
Rule-based Genetic Programming

Thomas Weise, Michael Zapf, and Kurt Geihs
University of Kassel

Wilhelmshöher Allee 73
34121 Kassel, Germany

weise|zapf|geihs@vs.uni-kassel.de

ABSTRACT
In this paper we introduce a new approach for Genetic
Programming, called rule-based Genetic Programming, or
RBGP in short. A program evolved in the RBGP syntax is
a list of rules. Each rule consists of two conditions, combined
with a logical operator, and an action part. Such rules are
independent from each other in terms of position (mostly)
and cardinality (always). This reduces the epistasis dras-
tically and hence, the genetic reproduction operations are
much more likely to produce good results than in other Ge-
netic Programming methodologies. In order to verify the
utility of our idea, we apply RBGP to a hard problem in
distributed systems. With it, we are able to obtain emer-
gent algorithms for mutual exclusion at a distributed critical
section.

Keywords
Genetic Programming, Rule-Based Genetic Programming,
RBGP, Critical Section, Distributed Algorithms, Epistasis

1. INTRODUCTION
In this paper we introduce a new Genetic Programming

technique called rule-based Genetic Programming or RBGP
for short which is especially robust in terms of reproduction
operations.

It reduces the strong positional interdependencies of dif-
ferent parts of a program which are a common drawback of
many other Genetic Programming approaches, as discussed
in the related work Section 2.

We elaborate on our new rule-based approach in Section 3.
RBGP does not suffer from this general problem because of
the general structure of its phenotypes, which is similar to
Learning Classifier Systems. A program in RBGP consists
of multiple rules. A rule, in turn, consists of two conditions,
combined with a logical operator, and an action part. The
different rules in such a program are positionally and cardi-
nally independent. This leads to a very low epistasis which
increases the efficiency of the reproduction operators. Like

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Bionetics ’07, December 10-13, 2007, Budapest, Hungary
Copyright 2007 ICST 978-963-9799-11-0.

many of the well-known GP methods, RBGP uses a genetic
algorithm [13] for search space exploration and employs a
genotype-phenotype mapping [22, 21].

In the past, we have applied Genetic Programming to
different problems in distributed computing [43, 41]. It is
only natural to test the utility of the new rule-based Ge-
netic Programming in the same domain. In Section 4 we
demonstrate first tests of the new approach, the evolution
of algorithms for mutual exclusion at a distributed critical
section. These experiments exhibit interesting properties
like emergence and a prolonged improvements during the
evolution.

In Section 5 we finally conclude with a short summary
and outline our plans for future work.

2. RELATED WORK
The roots of Genetic Programming go back to Friedberg

who used a learning algorithm to stepwise improve a fixed-
size program in 1958 [11, 12]. In the mid-1980s, Cramer
utilized genetic algorithms and tree-like structures to evolve
programs [6]. The standard tree-based Genetic Program-
ming, which is most often used in practical applications and
as reference model, was invented by Koza a few years later
[23]. Since then, many different approaches have branched
off.

A compiler parses the source code of a program as sen-
tence in a given formal language. Only source code that can
be produced by the grammar of this language is valid. In the
late 1990s, multiple researchers began to recognize indepen-
dently from each other that similar restrictions are needed
if we want to evolve more complex structures [35, 45, 44,
20]. Grammar-guided Genetic Programming was born, cul-
minating in methods like Grammatical Evolution [31, 34],
tree-adjoining grammar-guided Genetic Programming [15,
14], and the recently developed Christiansen Grammar Evo-
lution [7]. These approaches further have in common that
they employ a genotype-phenotype mapping [1, 22]. Instead
of applying the genetic operators directly to the programs,
they work on genotypic representations like integer strings
or derivation trees which subsequently are translated to pro-
gram trees.

Another important stream is the linear Genetic Program-
ming, close to the original idea of Friedberg. Here, pro-
grams are viewed as sequence of machine-code instructions.
They are processed as string chromosomes by the genetic
operators. Highly developed approaches even temporarily
construct control flow graphs in order to preserve jump in-
structions. Prominent examples of this research area are [29]

and [4].
A more thorough discussion of the different approaches to

Genetic Programming can be found in [40].

2.1 Epistasis in Genetic Programming
Epistasis is defined as a form of interaction between dif-

ferent genes in biology. It was coined by Bateson [3] in order
to describe how one gene can suppress the phenotypical ex-
pression of another gene.

The aforementioned, sophisticated new branches of Ge-
netic Programming have successfully solved many problems
of Koza’s standard method. However, they also commonly
share one of its drawbacks: a high degree of positional inter-
dependencies in the phenotypes, which is a very basic form
of epistasis.

