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ABSTRACT 
When developing a new autonomic networking architecture from 
scratch with monitoring as a first class citizen, a whole set of new 
requirements have to be addressed. The main reason for this is 
that no a priori knowledge about the network, the monitoring 
tasks, etc. is available in the architecture itself. Monitoring could 
be placed everywhere in the network and it must be possible for 
monitoring modules to explore the available monitoring support 
in its surrounding at runtime. Monitoring needs also to be 
dynamic, adaptive and programmable. This paper presents the 
new requirements and how these requirements on monitoring are 
addressed in the ANA architecture. 
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1. INTRODUCTION 
Traditionally, network monitoring is used as a tool for 

network management to constantly monitor the state of the 
network and to notify the network administrator in case of failures 
or other exceptional events. More advanced usages of network 
monitoring include for example Quality-of-Service monitoring 
and workload balancing in distributed systems. Independent of the 
particular use of network monitoring there is one common factor 
for all monitoring solutions: monitoring is added to the network 
after the network and basic protocols have been designed.  

In the context of the recent quest for the design and 
architecture of the future Internet, the concept of autonomic 
networking and networks with self-* properties, like self-
configuration, self-optimization, self-healing, and self-protection 
[4] are intensively studied. Obviously, monitoring is a 
fundamental part of such autonomic systems, without it no self-* 
properties can be achieved, because these tasks are performed by 
a kind of feedback control loop that is driven by monitored 
(observed) events or changes in variables. Monitoring is the 
element responsible for measuring the parameters of the 
controlled system that are relevant for the task under control (e.g., 

current load for performance optimization, link availability for 
fault tolerance, etc.). In the Autonomic Network Architecture 
(ANA) project [1], we develop an autonomic network architecture 
from scratch, with monitoring as first class citizen, meaning 
monitoring is as fundamental in the ANA architecture as other 
basic networking concepts, like addresses, naming, labeling, 
forwarding, routing, etc. This is a paradigm shift for monitoring. 
Classical monitoring solutions can be characterized as follows: 
they are designed for particular problems, the monitoring task is 
static, placement of monitoring probes is done manually with a 
priori knowledge about the network topology, they assume 
minimal support from nodes and protocols (e.g., active 
measurement), or they place the entire burden on the nodes 
(routers) to support heavy-weight mechanisms (e.g., NetFlow or 
passive measurements in general). 

Anchoring monitoring as first class citizen in the ANA 
architecture puts a whole set of new requirements onto the 
monitoring concepts and principles that need to be supported in 
the autonomic network architecture. The main difference between 
today’s solution and the ANA approach for monitoring is that the 
monitoring concepts and principles in ANA cannot rely on any a 
priori knowledge like the monitoring tasks, the network topology, 
and also the particular support for monitoring in a particular 
network environment and location. As identified in [2] [3], 
monitoring parameters may change frequently and the particular 
context determines how to best solve a monitoring task, e.g., how 
to structure a monitoring system in a distributed efficient manner; 
and how to bound monitoring activities with respect to granularity 
in time and in volume. Therefore, the monitoring concepts and 
principles that are adopted in an autonomic network architecture 
need to be open and support flexibility and adaptivity.  

In this paper, we present the results of our requirements 
analysis for monitoring in autonomic networking. One central 
requirement is the need for a framework to dynamically configure 
a distributed monitoring system in which an arbitrary number of 
monitoring components gather data, and exchange, combine and 
aggregate it to provide input to decision modules. The decision 
modules in turn reason about the monitoring results and determine 
how to control the network respectively a part of the network. We 
call this complex process of gathering data, exchanging and 
processing it information and knowledge management and present 
its concepts that are supported in ANA. Information and 
knowledge management enables an autonomic network to freely 
configure distributed monitoring systems and we demonstrate this 
by discussing how information and knowledge management can 
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be used to establish a dynamic and adaptable monitoring solution 
for a P2P overlay for video streaming. 

Thus, the remainder of this paper is structured as follows: in 
Section 2, we discuss the results of the requirements analysis. In 
Section 3, we present an overview of the ANA concepts and 
architecture. We describe in Section 4 the information and 
knowledge management concepts. How monitoring is integrated 
in the ANA architecture and a P2P video streaming example are 
described in Section 5 followed by the concluding Section 6. 

