance between search time and quality

of service is reached. Thus at least in this respect, autonomic

supervision would be possible. The monitoring system might

also monitor ‘concept drift’ and detect when it occurs. This

measures typical boundaries for concepts of interest and

detects when these boundaries are violated. When concept

drift occurs, the system would be able to tell if this resulted

from a fault or simply a change in the system use and thus be

able to apply the appropriate solution.

Keywords
Stigmergy, self-organisation, supervision, self-adaptation.

1 INTRODUCTION
This paper will suggest how a dynamically organised

network can autonomously supervise itself to allow it to self-

optimise with respect to querying. The philosophy adopted in

this paper is to provide a lightweight network structure that

can self-organise and adapt using stigmergic and autonomous

techniques. The querying mechanism will extract information

from a network of knowledge. A ‘knowledge network’ is a

generic structure that organises distributed knowledge of any

format into a system that will allow it to be retrieved

efficiently (Mulvenna et al. [7], or Baumgarten et al. [1]).

The rationale of the knowledge network is to act as a middle

layer that connects to a multitude of sources, organises them

based on various concepts and finally provides well-

structured, pre-organised knowledge to individual services

and applications. The knowledge network has been

implemented as part of a recent project1. To extract the

information from the network we need a querying

mechanism. Previous work has shown that it is possible to

use the query results as part of an optimisation process (Greer

et al. [3]). The results of previous queries can be fed back

through the network, which will allow nodes that answered

similar queries to self-optimise by linking to each other. This

will create temporary views that reflect the use of the system.

This form of organisation is both autonomous (Menasce and

Kephart [6]) and stigmergic (Grassé [2]). By stigmergic it is

meant that the network adapts by reacting to its environment,

rather than through any particular knowledge and by

autonomous it is meant that the network initiates and controls

this reaction itself, without the need for external supervision.

Introducing autonomous behaviour means that a network can

self-configure in environments where supervision is not so

easy and can maintain itself, making the system more robust

and manageable. Ultimately, query optimisation should

reduce the time required to answer a query, but tests have

measured the reduction in node count and quality of answer.

As the network is service-based, quality of answer has also

been called quality of service (QoS). Tests have shown that

the linking structure can control the amount of memory that it

1
 For more information on the overall project see

http://www.cascadas-project.org.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

BIONETICS 2007, December 10-13, 2007, Budapest, Hungary.

Copyright 2007 ICST 978-963-9799-11-0

.

uses, thus maintaining a lightweight architecture. There are

several parameters that need to be learnt, or specifically set to

optimise for a particular configuration. However, memory

allocation can, to a certain degree, be monitored by the

system itself. Tests have shown that too little or too much

memory use can reduce optimisation.

Another aspect of the autonomic network is a supervision

system that recognises when faults occur in the system’s

operation. As part of this, ‘concept drift’ can be monitored.

Concept drift essentially recognises when the values that a

part of the system typically returns, drift or change over time.

It will be proposed that the supervision system could also

monitor the querying performance. This would help the

supervision system to determine if the concept drift indicates

a fault or a change in the system use. If a change in use, then

the supervision system would help the network to self-

optimise with respect to querying, by adapting the link

update method. If the query performance remained

unacceptable, then a fault may have been detected and could

be dealt with.

The rest of the paper is organised as follows: Section 2 will

outline the querying problem and the need for a querying

mechanism. Section 3 will summarise the linking method

that has been tested for self-optimisation. Section 4 will

discuss the supervision system and how it might supervise

the linking process. Finally, section 5 will mention some

conclusions on the work.

2 THE QUERYING PROBLEM
The need for an advanced, distributed querying mechanism

becomes clearer when analysing the four layers of the

knowledge provisioning pyramid as depicted in Figure 1

(taken from Zambonelli et al. [8]).