In order to clarify the role of positional epistasis in the
context of Genetic Programming, we begin with some basic
assumptions. Let us consider a program P as a form of
function P : I 7→ O that connects the possible inputs I of a
system to its possible outputs O. Two programs P1 and P2

can be considered as equivalent if P1(i) = P2(i) ∀i ∈ I.1

For the sake of simplicity, we further define a program as
a sequence of n statements P = (s1, s2, . . . , sn). For these
n statements, there are n! possible permutations. We ar-
gue that the fraction θ(P) = v/n! of permutations v that
leads to programs equivalent to P is a measure of robust-
ness for a given phenotypic representation in Genetic Pro-
gramming. More precisely, a low value of θ indicates a high
degree of epistasis, which means that the loci (the positions)
of many different genes in a genome have influence on their
functionality [28]. This reduces for example the efficiency
of reproduction operations like crossover, since they often
change the number and order of instructions in a program.
A general rule in evolutionary algorithms is thus to reduce
epistasis [33].

All phenotypic and most genotypic representations in Ge-
netic Programming known to us are rather fragile in terms of
insertion and crossover points. One of the causes is that their
genomes have high positional epistasis (low θ-measures), as
sketched in Figure 1.

There exists one class of evolutionary algorithms that el-
egantly circumvents such problems: the learning classifier
systems (LCS) which were developed in the 1970s by Hol-
land [19, 18]. Here we focus on the Pittsburgh approach
associated with Smith and De Jong [38, 39], where a genetic
algorithm evolves a population of rule sets. Each individual
in this population consists of multiple classifiers (the rules)
that transform input signals into output signals. The eval-
uation order of the rules in such a classifier system C plays
absolutely no role except for rules concerning the same out-
put bits, i.e. θ(C) ≈ 1. Again, a more elaborate discussion
of LCS can be found in [40].

The basic idea behind our approach is to use this knowl-
edge to create a new representation for Genetic Program-
ming that retains these high θ values in order to become
more robust in terms of reproduction operations. This will
probably lead to a smoother evolution with a higher proba-
bility of finding good solutions. On the other hand, we want
to extend LCS by introducing some of the concepts from
Genetic Programming like mathematical operations.

1In order to cover stateful programs, the input set may also
comprise sequences of input data.

* cos

3 *

x1 1 x2x3

/

+

*

3 *

x1 x3

/

cos

1 x2

+
¹

(a) In Symbolic Regression

¹

1i

ii 0

>

while

1i

i

>

while

0 i

(b) In Standard Genetic Programming.

¹

...

MOV ECX, 3
ADD EAX, ECX
...

MOV EAX, 7
...
MOV ECX, 3
ADD EAX, ECX

...
MOV EAX, 7

(c) In Linear Genetic Programming

¹

a3 cd 4c ...ff 17 a3 cd 4c ...17 ff

GPM GPM

(d) With Genotype-Phenotype Mapping, as in
Grammatical Evolution-like approaches.

Figure 1: Positional epistasis in Genetic Program-
ming.

3. RULE-BASED GENETIC PROGRAM-
MING

We illustrate our new approach to Genetic Programming
[40] by the example shown in Figure 2. Like in Pitt-style
learning classifier systems, our programs consist of arbitrary
many rules. A rule evaluates the values of some symbols in
its condition part (left of ⇒) and, in its action part, assigns
a new value to one symbol or performs any other procedure
specified in its setup.

3.1 Genotype and Phenotype
Before the evolution begins, the number of symbol and

their properties must be specified as well as the possible ac-
tions. Each symbol identifies an integer variable, which is
either read-only or read-write. Generally we define the con-
stants 0 and 1 and the input symbol start which will only be
1 during the first execution of the program and then becomes
0. Additionally, a program can access some general-purpose
variables var1 and var2. If we want to evolve distributed
algorithms, we could add an input symbol receive where in-
coming messages will occur and a variable send from which

true
false

¹ 101
110

111

>

³

=

£

<

Comp. Enc.

001

010
011

100

000

Enc.

00

01

10

11

Action

x

1 x-

x y+=

x y-=

=

=

Enc.

0

1

Concat.

Ù

Ú
0

Symbol Encoding

1
start

enter
leave

id
netSize
receive
send

var1
var2

0000 1100,
0001 1101,
0010 1110,
0011 1111,
0100

0101

0110

0111

1000

1001

1010

(receive 1)t = (true) send var1t 1 t+
=Ù Þ sendt+

(1)¹ Ú ³ Þ -start (enter leave) var1 idt t t t 1 t+
= var1t

(false) Ù <1 Þ -(leave)) enter 1 entert t 1 t+
=

...

...

0101 010 1101 0 XXXX 110 XXXX 0110 00 1001

XXXX 111 XXXX 1 1000 100 0001 0111 11 0111

0001 101 0010 1 0111 001 1000 1001 01 1111

...

...

Genotype

Phenotype

Figure 2: Genotype-Phenotype mapping in Rule-
based Genetic Programming.

outgoing messages could be transmitted. An action set con-
taining addition, subtraction, value assignment, and some
sort of logical negation (1-x) is sufficient in most cases. Al-
ternatively to the send and receive symbol, actions could
be defined with the same semantics.