2. REQUIREMENTS ANALYSIS 
In this section, we study the fundamental challenges for 

monitoring that are introduced when supporting monitoring as 
first class citizen in an autonomic network architecture [9], 
followed by an analysis of more general problems and 
requirements for monitoring. We conclude this section by 
introducing those concepts that need to be supported in the ANA 
architecture in order to address the previously identified 
problems. 

2.1 Fundamental Challenges for Monitoring  
Existing monitoring solutions rely on a priori knowledge 

during their design and implementation phase. For example, the 
designer knows which monitoring task needs to be performed, 
which data types need to be supported, which interfaces and 
services are available, the generic network topology, the 
approximate amount of data that has to be handled, etc. Such a 
priori knowledge is not available for monitoring principles that 
are to be integrated as first class citizens in an autonomic network 
architecture. The invocation time, the execution lifetime, the 
dynamics and the monitoring requirements of all possible 
automated tasks in an autonomic network are unknown at the 
architectural level and often only available at run-time. 
Depending on the particular autonomic tasks, the monitoring 
needs vary in terms of the monitoring points, the target interfaces 
for monitoring and the monitoring behavior(s), services or tasks to 
be in place or to be triggered on those points, the invocation time 
of the monitoring behavior and its execution lifetime. Some 
automated tasks such as an automated troubleshooting or fault-
diagnosis task may be triggered by events such as failures 
detected at some point and time in the network. Such an 
automated task may therefore require that some monitoring 
services/ behaviors be in place/active at some point(s) and 
interface(s) in the network or that if not active, be activated. All 
such varying needs and dynamics of diverse automated tasks 
impose some design and operational requirements on monitoring 
facilities (components and platforms) of a self-managing network, 
like the need to explore the interfaces and services that are 
available and which data types are supported through information 
and knowledge management, and dynamic and programmable 
monitoring to be able to change the configuration and behavior of 
monitoring services (see Section 4.3). 

2.2 Generic Design Guidelines  
The diverse monitoring requirements imposed on monitoring 

facilities of a self-managing network by automated tasks, require 
us to find design and operational principles of monitoring 
components/tasks that satisfy identified requirements. The sub-

sections below provide an insight on such design and operational 
principles of monitoring components.  

2.2.1 Cope with Change 
While monitoring requirements vary from one automated 

task to another one, these requirements may also change in time 
within a given automated task. 

For example, a monitoring system wants to monitor network 
traffic for security analysis. Depending on the threat level, more 
detailed information (or less detailed) is captured and analyzed. 
That means, if no danger is reported, only traffic volume data is 
captured, as soon as there is an indication of a threat or attack, the 
monitoring system will automatically capture more traffic 
statistics and may start capturing data packets or flow 
information.  

Similarly, the monitoring system may be built on sampled 
flow information. The system will sample traffic data at a given 
rate and only on demand, the sampling rate is decreased (e.g., 
from 1 out of 1000 to 1 out of 50) such that more fine-grained 
network data is available. 

2.2.2 Distributed Monitoring 
Many automated tasks would require or at least benefit from 

several viewpoints provided by the monitoring services. Having a 
number of perspectives provided by monitoring in multiple 
locations enables wider situation awareness. To this end, we 
would need distributed monitoring where participant efforts are 
coordinated and orchestrated. Such a cooperative system makes it 
possible to correlate events of interest between locations, for 
instance. The P2P video streaming scenario in Section 5.3 gives 
an insight on the need for distributed monitoring services. 

2.2.3 Intelligent Use of Resources 
As in any context, economic usage, resources and resource 

sharing, opportunistic resource usage and allocation are important 
also in monitoring context. Certain monitoring tasks can produce 
a lot of data and other consume significant amount of processing 
power. 