Figure 1. Knowledge Provisioning Pyramid

As seen, raw and unstructured data, which are at the bottom

of the pyramid, form the input data for the network. Such

data may be pre-processed and pre-organised within the

knowledge organisation layer, which forms the core of each

network. In order to provide request based and more

importantly, highly relevant and well structured knowledge

to individual services and applications, which are at the top

of the pyramid, a dedicated request layer is required.

Simplified, this request layer is a querying mechanism that

searches within the scope of the network for relevant

information based on a request object which describes the

type and scope of information desired. This query

mechanism should take maximum advantage of the relations

already built by the knowledge network. However it should

not alter them for each request. Therefore, the scope of the

querying system is to build a temporary view of individual

components without altering the structure of the underlying

network. Thus, temporary links that reflect the use of the

system can construct these views and can also dynamically

change over time. Knowledge discovery concentrates heavily

on semantic mapping of ontologies – determining if words

are similar based on their meaning or relating them based on

prior knowledge. This can be represented by the permanent

hierarchical network organisation. There are also relations

between elements that are semantically or syntactically very

different. This work is innovative in that it does not use the
semantic meaning to create the extra relations but the

experience of the query search, allowing for semantically

unrelated sources also to be linked together. These links are

temporary and can complement the permanent organisation
provided by the hierarchical network structure and help to

create the views of the request layer. Although the realised

information will become part of the ontology, it does not
really use the ontology to create it and so assumes no prior

knowledge.

3 STIGMERGIC LINKING
The network can be considered to consist of a number of

distributed nodes. Some nodes link to sources, while some

aggregate other nodes, to form a hierarchical structure. The

hierarchical structure could be used to largely guide the

search, but then dynamic links can further optimise the

search process. The links that are generated will be created

through stigmergic mechanisms, which in this case means an

experience-based method of updating weight values until

they reach a certain threshold. The network can automatically

send the results of the queries back through itself, where the

appropriate nodes will be informed and can update weight

values relating to links to other nodes. This paper focuses

primarily on source linking, though local views can also be

created. Each source can store a structure that records other

sources related to it through the querying. This structure can

monitor related sources at different levels. Consistent

associations between two sources will move the related link

up the levels. If the association disappears, the link will move

down the levels again, until it is removed completely. The

queries that have been tested are of the ‘Select-From-Where’

type, where the linking is constructed from the sources that

satisfy the ‘Where’ clause evaluations and also link to the

sources that answer the query. An example query might be:

Select A.value1, B.value2 From A, B, C where A.value3 LT

B.value2 AND B.value4 GT C.value1

The key to the linking structure can simply be a set of

keywords that define the part of the query that the link relates

to. For example, if the query process evaluates the

comparison ‘A.value3 LT B.value2’, then the B-type source

instance can store a link to the related A-type source instance

that satisfies the evaluation through a set of key paths defined

as:

value2 - A source type – value3 – LT - A source instance.

This thus records only part of a query answer. This query part

can be used in different whole queries and is more

lightweight and flexible than a caching mechanism. In

statistical database systems for example, the system might

store the answers to commonly asked queries, so that the

answer can be immediately returned when the query is

executed. This is particularly useful for queries that require a

large amount of processing. The linking mechanism however

can re-use parts of other query answers in new queries,

making this information retrieval much more flexible. Also,

with dynamic or volatile data, the linking mechanism can

retrieve current values, when a stored answer may become

out of date.

The references in one source to other sources can be stored at

different levels in the linking structure, when only the top

level references are returned as links. It is these top level

references that will be looked at for answers when the

appropriate query is executed. The top level references will

be returned as possible sources to look at rather than

requiring the network to look at all potential sources. The

optimisation principle is very simply illustrated in Figure 2.

Consider a network where there are sources of the type A or

B. Each type has a number of instances. Maybe there are two

types of sensor, with many sensors in total providing

different readings. Two sources instances – A1 and B1 – are

typically used to answer a particular query comparison. Thus

a link builds up between them. When the same query part is

evaluated again, the linked search can retrieve just the A1

source when the B1 source is used. A full search however

would need to look at all of the A-type sources, for example

A2 as well. Thus some optimisation has been achieved.