From these specifications, the system can determine how
many bits are needed to encode a single rule. The genotypes
are bit strings with a length which is a multiple of this bit
count.

With this simple genotype, we can encode any possible
nesting depth of condition statements, implicit branches and
loops, and all possible logical operations. Furthermore, we
could even construct a tree-like program structure from the
rules, since each of them corresponds to a single if statement
in a normal programming language.

There are similarities between our RBGP and some spe-
cial types of LCS, like Browne’s abstracted LCS [5] and S-
expression-based LCS [26]. The two most fundamental dif-
ferences lie in the semantics of both, the rules and the ap-
proach: In RBGP, a rule may directly manipulate symbols
and invoke external procedures with (at most) two in/out-
arguments. This includes mathematical operations like mul-
tiplication and division which do not exist a priori in LCS.
They would have to evolve on basis of binary operations,
which is, although possible, very unlikely.

Furthermore, the individuals in RBGP are not classifiers
but programs. Classifiers are intended to be executed once
for a given situation, judge it, and decide upon an optimal
output. A program on the other hand runs independently
and performs an asynchronous and interactive computation
with its environment. Furthermore, the syntax of RBGP

is very extensible. The nature of the symbols and actions
is not bound to specific data types, our approach can for
example easily be adapted to floating point computation.

3.2 New Dimensions of Independence
In the simple case, the evolved programs would be contin-

uously executed in a cycle on a real machine. In a more effi-
cient scenario, rules would explicitly be triggered whenever
one of the concerning symbols changes. This is especially a
useful technique for distributed algorithms.

3.2.1 Positional Independence
During the (simple) execution of a program coded in this

scheme, all rules are applied consecutively and their assign-
ments are buffered. Before the next execution cycle, these
values are written back to the symbols. Therefore, the sym-
bols in the condition part and in the computation parts of
the actions are annotated with the index t and those in the
assignment part of the actions are marked with t + 1. This
approach allows for a greater amount of disarray in the rules,
since the only possible positional dependencies left are those
of rules that write to the same variables. All other rules can
be freely permutated without any influence on the behavior
of the program. Therefore, epistasis in RBGP is very low.

3.2.2 Cardinality Independence
By excluding any “learning” features like the bucket

brigade algorithm [17] from our evolution, we additionally
gain some form of insensitivity in terms of rule cardinality. It
is irrelevant whether a rule occurs once, twice, or even more
often in a program because, if triggered, all occurrences of
the rule will write the same values to the target symbol.
An additional objective function which puts pressure into
the direction of smaller programs will cause superfluous ap-
pearances of rules to be wiped out during the course of the
evolution.

3.2.3 Neutrality
The existence of neutral reproduction operations can have

a positive influence on the evolutionary progress [36, 37].
The positional and cardinality independence are a clear ex-
ample of phenotypic redundancy and neutrality in RBGP. If
the condition part of a rule is for example useful, it can sim-
ple be duplicated by copying the whole rule. This is likely
to happen during crossover, without changing any function-
ality. Subsequent mutation operations may now modify the
action part of the rule and lead to improved behavior.

3.2.4 Crossover and Mutation
As reproduction operators, we can apply all the standard

operations known from genetic algorithms like single-point
and multi-point crossover and mutation [13, 16]. The in-
teresting fact is that crossover applied to two identical pro-
grams will usually yield a valid program with the exception
of only the small fraction where remaining positional restric-
tions are violated. If two good programs are recombined, the
result will most probably be a new good program. In stan-
dard Genetic Programming and most of the sophisticated
approaches mentioned in the related work, the result will
usually be an invalid program and only very rarely be rea-
sonable [15, 30, 2]. As for the RBGP mutation operators, we
cannot easily argue on a better performance yet, but there
are no indications for a worse efficiency either.

4. THE DISTRIBUTED CRITICAL SEC-
TION

In the past we have introduced new applications of Ge-
netic Programming in the area of distributed computing.
Among these are automated aggregation protocol synthesis
[43] and the breeding of election algorithms [42, 41]. We
now test our new approach on a hard problem in the same
field, the distributed critical section.

Sharing resources in asynchronous systems always holds
many dangers. If two or more processes for instance simul-
taneously access common variables and at least one of them
writes, phenomena like “lost update” or other data incon-
sistencies may result. Therefore, software engineers must
ensure mutual exclusion, which means that at most one pro-
cess may access the resource at a time. This is an interesting
problem which has been examined first in the 1960s. The
first decentralized algorithms solving this problem were de-
veloped by Dekker [8] and Dijkstra [9]. Code that accesses a
shared resource is called a critical section and the solutions
of Dekker and Dijkstra used (shared) control variables that
ensured that at most one process could execute such code
at a time.