In order to mitigate the problem of resource demands (e.g. 
storage capacity for monitoring data and processing power) on a 
monitoring component, e.g., a monitoring probe/ sensor / system, 
it is wise to have the necessary monitoring task(s), and only those 
tasks, invoked only when monitoring is required, otherwise 
resources on the node may be used opportunistically for 
something else because, its not only monitoring that requires 
resources. This and the need to support the notion of monitoring 
requests, behavior specifications from automated tasks (local and 
remote), and the execution of requested monitoring behaviors, 
entails that certain design principles must be followed when 
designing monitoring tasks of a monitoring component. 

2.2.4 Avoid Active Measurements 
In the current Internet, monitoring tools apply active and 

passive measurement techniques. Passive monitoring captures 
system parameters, e.g., traffic volume and flow counts. Active 
monitoring implies the interaction with the system, e.g., traffic, 
such as probing packet pairs, is injected into the network and 
captured at a destination node for measurement purposes. 



 

With the current Internet architecture, many metrics can only 
be measured with the help of active measurements because 
elements of the Internet architecture do not expose enough (hardly 
any) information about themselves and their current state to other 
elements. 

Active measurements are not preferable for two reasons: 
scalability and accuracy. Topology discovery is a good example 
of why active measurements do not scale well: Performing 
exhaustive active measurements with the well-known tool 
traceroute in order to discover the Internet’s topology on a global 
scale is not doable. However, if we were able to passively collect, 
aggregate, and distribute routing table entries, this would enable 
the construction of accurate topology maps. 

As for accuracy, bandwidth measurements, primarily done 
with active measurement tools that inject probing packets into the 
network [12], provide estimates of end-to-end capacity and 
available bandwidth while we could accurately obtain such 
information if the elements on the path (e.g. routers and switches) 
would passively measure and then expose these metrics. 

2.2.5 Allow Retrospective Analysis 
Analysis of historical monitoring data is necessary in order 

to identify trends or “go back in time” to understand reasons for 
certain events [5] [6]. For example, resilient systems should be 
able to diagnose the faults by looking at historical data, e.g. traffic 
traces after a successful attack, in order to improve the system 
design. 

2.3 Monitoring Concepts 
Based on the challenges and guidelines presented in Sections 

2.1 and 2.2, we discuss in this section the necessary concepts that 
we believe a successful monitoring architecture of an autonomic 
network architecture should support. 

2.3.1 Dynamic, Adaptive, Programmable Monitoring  
The monitoring tasks of a component should be designed in 

such a way that each task or a group of tasks can be triggered or 
invoked on-demand: A monitoring request issued by an 
automated task triggers the monitoring task. To this end, the 
monitoring component needs to support certain parameterized 
primitives, such as start (task-behavior-spec, Time-To-Live), 
pause (task-id), resume (task-id), refresh (task-id, new Time-To-
Live), modify (task-id, new parameters), and terminate (task-id), 
where task-ids are created and communicated by the component. 
This type of dynamic monitoring enables establishment of 
monitoring tasks in unpredictable locations when the need arises. 
Furthermore, by supporting the above kind of primitives, 
intelligent use of resources can be ensured. Resources can be 
freed whenever monitoring is temporarily not required or no 
longer required. In addition, a component should check whether 
resources are available to satisfy the requirements expressed in 
the request and perform admission control on monitoring 
requests. It must also ensure that additional behaviors are not 
unnecessarily started by inspecting whether a particular 
monitoring behavior could be shared by a several tasks. 

While the ability to dynamically establish, suspend, and tear 
down monitoring tasks is necessary, the monitoring framework 
should be designed also to adapt to changes within monitoring 

tasks. A particular monitoring task should adapt to both 
unexpected and expected events, and to changing resource 
availability. If for example, additional information is required to 
detect traffic anomalies, the data capturing is updated “on-the-
fly”. To limit the resource consumption of the monitoring service, 
the service must be able to self-adapt, e.g., by adapting the 
capturing rate or by applying data sampling techniques.  

Programmable monitoring components allow for the 
specification of the behavior of a monitoring task. This type of 
functionality implicitly requires a description language for 
specifying monitoring behavior(s). Such a language should 
include the possibility to specify actions to be performed on the 
target by the behavior, event-descriptions and event-notification 
propagations to designated parties, including actions to be 
performed by notification recipients, etc.  