Figure 2. Example of a source link.

The allowed amount of memory, or number of references to

linked sources, can be controlled, thus ensuring that the

structure stays lightweight. Source references are stored with

weight values that can be incremented or decremented

depending on their subsequent use. This will move the

references up or down a level when they fall above or below

the related level threshold. The association between the two

linked sources thus needs to be consistent, that is, when one

is used in a query part the other is also always used. If this is

not the case then the link weight value will decrease.

However, controlling memory means that there is some

juggling of the movement of source references. If a particular

level is full, then it will need to remove a reference before

another can be added, and so on

The linking mechanism for these tests also included a local

view that could also be retrieved to help to optimise the

search process. This could represent a view created by a

particular application to reference the nodes that it typically

used. If a particular application typically only used part of a

whole network, then it could create a local representation of

the nodes that it typically visited. This would be specific to

the application, as opposed to the source links of the global

network that any user’s query would create. The local view

would further optimise the retrieval process by further

reducing the search space to certain sources.

Queries that used the equivalence comparison only (eo) or all

comparison operators (ac) were tested. While these tests used

numerical values, the equivalence only queries would also be

useful for text or concept matching. Comparing two concepts

can apply to numbers or text equally. The queries were tested

on a random network with 10 source types and 30 instances

of each type. Each instance had 5 value types, each with a

random value in the range 1 to 10. For the linking to be

effective it is assumed that consistent types of query need to

be executed. The queries were skewed so that 90% of the

time one of 3 source types or 2 value types would be selected

and 10% of the time one of the remaining 7 source types or 3

value types would be selected.

Graphs 1 and 2 show the potential reduction in node count

and the related depreciation of QoS, when links are used to

answer the queries. Note that the querying mechanism

included the use of a view. An evaluation function tried to

maximise the total answer value (sum total for all sources in

the answer). This was simply used as the factor to distinguish

what the best answer was. It would thus select certain nodes

that the linking mechanism would then need to recognise and

link. If the correct nodes were linked then the linking

mechanism would be a success. This could be measured by

comparing the sum total for a full search with the sum total

for a linked search. If the linking mechanism did not link the

correct nodes, then the linked search would return a smaller

total and this deprecation is illustrated in Graph 2.

Tests showed that in general, a larger search would produce a

better QoS. This would be expected as the larger search can

look at more potential sources. However, if the links added

were key, then both factors could be improved. The results

showed that the equivalence only queries performed the best

with regard to QoS, but Graph 1 shows that with regard to

search reduction, it is also possible to have too many links.

Performance can be measured as a balance between search

reduction and QoS. If however the search increases without a

corresponding improvement in QoS, then there may be too

many links. Graphs 1 and 2 suggest that there are maybe too

many links from 2000 queries (eo) or 30000 queries (ac)

onwards. Graph 3 shows the average number of links per

link

B1

A2

A1

Full search also looks at

this

Linked search just looks

at this

source, where the maximum number of allowed links was 50.

Note that this does not reflect the true distribution, when

some sources would have more links than others, but an

average value. These results suggest that increasing numbers

of queries might produce too many links or contradicting

links. Thus there may be a need for monitoring, to determine

when the upper limit on performance has been reached.

70
75
80
85
90
95

100

1000 5000 10000 20000 30000 40000

Number of Queries

%
 S

e
a

rc
h

 B
e

tt
e

r

link (eo) link (ac)

Graph 1. Percentage of reduction in the number of nodes

searched for queries with the equivalence operator only

(eo) or all comparison operators (ac).

0

5

10

15

20

1000 5000 10000 20000 30000 40000

Number of Queries

%
 Q

o
S

 W
o

rs
e

link (eo) link (ac)

Graph 2. Percentage of reduction in quality of service for

queries with the equivalence operator only (eo) or all

comparison operators (ac).