In a distributed system, solving this problem is more cum-
bersome since no common memory exists. Instead, the pro-
cesses running concurrently on different nodes have to com-
municate by the means of message exchange. Based on the
messages sent and received, a process has to decide whether
it is allowed to access the critical section or whether it has
to wait. The first algorithms for mutual exclusion at a dis-
tributed critical section were introduced by Lamport [25]
and Ricard and Agrawala [32], followed by Maekawa’s so-
lution [27], which is optimal in the number of exchanged
messages.

4.1 Prerequisites
In principle, all the primitives that we need in order to

specify a valid solution for mutual exclusion at a distributed
critical section are already illustrated in Figure 2. We as-
sume a network of m nodes. In order to tackle the critical
section problem, these nodes must be equipped with some
basic abilities:

• A node must be able to conditionally perform primi-
tive arithmetic operations. This is given by the four
introduced actions.

• The nodes must be able to communicate. If we re-
strict the solutions to simple algorithms that exchange
messages which contain only a single integer number,
one send and one receive symbol will suffice. If a
non-zero value is written to sendt, it will become the
value of sendt+1 in the next program execution and
be transmitted as broadcast to all nodes in the net-
work. In the following execution, sendt+2 will be zero
again. Messages sent may be delayed for an arbitrary
amount of time. We provide each node with a message
queue of limited size. Whenever a message arrives, it
is queued. Before each program execution t, the top of
queue value is made available in the read-only symbol
receivet.

• Whenever an algorithm decides that the node it is run-
ning on may access the critical section, it will set the
symbol enter to a non-zero value. From the following

execution on, the node will be in the critical section
for a time defined by the underlying simulation sys-
tem. When this time is elapsed and the critical sec-
tion is left, the read-only symbol leave will be set to
1. Whatever the algorithm writes in the meantime to
enter plays no role.

• Each node has an unique identifier, stored in the sym-
bol id.

• Another read-only symbol called start will be 1 ex-
actly in the first execution of an algorithm and 0 in all
further executions so the nodes know when they are
started.

• Finally, we add two multi-purpose variables, var1 and
var2.

We will execute the evolved programs in a simulation envi-
ronment in order to evaluate their utility. This is easy since
the structure of RBGP programs is very simple and espe-
cially suitable for simulations and stepwise interpretation.
In the simulation we have m simulated nodes running asyn-
chronously at approximately the same speed. This speed
however differs slightly from node to node and cannot be
considered as constant either. The communication between
the nodes is also asynchronous and has a pseudo-random
delay. A node in principle executes its program repetitively
in an infinite loop. The critical section is monitored by the
simulation core, which also decides on a pseudo-random ba-
sis how long a node may remain in it. The simulation core
does not prevent multiple nodes from accessing the critical
section, but always records the number of processes ncs in
it for each global time step t. The pseudo-random numbers
used by the system are the same in each simulation so the
results are reproducible and comparable.

4.2 Objective Functions
The first objective function f1 imposed on the program

evolution should of course be related to the number of vi-
olations of the mutual exclusion-criterion. Here we simply
accumulate the time steps where more than one process ac-
cessed the critical section. To increase the pressure, we sum
up the square of the number of nodes inside the CS.2

Solely using this function to drive the evolution would lead
to programs that never access the critical section, since this
is the easiest way to ensure that no errors can occur. Hence,
we have to define a secondary objective function f2 which
forces the nodes to enter the CS. In principle, f2 represents
the number of times each process could enter the critical
section at least in the fixed time span of the simulation.
This not only furthers fairness but is simple needed, because
otherwise, programs will evolve which allow only one single
node to enter the critical section. Such programs will then
have f2 = 0 and will not survive the selection process. Yet it
makes sense to add a value in [0, 1) proportional to the total
number of accesses of the CS so even among such programs,
an efficiency hierarchy is formed.

In order to promote the eradication of doubled genes in
the programs and for putting pressure into the direction of

2Another reason for this is that ncs > 1 represents an error,
and it is common to minimize square-error terms in many
statistical applications in order to achieve maximum likeli-
hood estimation [40].

0
500 1000

1500 2000
1000

3000

5000
7000

0
2
4
6
8

10
12
14
16
18

Generationf1

f2

Figure 3: The relation of f1 and f2 during an exam-
ple evolution (f3 is ignored).

small algorithms, we define a third objective function f3

whose value is the number of rules in a program. f1 and f3

are subject to minimization, f2 is to be maximized.

f1(P) =

T
∑

t=1

{

0 : if ncs(t) ≤ 1
(ncs(t))

2 : otherwise
(1)

f2(P) = min {node in cs} + 1 −
1

∑

(node in cs)
(2)

f3(P) = |P | (3)

4.3 Results
For our experiments we have chosen to run an elitist,

steady-state genetic algorithm with population size 7177,
archive size 89, and tournament selection. Nine nodes were
running in the simulation for 1000 time steps in order to
test every evolved program. Figure 3 illustrates the progress
of the Pareto-optimal front in the dimensions f1 and f2 in
generations. Surprisingly, the RBGP evolution does not con-
verge. The experiment was terminated after more than 2100
generations, but even until then, improvements can still be
observed.