Dynamic, adaptive, and programmable monitoring is one of 
the key concepts in the monitoring framework for autonomic 
networks. These three properties makes it possible in principle to 
establish required monitoring services, be it of any kind, at any 
necessary place and time. Furthermore, these tasks are automated 
as they adjust themselves to the specific environment. These 
properties are vital for the concept that we discuss next, the 
monitoring compartment. 

2.3.2 Monitoring Realm 
In a self-managing network, monitoring information from 

one single component is not sufficient for supervision tasks that 
cover a large partition or a whole network. That is why the ability 
to perform distributed monitoring tasks is necessary. We call a set 
of components that cooperate with each other for a common 
objective (a specific monitoring task), a monitoring realm. 

There must be component that orchestrates and coordinates 
the efforts of such a monitoring realm. Note that this orchestration 
could be performed in a completely distributed fashion by the 
components themselves or by a central component. To form a 
monitoring realm, the coordinating components have to be aware 
of the monitoring capabilities of the nodes in the realm and must 
be able to locate the monitoring point of interest in the topology. 

The monitoring realm should be dynamic and adaptive itself 
which means that such realms should be able to be created on-
demand and they should react to changing needs. These realms 
should also be able to self-optimize by relocating monitoring 
services from a component to another and adding services to new 
components, for instance. Given that monitoring components 
support the concept of dynamic, adaptive, and programmable 
monitoring, it is possible to add new components to a particular 
monitoring realm and specify and invoke monitoring tasks on 
them whenever and wherever necessary.  

2.3.3 Information and Knowledge Management 
We have discussed the requirements for monitoring to enable 

an autonomic network to sense its operating environment and to 
monitor its state. However, achieving self-* properties requires 
more than just acquiring raw data about the operating 
environment and state. This data has to be used, i.e., transformed 
to information and knowledge to be applied to achieve these 
properties. For instance, self-configuration requires that an entity 
knows its configuration, that it knows the components and 



 

resources which are available for potential addition, and that it 
can reason about the impact of configuration changes. 
Furthermore, self-healing requires that a system is able to define 
or to learn what the normal condition is and compare it with 
monitoring results in order to recognize deviations from the 
normal condition. The capacity to proactively circumvent issues 
that could cause service disruptions means that the system must 
be able to perform a retrospective analysis after a service 
disruption, i.e., to study data from the past in order to identify 
which sequence of events might lead to a service disruption.  

In many cases a single source of data and information is not 
sufficient. Hence, we introduced earlier the concept of a 
monitoring compartment for distributed monitoring. However, 
simply collecting monitoring data in various locations is not 
sufficient. This is because of the fundamental property of 
autonomic networks of not having any a-priori knowledge about 
the environment in which a particular node/host or simply a task 
integrates itself. The unknown environment can be a network 
instance for a node/host but also the node/host itself for a task. 
Therefore, it is necessary to develop proper abstractions for 
providing and sharing the information between entities. This 
information can be derived from monitoring data or it is part of a 
description of an entity. Such a description could be a service 
description, but it could also be the description of the entities 
configuration, description of available components, description 
about available resources, etc. Furthermore, the architecture 
should provide means to persistently store data and information, 
because for certain tasks, like the retrospective analysis in self-
healing it is necessary to study historical data, as we have 
discussed earlier. We discuss in detail the way we handle 
information and knowledge management in ANA in Section 4.2. 