0

5

10

15

20

25

1000 5000 10000 20000 30000 40000

Number of Queries

A
v

e
ra

g
e

 l
in

k
s

 p
e

r
s

o
u

rc
e

link (eo) link (ac)

Graph 3. Average number of source links stored for

queries with the equivalence operator only (eo) or all

comparison operators (ac).

4 THE SUPERVISION SYSTEM
There is strong motivation for new perspectives on generic

supervision methodologies in order to provide more

resilience in the face of ever more complex systems. In

particular, future autonomic systems will need to supervise

the dynamic aggregation of individual autonomous working

components. The complexity and size of future systems will

make manual supervision impracticable. While the effective

real-time coordination and management of such systems

forms another obstacle, the pervasive supervision of such

services as well as the underlying environments, can be seen

as the final step towards truly and continuous ubiquitous and

pervasive computing. Furthermore, the dynamic nature of

such systems may mean that usage or values will change over

time. This will continuously open a gap between the actual

model and the real world concept they were designed for.

This problem, referred to as ‘concept drift’, implies the
constant adaptation of intelligent services and their

underlying models in order to achieve a stable state around

some pre-defined boundaries and to prevent a system

becoming unstable by drifting outside of its operational

parameters2. The idea of concept drift is that the

characteristics of certain attributes change with time.

Stemming from the area of predictive analytics, a concept of

interest can be defined by its underlying contextual

information or raw data.

Liao et al. [5] also consider the problem of fault detection

through recognising anomalies. Anomaly detection analyses

a set of characteristics of the monitored system (or users) and

identifies activities that deviate from the normal behavior. It

is assumed that such deviations may indicate that an intrusion

or attack exploiting vulnerabilities has occurred (or may still

be occurring). Any observable behavior of the system can be

used to build a model of the normal operation of the system.

System and network changes however could also occur from

legitimate reasons, for example, simply a change in the

system use. Therefore, the normal behavior may not be

strictly predictable in the long term. This problem is known

as concept drift in machine learning literature. An effective

supervision system would detect concept drift, but also be

able to determine the cause (fault or change in use) and adapt

as appropriate. If the correct action is not taken, a large

amount of false alarms would be generated if the normal

behavior model failed to change accordingly to accommodate

the new values.

As Kubat and Widmer [4] describe, in the problem of on-line

learning, the essence is to make the learner recognise gradual

or abrupt changes in the target concept and adjust

accordingly the internal representation of the concept. Such

changes are usually referred to as concept drift and can be

caused by a changed context. One system capable of

tracking concept drift is FLORA (FLOating Rough

Approximation). This considers only a relatively recent set of

values, called the ‘window’, and derives three groups of

symbolic descriptions from them. These are for windows

with all positive examples, some positive examples or

negative examples with no positive examples. Heuristics

2
 On-going work by Baumgarten.

have since been added to this system to allow it to adapt to

abrupt drifts. The system described in Kubat and Widmer [4]

is called FRANN, which uses a Radial Basis Neural Network

to measure the windows. While most drift systems have

symbolic data in mind, most realistic concepts can only be

described by numerical or mixed numerical/symbolic

representations. Symbolic learners can thus split the

numerical ranges into intervals and represent each interval

with a boolean variable.

A potential area where concept drift may occur with regard to

querying is when the use of the system changes. For

example, if the system is typically queried about certain

concepts, then it might typically provide certain answers that

also associate certain nodes with each other. If over time the

queries on the system changes, then it will provide different

answer sets that might require a different set of links. This

would mean that the currently monitored values and links

would be inappropriate and should be updated. A supervision

system could recognise this by the fact that the existing links

are returning a QoS or overall performance that is worse than

normal. If we consider the source values to be too erratic for

monitoring, then we could consider aggregated values at

other nodes in the system. For example, a number of sensors

might all return their values to a higher level node that then

averages them. If these are being monitored as part of

concept drift, then the change can be detected at this level

also.