0 500 1000 1500 2000
5

15

25

35

0

1

2

3

4

5

6

Generation

f2

f3

Figure 4: The relation of f2 and f3 (f1 = 0) during
an example evolution.

Only programs P with f1(P) = 0 can be considered as

valid solutions for the critical section problems. The third
dimension (f3) of the Pareto-front is depicted in Figure 4 in
conjunction with f2 for these valid solutions only (f1 = 0).
Here we can see that whenever an improvement in the num-
ber of accesses to the critical section (f2) occurs, a deteri-
oration in the number of rules in the program (f3) can be
observed. Successively, this degeneration is reduced until a
program with the same functionality but much smaller size
has evolved. Then the process starts all over. This is an in-
dication for an efficient crossover operation since crossover
is the only operation that changes the program size. A good
crossover alone would probably not suffice to drive an evo-
lutionary process for such a long time since it cannot create
new rules. We assume that the ability to explore new regions
of the search space of RBGP is due to a mutation operation,
which is less destructive than in other GP approaches.

[useless]
(0≤idt)∨(var1t>entert) ⇒ var2t+1=var2t+idt

(var1t≤0)∧(sendt 6=var2t) ⇒ sendt+1=1-leavet

[useless]
(entert<entert)∨(var1t>receivet) ⇒

startt+1=startt-receivet

[useless]
[useless]
[useless]
(startt<0)∨(leavet=0) ⇒ entert+1=startt

(receivet>entert)∧true ⇒ entert+1=entert -1
(netSize<entert)∨(var2t>idt) ⇒

startt+1=startt-receivet

[useless]
(1≤leavet)∧(entert>leavet) ⇒

startt+1=startt+var2t

(idt>receivet)∧(leavet 6=netSize) ⇒
entert+1=0

(entert≤entert)∧(var2t 6=1) ⇒
idt+1=idt-startt

(netSize≤var2t)∧true ⇒ idt+1=idt+var1t

(1≥netSize)∨(receivet=var1t) ⇒
idt+1=idt-entert

(netSize=var2t)∧true ⇒ idt+1=idt+var1t

[useless]
(var1t≥netSize)∨(entert=var1t) ⇒

idt+1=idt-entert

[useless]
(startt<idt)∨(receivet 6=var1t) ⇒

var1t+1=var1t+receivet

[useless]
(receivet≤netSize)∧(idt<var1t) ⇒

var2t+1=var2t-receivet

(leavet<idt)∧(var2t<sendt) ⇒
entert+1=1-startt

Listing 1: The best individual of the evolution.

Listing 1 illustrates the best solution P ⋆ found in the
evolutionary process. It grants full mutual exclusion, i.e.
f1(P

⋆) = 0, under the simulated conditions. Out of its
f3(P

⋆) = 25 rules, only 16 have a functional effect. This
shows that even after more than 2000 generations, the
RBGP population still has potential for improvement (at
least in f3). In the 1000 simulation steps where the single
nodes approximately executes the program 500 times, each
node enters the critical section at least 6 times (f2(P

⋆) ≈
6.99). The evolved distributed algorithm realizes a Time Di-
vision Multiple Access (TDMA) scheme [24] to the critical
section as sketched in Figure 5. A schedule is derived with a

complicated cooperative arithmetic computation determin-
ing the timeslots.

Node 1

Node 2

Node 3

Node 4

...
t

. . . node accesses CS . . . co-operatively
computed intervalls

t

t

t

Figure 5: The TDMA scheme of Listing 1.

Further tests reveal, however, that some form of overfit-
ting took place and the algorithm specializes on the settings
of the simulation. It may not deliver full mutual exclusion in
networks with different topologies. Thus, without modifica-
tions, the experiment can only be used for real-time systems
where timing constraints are fixed.

An intermediate solution of the evolutionary process is
displayed in Listing 2. It allows each process only to enter
the critical section one time. This access occurs in the first
rule, which sets the symbol enter to a negative value if the
start symbol is equal to enter (which will only happen if
both are zero) and the id reaches a value smaller than or
equal to one. The symbol id initially contains the unique
identifier of the node executing the algorithm. It is then
modified by the rules 8 and 9. Together with the values of
the two variables (var1 and var2) and start, it oscillates
through positive and negative integers due to overflows fol-
lowing no obvious schema.