3. ANA ARCHITECTURE AND CONCEPTS 
The Autonomic Network Architecture (ANA) project [1] has the 
goal to explore novel ways of designing and building networks 
beyond legacy Internet technology. The specific objective is to 
provide a meta-architecture that allows the inter-networking 
between different types of networks. As a result, ANA encompasses 
the concept of Compartments as a key abstraction that allows co-
existence and inter-working of different types of network through a 
minimum generic interface. Furthermore, the operation of different 
types of compartments must be analyzed in order to identify the 
fundamental building blocks of the abstraction. The de-composition 
of compartments into the core tasks helps to understand how the 
necessary flexibility (functional scalability) to provide autonomicity 
can be achieved through compartments. 
A second core building block of ANA is the Functional Block (FB). 
FBs are code instances and state that can process (send, receive, 
forward, etc.) information. Typically, the communicating entities of 
a compartment are represented in ANA through FBs. They 
implement the functionality that is required to interact with the 
compartment and communicate within the compartment. As such, 
the FBs can also be regarded as the processing elements or tasks 
hosted by an ANA node that constitute the compartment stack. 
Communication inside a compartment is mediated via Information 
Channels (ICs). In order to connect FBs and ICs in a flexible 
manner, the ANA framework introduces Information Dispatch 
Points (IDPs). IDPs are bound to FBs or ICs, and hence provide a 
decoupled access to the FB or IC. This decoupling allows dynamic 
and transparent re-binding of ANA entities. 

In the context of the ANA node architecture, monitoring is 
implemented as a generic FB, the Monitoring Functional Block 
(MFB). When other FBs require monitoring information for their 
decision processes, the MFB initiates and orchestrates the data 
collection and distribution of monitoring results. Note that in 
Section 5, we describe more specifically how monitoring is 
integrated in the ANA node architecture. 
In Section 2.2, we introduced the concept of monitoring realms. In 
the ANA context, such monitoring realms are implemented as 
network compartment. A Network Compartment is a compartment 
that encompasses several ANA nodes and involves communication 
across an underlying network infrastructure. Like for any 
compartment, a network compartment consists of a policed set of 
FBs, ICs, and IDPs. In case of a monitoring compartment, the MFBs 
providing the compartment’s monitoring capabilities are located on 
multiple distributed ANA nodes. Note that monitoring 
compartments may also span over multiple network compartments. 

4. INFORMATION AND KNOWLEDGE 
MANAGEMENT 
In this section, we describe the general information and knowledge 
management concepts needed for autonomic networks and how we 
use them in ANA. 

4.1 Information Hook 
An information flow includes at least two functional blocks, of 
which one has the role as information provider and the other as 
information consumer (respectively decision maker). The 
information provider is the entity that could provide the 
information about which data it can provide and how it could be 
used. Thus, the information provider needs to provide a self-
descriptive interface. This interface would serve as a hook to 
which the consumer can connect and exploit how to make use of 
the data. Such a hook should exist in each element of the 
autonomic network architecture. This information hook needs to 
have two main properties: 
(1) Unified generic interface: The hook needs to have a unified 
interface so that each entity in the autonomic network knows how 
to access it. Otherwise, information flow establishment is 
impossible. The interface needs to be generic and as simple as 
possible. In this way, the interface can be used in an extensible 
way: Imagine a simple interface that provides by request a more 
complex interface more specific to the particular information 
hook. 
(2) Self-describing: The hook needs to be able to describe what 
kind of information it can provide. In this way, any entity can 
query the information hook of a particular entity in order to learn 
if that entity can provide the information that it needs. Without 
such a capability, the abstraction of providing information and 
sharing information between entities becomes pointless. The 
information flow architecture needs to consider what kind of 
syntax and semantics the descriptions should have. 
An autonomic network has to provide a new architecture for data 
transfer. Instead of providing a fixed network stack for 
communication, the required functional blocks are combined into 
a function chain on demand. The elements which can be 
composed, i.e., FBs, can consist of whole protocol functionality 
(e.g. TCP, UDP) or may provide only micro-protocol functions, 
like error control or encryption. Information processing itself is 
done by FBs and is therefore not part of the information flow 
framework, even if it is using information flows. For example, a 



 

monitoring FB that computes some aggregate metrics by 
combining several monitoring information flows is not an 
information flow itself, but it uses information flows to implement 
a specific kind of monitoring service. 
Each entity that supports the information flow concept 
implements an information hook. This hook provides a 
description of the entity. The content, format, etc. of the 
description depends entirely on the entity itself, but the minimal 
mandatory description may be specified within the policies of a 
particular realm.  