4.1 The Proposed Supervision Solution

for Monitoring Query-Optimisation
So the supervision system will measure concepts of interest

and recognise when they start to fall outside of their

boundaries. The precise implementation of the concept drift

component is not of interest, but would be based on existing

models to monitor symbolic or numerical data. At the same

time the linking performance is being monitored with respect

to querying. Concept drift is recognised and so the system

wonders if it has detected a fault. It checks the querying

performance and recognises that there has recently been a

change in performance. It thus modifies the link update

method to try and improve this. Performance improves to a

satisfactory level but the concept drift remains. Thus the

system recognises that the system use has changed and it

needs to update its drift parameters. It modifies its drift

parameters to fit the new data being fed back.

Later on the system recognises concept drift again, coupled

with a change in query performance. Query performance

does not improve and so the system now needs to check if

certain services are now making the wrong calculations and

returning incorrect values. It notifies the self-heal component

so that it can fix the fault if one exists. Another aspect of this

is that, in an open system where services can be loaded and

used by anyone, inconsistent behaviour may occur. A service

could start to return the wrong results in purpose, in order to

make it more attractive to other services. If this service

started answering queries with values that were abnormally

good, this inconsistency could be detected and appropriate

action taken.

Figure 3 suggests a generic algorithm that might be tried as

part of a monitoring process. This would monitor concept

drift and QoS, detect when a change occurs and take

appropriate action. For this algorithm, QoS includes quality

of answer and search time.

While (system being supervised)

Evaluate the last query result (of some type using some

evaluation method)

If (CD OR QoS deprecation) Then

If (QoS deprecation) Then

 If (QoS too bad)

 Notify self-heal component to take action.

 Else

If (first update or recent updates indicate

improving QoS) Then

Only allow link decrements with no

increments. Do not allow new link

additions.

 Else If (QoS not improving)

Only allow link decrements with no

increments of existing links, but also

allow new links to be added. Try to

replace existing links as quickly as

possible.

End If

End If

Else If (CD)

 If (QoS too good)

 Perform check on suspicious component.

 If (component OK)

Adjust concept drift parameters to

represent the new situation.

 Else

Notify self-heal component to take

action.

 End If

 Else

Adjust concept drift parameters to represent

the new situation.

End If

End If

Else If (QoS too good)

Perform check on suspicious component.

If (component NOT OK)

Notify self-heal component to take action.

End If

Else

Allow link updating as normal (increments and

decrements)

End If

End While

Figure 3. Generic Link Monitoring Algorithm

Current tests have measured queries with numerical values

and so at least in this context, an optimising evaluation

function exists. While the tests have measured the node count

and QoS, the supervision system might measure search time

with QoS. Thus, as extra links are created then the search

time will be increased. If this increase in time does not

produce any improvement in QoS, then the system can be

considered to have too many links and is not properly

optimised. Link changes due to change in use will occur

naturally over time, but a speeding up of this process may be

required to recover acceptable performance in an acceptable

amount of time. While evaluation functions should exist for

numerical data, for textual data it may be more difficult. But

if an evalution function can be clearly defined, a supervision

system can be successfully deployed.

You can argue that measuring every parameter of every

query is far too complex to be possible. However, there is no

clear rule about any monitoring system and what it can

measure. We do not know the exact number of parameters,

size of network, or how they will eventually be evaluated.

Maybe a service monitors itself, or maybe further up the

hierarchy aggregated evaluations take place. This is a general

problem for all concept drift monitoring.