4.4 Correctness and Discussion
The results shown in Listing 1 and Listing 2, although

containing only few rules, are very hard to understand for a
human being. Even the short algorithm of Listing 2 exhibits
complex interrelations between the variables, the rules, and
the message transfers. The communication between the
nodes in Listing 2 for example plays an unclear role. In
rule 3, a node sends a message unless it finds an incoming
one in its receive buffer. The communication medium is
thus permanently used. Due to parallelism, delays, and the
inconstant execution speed of the nodes, only the senders
alternate. Three other rules depend on this communication

1 (entert=startt) ∧ (1≥idt) ⇒
entert+1=entert-netSize

2 true ∨ false ⇒ startt+1=var1t

3 true ∨ false ⇒ sendt+1=1-receivet

4 true ∨ false ⇒ var1t+1=var1t+startt

5 (startt≥0) ∧ true ⇒ var1t+1=netSize
6 (sendt<var2t) ∨ (startt≥receivet) ⇒

var1t+1=var1t+idt

7 true ∨ false ⇒ var2t+1=var2t+startt

8 (idt<leavet) ∨ false ⇒ idt+1=sendt

9 (leavet>sendt) ∨ (var2t>netSize) ⇒
idt+1=idt+var2t

Listing 2: An intermediate solution.

and influence the values of id and var1.
Here we seemingly witness some form of emergence – our

system works, but there is no simple way for finding out
why by just using the semantics of the single rules. This is
because of the fact that there is no kind of intention in the
code and no structured design process in its creation. The
programs are the result of a stochastic process, the artificial
evolution. This is very interesting from the scientific point
of view, but it poses the question of correctness.

Genetic programming only incorporates a fraction of the
possible scenarios when evaluating a RBGP program. These
are chosen in a way that the nodes run in parallel pseudo-
randomly and messages have pseudo-random delays. There
can be no guarantee for the full correctness of an evolved
solution – it is just very likely to be correct. This is, of
course, not only an issue in this example. The results of
RBGP for other problems will probably be emergent too.

The simple structure of RBGP programs suggests that
additional, automated methods could be used to fully prove
their correctness. An automated tool will not work bet-
ter or worse just because an issue is formulated in a com-
plicated way, as long as this formulation complies with its
input grammar. There are many tools available for auto-
mated, formal proofs [10], and we consider it to be a topic
of future work to apply such a tool to the output of our
algorithm.

However, the application of an automated prover during
the evolutionary cycle is not advisable since we then would
only have two fitness cases: right and wrong. If we use simu-
lations though, the evolution can give a program preference
to another one if it produces fewer errors, i.e. violations of
the critical section. The output of the RBGP system never-
theless should be verified.

5. CONCLUSIONS AND FURTHER WORK
In this paper, we have presented a new method of Ge-

netic Programming, called rule-based Genetic Program-
ming, RBGP in short. RBGP extends the idea of learn-
ing classifier systems with more distinct semantics in terms
of symbols, logical and mathematical operations, as well as
primitive actions. By making the sets of actions and sym-
bols an input parameter of the evolutionary process, arbi-
trary new commands can be introduced. Thus, RBGP can
easily be adapted to new problem domains.

The basic purpose of RBGP is to address the inefficiency
of reproduction operators in Genetic Programming. It does
so by eliminating positional and cardinality interdependen-
cies in its geno- and phenotypes, thus reducing epistasis. In
future, a detailed performance comparison with other ap-
proaches like those named in related work must be issued in
order to determine the utility of RBGP more precisely.

We still need to support our assumptions about the ge-
netic operators with in-depth analysis and targeted experi-
ments. In this paper, we concentrated on the introduction,
justification, and discussion of its basic properties instead.
The solutions of RBGP exhibit very strong emergence and
non-trivial interactions between the positional independent
rules. We need to incorporate tools that are able to prove
the correctness of such evolved programs in order to make
the RBGP approach viable for real-world applications.

The utility of the approach could already be shown here by
solving a hard problem in distributed computing. A valid
algorithm for mutual exclusion at the distributed critical

section could be evolved. In the experiment, a very smooth
and prolonged evolutionary process could be observed. The
solution finally found depends however on the network con-
figuration in the simulation. In our future experiments, we
will prevent such overfitting by changing the test cases after
each generation. By doing so, an overspecialized solution
yielding good objective values in one iteration will proba-
bly be exterminated in the next generation and only “real”
solutions can prevail.

6. REFERENCES
[1] W. Banzhaf. Genotype-phenotype-mapping and

neutral variation – A case study in genetic
programming. In Parallel Problem Solving from
Nature III, volume 866.

[2] W. Banzhaf, P. Nordin, R. E. Keller, and F. D.
Francone. Genetic Programming: An Introduction –
On the Automatic Evolution of Computer Programs
and Its Applications. Morgan Kaufmann Publishers,
first edition, Nov. 1997.

[3] W. Bateson. Mendel’s Principles of Heredity.
Cambridge University Press, Cambridge, 1909. 1930:
fourth impression of the 1909 edition.

[4] M. Brameier and W. Banzhaf. A comparison of linear
genetic programming and neural networks in medical
data mining. IEEE Transactions on Evolutionary
Computation, 5(1):17–26, 2001.

[5] W. N. Browne and C. Ioannides. Investigating scaling
of an abstracted lcs utilising ternary and s-expression
alphabets. In GECCO ’07: Proceedings of the 2007
GECCO conference companion on Genetic and
evolutionary computation, pages 2759–2764, New
York, NY, USA, 2007. ACM Press.