4.2 Information Hooks in ANA 
An information hook has to be generic and self-describing. A 
generic hook allows in principle any ANA entity to access and 
request a description of any other entity having an information 
hook. As a consequence, the generic hook is kept minimal: it 
provides access to the description of the entity. This description 
provides information about how to interact with the entity bearing 
that hook, i.e. in essence a description of its interface. The 
element accessing the hook would then learn what information 
and services the entity bearing that hook can provide and how 
they can be accessed, because the entity description comprises a 
description of the semantics of the functions, i.e., what they do, 
and the syntax of the functions, i.e., how to properly invoke them 
with the correct parameters, etc.  
The question which language and tools to use for entity 
descriptions to (a) describe the functions and (b) interpret these 
descriptions is not part of the generic information hook. Instead it 
must be determined/standardized for a particular ANA 
compartment. An example for possible language and tool that 
might be used for the syntactical aspects of functions is the 
Interface Definition Language (IDL) [11] and a kind of stub 
compiler to generate the two procedures for external 
representation handling. To describe the semantics of functions 
and their parameters, a combination of the Resource Description 
Format (RDF) [10] and XML [8] as it is proposed in [7] could be 
used. 

 
Figure 1: Accessing interfaces of Functional Blocks 

Each ANA entity has a unique identifier within a compartment. 
This identifier can be used to access the information hook in order 
to get a description of that entity, i.e., the get_description() 
function corresponding to a specific identifier is called. Such a 
procedure is often the starting point of communication. For 
example, a FB would like to get certain information from another 
FB whose identifier it has resolved. It may be that the requesting 
FB does not know how to access the information or does not even 
know whether such information is provided by the other FB. In 
such a case, the first step for the requesting FB is to invoke the 
get_description() function corresponding to the resolved 
identifier. 
The information hook is composed of two functions: 
get_description() and send_description(). Get_description() 
returns the entity description by invoking send_description(). 
After receiving the description, the requesting element knows 

how to interact with the other element. Thus, afterwards the 
interaction happens through the element specific interface, as 
illustrated in Figure 1. The entity description type is mandated by 
the compartment policies, which ensures that the receiving 
element is able to interpret the description.  

4.3 Information Hooks for Monitoring 
The monitoring framework is tightly coupled with the information 
and knowledge management framework. The main goal of 
information flows is to provide a principal concept for autonomic 
networks to enable entities to exchange information in order to 
use it for decision making. One of the key concepts of the 
information flow architecture is the information hook that is 
implemented by each ANA FB and IC. This hook provides a 
description of the entity bearing that hook, e.g., a FB. By 
interpreting the description another entity learns how to interact 
with that FB and what information it can provide. 
Usage of information hooks and monitoring are intertwined: On 
one hand, MFBs use the information hooks of the other FBs 
residing in the node in order to collect information about potential 
monitored data exposed by the FBs. In this way, the MFB also 
build up (parts) of its own description that can be obtained via its 
information hook. On the other hand, the description of a 
composed FB (or an IC which is in fact a composed FB) can be 
maintained using monitoring services in the following way. If a 
composed FB chooses not to expose its internal structure through 
the information hook, it must then collect relevant information of 
the internal FBs and present it in a consistent way via its 
information hook. MFB within the composed FB can be requested 
to coordinate this collection procedure as monitoring tasks. 
Figure 2 illustrates the usage of information hooks in the 
monitoring architecture. It should be possible to query the MFB 
through an information hook the services it currently provides or 
is capable of providing. In addition, the FB that implements 
monitoring storage should provide a hook as well through which 
it is possible to learn its properties, i.e. what type of storage 
systems can it support, which data models it supports, etc. 

 
Figure 2: Information hook in monitoring architecture 

5. MONITORING IN ANA 
In this section, we explain the monitoring concepts that we use in 
ANA. 

5.1 Monitoring in the ANA Node Architecture 
Figure 3 shows the ANA node architecture from the monitoring 
perspective. The MFB triggers the capturing of information. This 
FB is also used to request information. Monitoring storage is used 
to store the collected data. This block may be located in the node 
itself or maybe attached to it in an external device or virtual 
device (P2P approach). The "conceptual" membership database 
within a node compartment stores information about locally 



 

available functionality and services, including access to other 
compartments and sibling applications. The MFB checks from 
that "database" what FBs are present in the node and establish 
necessary IC to them (via IDPs) through the resolution process. 
Then MFB would then query the information hook of those FBs 
to find out what information it can obtain and how, and then 
collect the necessary information. This process can be used to 
establish also the description of available monitoring services that 
a particular MFB can provide, i.e., (part of) the service 
description obtainable from the MFB's information hook. 