5 CONCLUSIONS
This paper has considered how a network of information

sources might be autonomously monitored to allow it to self-

optimise with respect to querying. Query performance can be

measured as a factor of the search time and the quality of

answer. A general rule would be that a larger search time

would produce a better quality of answer, but for a practical

network some balance must be met to allow both parameters

to reach acceptable values. An exact equation to measure this

balancing is still an open question. As a start, you could

maybe notice when one parameter stays the same while

another deprecates, indicating a problem. While future

networks will need to be able to self-adapt, the dynamic and

autonomous nature of such networks will make the

supervision process more difficult to implement in

programming terms. Stigmergic linking is a lightweight and

flexible way to provide some form of optimisation. If there

exist evaluation functions to measure the success of any

query, these processes can provide a practical way to allow

the network to self-optimise and also monitor the

performance of that optimisation. Thus at least in this

respect, autonomic supervision should be possible. Another

aspect of supervision is concept drift. This can be used to

detect when a fault occurs in the system that causes it to

produce irregular values, outside of current concept

boundaries. However, a valid change in system use could

also cause this event and so combining the QoS monitoring

with the concept drift monitoring will allow the system to

determine when concept drift indicates a fault or when there

has simply been a change in system use.

While this paper considers stigmergic links created from

query or search results, the links could be stigmergically

created through any viable mechanism and simply require

configuration parameters and an evaluation function to

measure their effectiveness. The linking structure proposed

for the query-related links is very simple and could be

adapted to many different scenarios.

6 ACKNOWLEDGEMENTS
Work supported by the project CASCADAS (IST-027807)

funded by the FET Program of the European Commission.

7 REFERENCES
[1] Baumgarten, M., Bicocchi, N., Curran, K., Mamei,

M., Mulvenna, M.D., Nugent, C., Zambonelli, F.

Towards Self-Organizing Knowledge Networks for

Smart World Infrastructures, Invited Session on

Service Development and Provisioning through

Situated and Autonomic Communications at

International Conference on Self-Organization and

Autonomous Systems in Computing and

Communications (SOAS’2006), Erfurt, Germany,

(18 - 21 September, 2006).

[2] Grassé P.P. La reconstruction dun id et les

coordinations internidividuelles chez

Bellicositermes natalensis et Cubitermes sp., La

théorie de la stigmergie: essais d’interprétation du

comportment des termites constructeurs, Insectes

Sociaux, 6, (1959), 41-84.

[3] Kieran Greer, Matthias Baumgarten, Maurice

Mulvenna, Kevin Curran and Chris Nugent.

Knowledge-Based Reasoning through Stigmergic

Reasoning, International Workshop on Self-

Organising Systems IWSOS’07, In: David

Hutchison and Randy H. Katz (Eds.), Lecture Notes

in Computer Science, LNCS 4725, Springer-

Verlag, (11 – 13 September 2007), 240 - 254.

[4] Miroslav Kubat and Gerhard Widmer. Adapting to

Drift in Continuous Domains, Proceedings of the

8th European Conference on Machine Learning,

Lecture Notes in Computer Science, LNCS 912,

(1995), 307 – 310.

[5] Yihua Liao, V. Rao Vemuri and Alejandro Pasos.

Adaptive anomaly detection with evolving

connectionist systems, Journal of Network and

Computer Applications, 30, (2007), 60-80.

[6] Menasce D.A., Kephart., J.O. Autonomic

Computing, IEEE Internet Computing, (2007), 18 –

21.

[7] Mulvenna, M.D., Zambonelli, F., Curran, K.,

Nugent C.D. Knowledge Networks, In: I.

Stavrakakis and M. Smirnov (Eds.), Autonomic

Communication, Springer-Verlag, Lecture Notes in

Computing Science, LNCS 3835, (2006), 99-114,

ISBN 3-540-32992-7.

[8] Franco Zambonelli, Matthias Baumgarten and

Nicola Bicochi, Deliverable D5.1: Knowledge

Networks Specifications, Mechanisms, and Alpha

Software Release, IST FET European Framework

VI Cascadas Project, (2007), http://www.cascadas-

project.org, (last accessed 10/10/07).