[6] N. L. Cramer. A representation for the adaptive
generation of simple sequential programs. In J. J.
Grefenstette, editor, Proceedings of an International
Conference on Genetic Algorithms and the
Applications, pages 183–187, Carnegie-Mellon
University, Pittsburgh, PA, USA, July 1985. Lawrence
Erlbaum Associates, Inc.

[7] M. de la Cruz Echeand́ıa, A. O. de la Puente, and
M. Alfonseca. Attribute Grammar Evolution, volume
3562/2005 of Lecture Notes in Computer Science,
pages 182–191. Springer Berlin / Heidelberg, June
2005.

[8] E. W. Dijkstra. Cooperating sequential processes.
Technical report, Techniche Hogeschool Eindhoven,
Techniche Hogeschool Eindhoven, 1965. About
Dekker’s Algorithm. Reprinted in: F. Genuys (ed.),
Programming Languages, Academic Press, 1968,
43–112.

[9] E. W. Dijkstra. Solution of a problem in concurrent
programming control. Communications of the ACM,
8(9):569, 1965.

[10] M. L. et al., editor. Proceedings of Automated Formal
Methods 2006 (AFM 2006), Aug. 2006. Workshop on
the tools PVM, SAL, and Yices.

[11] R. M. Friedberg. A learning machine: Part i. IBM
Journal of Research and Development, 2:2–13, Nov.
1958.

[12] R. M. Friedberg, B. Dunham, and J. H. North. A
learning machine: Part ii. IBM Journal of Research

and Development, 3(3):282–287, Mar. 1959.

[13] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, first
edition, 1989.

[14] N. X. Hoai. Solving trigonometric identities with tree
adjunct grammar guided genetic programming. In
A. Abraham and M. Köppen, editors, Hybrid
Information Systems, Proceedings of First
International Workshop on Hybrid Intelligent Systems,
pages 339–351, Dec. 2001.

[15] N. X. Hoai. A Flexible Representation for Genetic
Programming: Lessons from Natural Language
Processing. PhD thesis, School of Information
Technology and Electrical Engineering University
College, University of New South Wales, Australian
Defence Force Academy, Dec. 2004.

[16] J. Holland. Genetic algorithms. Scientific American,
267(1):44–50, July 1992.

[17] J. H. Holland. Properties of the bucket brigade
algorithm. In Proceedings of the International
Conference on Genetic Algorithms and Their
Applications, pages 1–7, Pittsburgh, PA, 1985.

[18] J. H. Holland and A. W. Burks. Adaptive computing
system capable of learning and discovery. US Patent
Issued on September 29, 1987, Current US Class
706/13, Genetic algorithm and genetic programming
system 382/155, LEARNING SYSTEMS 706/62
MISCELLANEOUS, Foreign Patent References
8501601 WO Apr., 1985.

[19] J. H. Holland and J. S. Reitman. Cognitive systems
based on adaptive algorithms. In D. A. Waterman and
F. Hayes-Roth, editors, Pattern directed inference
systems, pages 313–329. Academic Press, New York,
NY, 1978. Reprinted in: Evolutionary Computation.
The Fossil Record. David B. Fogel (Ed.) IEEE Press,
1998. ISBN: 0-7803-3481-7.

[20] H. Hörner. A c++ class library for gp: Vienna
university of economics genetic programming kernel
(release 1.0, operating instructions). Technical report,
Vienna University of Economics, May 29 1996.

[21] R. E. Keller and W. Banzhaf. Genetic programming
using genotype-phenotype mapping from linear
genomes into linear phenotypes. In J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. L. Riolo, editors,
Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 116–122, Stanford
University, CA, USA, 1996. MIT Press.

[22] R. E. Keller and W. Banzhaf. Genetic programming
using mutation, reproduction and genotype-phenotype
mapping from linear binary genomes into linear lalr(1)
phenotypes. In J. R. Koza, D. E. Goldberg, D. B.
Fogel, and R. L. Riolo, editors, Genetic Programming
1996: Proceedings of the First Annual Conference,
pages 116–122, Stanford University, CA, USA, Jan.
1996. MIT Press.

[23] J. R. Koza. Genetic Programming, On the
Programming of Computers by Means of Natural
Selection. A Bradford Book, The MIT Press,
Cambridge, Massachusetts, 1992 first edition, 1993
second edition, 1992.

[24] S. S. Lam. Delay analysis of a time division multiple

access (tdma) channel. IEEE Transactions on
Communications (legacy, pre - 1988), 25:1489–1494,
Dec. 1977. NASA STI/Recon Technical Report A,
volume 78, December 1977, pp. 19522.

[25] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[26] P. L. Lanzi and A. Perrucci. Extending the
representation of classifier conditions part ii: From
messy coding to s-expressions. In W. Banzhaf,
J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, editors, Proceedings of
the Genetic and Evolutionary Computation
Conference (GECCO 99), pages 345–352. Morgan
Kaufmann, July 1999.