 
Figure 3: ANA node architecture for monitoring 

Each FB provides a service description, i.e., it announces the 
parameters it provides to the MFB. Via the information hooks, the 
MFB is then capable of reading the to-be-monitored parameters, 
processing the collected data, and sharing the results with other 
MFBs or FBs. Also, the MFB may request a specific FB to expose 
information. 
From a design point of view, specific monitoring tasks such as 
tasks for traffic monitoring/capturing/filtering/ analyzing; 
functions for storing, managing and disseminating monitoring 
data; functions for detecting events occurring internally and 
externally to the system etc. may need to be placed into separate 
inter-working functional blocks dedicated to providing specific 
monitoring services. 

5.2 Monitoring Compartment in ANA 
The monitoring compartment in ANA is a set of MFBs that 
cooperate and join in their monitoring efforts. In the next section 
we show one possible form of such a monitoring compartment in 
ANA. In that example the orchestration is decentralized in the 
sense that there is no central component that manages the MFBs. 
Instead, each MFB may choose to trigger monitoring services to 
be executed by other MFBs. 

5.3 Example Scenario 
In this section, we describe an example application scenario for 
ANA and show how the monitoring part of the architecture can be 
used in this scenario. Our example application is P2P-based 
Video-on-Demand streaming. 
The term content distribution network (CDN) covers many 
different ways of moving data between computers. There are 
three main categories. The first is downloading based, where 
content is accessed only after having been completely 
downloaded. The second is broadcast based, where all receivers 
receive the same data more or less simultaneously. The third is 
CoD (Content-on-Demand) based streaming, where data is 

accessed as it is being received. Content is typically located in 
one of two ways; the identifier based approach used on the 
WWW, and the message digest based file identification used for 
file sharing in many P2P networks. 
Content distribution using P2P technologies is a very promising 
application domain. We use here P2P-based Video-on-Demand 
(VoD) streaming as an example. VoD streaming is a service with 
high resource requirements, because video files are usually large 
and need to be delivered in a timely manner. Thus, high bit rates 
are needed for the duration of the video, which could be up to 
several hours. In order to efficiently deploy a large scale VoD 
system, end user resources can be utilized in a P2P fashion. 
However, such a solution requires prompt and detailed 
information about the network. 
Content is organized in files, which are logically divided into 
blocks, and these blocks can be retrieved from any peer which 
already has a copy. Client applications are responsible for 
requesting blocks in a timely fashion, and presenting the video to 
the user.  
We view the set of FBs in various nodes as a compartment that 
forms the P2P overlay for VoD services. These FBs are such that 
wish to participate in distributing the particular video content. In 
this example scenario, communication, i.e. the distribution of 
content, within the overlay compartment is optimized according to 
specific criteria. The overlay should be optimized so that overall the 
bandwidth is optimally utilized among the nodes. As ANA 
architecture is autonomic, the overlay is able to self-configure and 
self-optimize. Ideally, the application only needs to specify the 
content and then issue requests for blocks to a handle (in an anycast 
style) that it gets from the underlying ANA, which takes care of all 
the rest. For instance, the application does not necessarily need to 
know which node to contact. 
Figure 4 shows the way monitoring services could be used in this 
scenario. The MFBs of individual nodes that monitor the 
available bandwidth to surrounding nodes form a monitoring 
compartment. We assume that each of the members of that 
compartment knows the neighboring members, i.e., adjacent 
nodes which belong to that monitoring compartment and to which 
the data path does not pass through another member node. We say 
that these neighboring nodes form the vicinity of the MFB. 
Monitoring services are first invoked within the MFB of the 
downloading node, node 1. This triggering could be done, e.g. by 
the overlay FB or another FB that is concerned about the self-
optimization in that node. The task is to monitor available 
bandwidth on the paths from that node to nodes 2-6 that contain 
blocks that the application would like to download. The MFB 
starts to monitor the available bandwidth on the link to the next 
node in the vicinity and establishes an IC to the MFB of that next 
node in order to receive similar monitoring information from that 
node. Similar monitoring tasks are thus dynamically started in 
that MFB and new ICs established to the MFBs of the next nodes 
in the vicinity towards the final destinations (nodes 2-6). This 
behavior continues until the entire paths to the nodes 2-6 are 
covered. After that, monitoring information flows through the 
channels all the way to node 1. The information is aggregated 
along the way in the intermediate nodes, i.e., nodes always report 
minimum available link bandwidth along the path to a given node. 
As can be seen in top-right part of the figure, sometimes the 
adjacent nodes do not belong to the monitoring compartment. In 