[27] M. Maekawa. An algorithm for mutual exclusion in
decentralized systems. ACM Trans. Comput. Syst.,
3(2):145–159, 1985.

[28] B. Naudts. Measuring GA-hardness. PhD thesis,
Antwerpen, Netherlands, 1998.

[29] P. Nordin. A compiling genetic programming system
that directly manipulates the machine code. pages
311–331, 1994.

[30] P. Nordin and W. Banzhaf. Complexity compression
and evolution. In L. Eshelman, editor, Genetic
Algorithms: Proceedings of the Sixth International
Conference (ICGA95), pages 310–317, Pittsburgh, PA,
USA, July 1995. Morgan Kaufmann.

[31] M. O’Neill. Grammatical evolution. In Proceedings of
the Fifth Research Conference of the Deptartment of
Computer Science and Information Systems,
University of Limerick, Sept. 1998.

[32] G. Ricart and A. K. Agrawala. An optimal algorithm
for mutual exclusion in computer networks.
Communications of the ACM, 24(1):9–17, Jan. 1981.

[33] S. Ronald. Robust encodings in genetic algorithms: A
survey of encoding issues. pages 43–48, Apr. 1997.

[34] C. Ryan, J. J. Collins, and M. O’Neill. Grammatical
evolution: Evolving programs for an arbitrary
language. In W. Banzhaf, R. Poli, M. Schoenauer, and
T. C. Fogarty, editors, Proceedings of the First
European Workshop on Genetic Programming, volume
1391, pages 83–95, Paris, 1998. Springer-Verlag.

[35] C. Ryan, M. O’Neill, and J. J. Collins. Grammatical
evolution: Solving trigonometric identities. In
Proceedings of Mendel 1998: 4th International Mendel
Conference on Genetic Algorithms, Optimisation
Problems, Fuzzy Logic, Neural Networks, Rough Sets,
pages 111–119, Brno, Czech Republic, 1998. Technical
University of Brno, Faculty of Mechanical Engineering.

[36] R. Shipman. Genetic redundancy: Desirable or
problematic for evolutionary adaptation? In
Proceedings of 4th International Conference on
Artificial Neural Networks and Genetic Algorithms
(ICANNGA), pages 1–11. Springer-Verlag, 1999.

[37] R. Shipman, M. Shackleton, and I. Harvey. The use of
neutral genotype-phenotype mappings for improved
evolutionary search. BT Technology Journal,
18(4):103–111, 2000.

[38] S. F. Smith. A learning system based on genetic
adaptive algorithms. PhD thesis, University of
Pittsburgh, 1980.

[39] W. M. Spears and K. A. De Jong. Using genetic
algorithms for supervised concept learning. In
Proceedings of the 2nd International IEEE Conference
on Tools for Artificial Intelligence, number IEEE Cat.
No. 90CH2915-7, pages 335–341, Herndon, VA, 6-9
1990. IEEE Computer Society Press, Los Alamitos,
CA.

[40] T. Weise. Global Optimization Algorithms – Theory
and Application. July 2007 edition, July 2007. This
e-book is online available at
http://www.it-weise.de/.

[41] T. Weise and K. Geihs. Dgpf – an adaptable
framework for distributed multi-objective search
algorithms applied to the genetic programming of
sensor networks. In B. Filipič and J. Šilc, editors,
Proceedings of the Second International Conference on
Bioinspired Optimization Methods and their
Application, BIOMA 2006, International Conference
on Bioinspired Optimization Methods and their
Application (BIOMA), pages 157–166. Jožef Stefan
Institute, Ljubljana, Slovenia, Oct. 2006.

[42] T. Weise and K. Geihs. Genetic programming
techniques for sensor networks. In Proceedings of 5.
GI/ITG KuVS Fachgespräch “Drahtlose Sensornetze”,
pages 21–25, University of Kassel, July 2006.

[43] T. Weise, K. Geihs, and P. A. Baer. Genetic
programming for proactive aggregation protocols. In
B. Beliczyński, A. Dzieliński, M. Iwanowski, and
B. Ribeiro, editors, Proceedings of the 8th
International Conference on Adaptive and Natural
Computing Algorithms ICANNGA’07, Part 1, volume
4431 of Lecture Notes in Computer Science (LNCS),
pages 167–173. Springer Berlin Heidelberg New York,
Apr. 2007.

[44] P. A. Whigham. Inductive bias and genetic
programming. In A. M. S. Zalzala, editor, First
International Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applications,
GALESIA, volume 414, pages 461–466, Sheffield, UK,
12–14 1995. IEE.

[45] M. L. Wong and K. S. Leung. Combining genetic
programming and inductive logic programming using
logic grammars. In 1995 IEEE Conference on
Evolutionary Computation, volume 2, pages 733–736,
Perth, Australia, Nov. 1995. IEEE Press.