 

 
 

Figure 4: Monitoring in P2P VoD streaming scenario 
 
that case, it is naturally not sufficient that node j in the figure only 
monitors link bandwidth to the next node. In such a case, given 
that MFBs within nodes support the concept of dynamic and 
programmable monitoring, the MFB in node j could invite the 
MFB of the next node join the monitoring compartment by 
specifying and invoking the bandwidth monitoring task for that 
MFB. The newly joined MFB would then in turn make the MFB 
in the other intermediate node join as well. As an alternate 
approach, if the intermediate nodes do not support monitoring of 
their link bandwidth, node j could perform active probing towards 
node 2 in order to determine the available bandwidth to the whole 
remainder of the path. 
In this scenario, monitoring of available bandwidth along a set of 
paths is required. In the Internet today, such monitoring can be 
only performed via active end-to-end probing. In ANA, the ideal 
case from the monitoring information timeliness and accuracy 
point of view is to be able to receive such information from each 
intermediate hop along a given path. However, it may be that not 
all nodes along the path provide such monitoring services 
initially. In such a case the MFBs of such nodes could be 
integrated into the monitoring compartment by making a request 
and describing to them how to perform the needed monitoring 
tasks. 
The scenario described requires having dynamic and adaptive 
monitoring services that can be started and stopped on demand. 
Only certain nodes need to perform monitoring of available 
bandwidth while other nodes save their resources. It is especially 
important when the available bandwidth needs to be estimated 
through active probing that can potentially create a significant 
extra load to the network. 
The example pointed out also another important aspect: the 
usefulness of programmability of monitoring services. In this 
way, nodes could request and instruct other nodes to join a 

particular monitoring compartment. It should also be possible for 
a node to learn which monitoring capabilities another node may 
have. 

6. CONCLUSIONS 
In the ANA Project, we design a new autonomic network 
architecture from scratch with monitoring as a first class citizen in 
the architecture. The fact that monitoring is considered as a 
fundamental element in the architecture introduces a new set of 
challenges for monitoring at this abstraction level. The main reason 
for this is that no a priori knowledge is available for monitoring 
concepts in the architecture. Therefore, monitoring needs to be able 
to dynamically explore the environment in which it should work and 
monitoring elements should be dynamically composable in such a 
way that distributed monitoring realms can be created on the fly. In 
order to achieve this, the ANA architecture provides the concept of 
information hooks in the information and knowledge management 
framework. Furthermore, monitoring needs to flexible and 
programmable to dynamically address the given tasks.  
It is the contribution of this paper to provide an analysis of these 
new requirements and a discussion how they can be supported in the 
ANA architecture with different concepts and how these concepts 
inter-work. We use the example of a monitoring compartment for 
P2P video on demand streaming to explain the idea behind our 
proposal for monitoring in ANA and as a kind of a first conceptual 
validation of the presented monitoring approach. 
So far, the presented results are at the conceptual and architectural 
level. Therefore, many research challenges have to be solved to 
implement and validate these concepts. For example, the dynamics 
and varying monitoring needs of envisaged automated tasks meant 
for self-managing networks impose some design and operational 
requirements on the monitoring facilities (component, functions, 
and platforms) of a self-managing network. Capturing and 



 

specifying those requirements along with finding and designing 
suitable monitoring paradigms/frameworks, is not a trivial issue. 
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