

A genetic algorithm for the adaptation
of service compositions

David Linner, Heiko Pfeffer, and Stephan Steglich
Technische Universität Berlin

Franklinstr. 28/29
10589 – Berlin (Germany)

{david.linner|heiko.pfeffer|stephan.steglich}@tu-berlin.de

ABSTRACT
The view on applications in large-scale open systems shifted to a
service-oriented perspective, where each functional feature forming
an application is regarded as service. The services which constitute
an application can be physically spread over different network
nodes and can be even provided by different administrative entities.
According to the vision of the BIONETS project we are
additionally facing a dynamically changing computing
environment, which entails a dynamically changing set of available
services. We investigate how service compositions, on which novel
applications are based on, can flexibly be adapted to the changing
conditions in the computing environment, while going beyond late-
binding mechanisms. We apply methods of genetic programming to
modify the structures describing service compositions to find
compensation for types of services no longer available to
applications. In this paper, we describe the current state of our
efforts on complex algorithms for service composition
transformation, based on the application of genetic operators to
graph based service composition representations.

Keywords
Service-oriented Architecture, Service Composition, Genetic
Algorithm

1. INTRODUCTION
Large-scale open systems like the Web required a novel view on
the design of networked applications and lead to the emergence of
service-oriented software architecture styles (SOA). Although the
early and trend setting realization of this style (e.g. WSA[1],
BPEL[2]) are quite similar to component-oriented technologies the
key principle of late-binding implies a significant advancement
with regard to dynamicity. Services are selected and bound on
demand at runtime. If a service disappears, another one that
implements the same functionality is selected. High-level services
can be realized by simply composing several services. In this case
the so called service composition defines the execution order for

the constituting services and rules the flow of data among them.
Creating high-level services through service composition saves
development time and resources by preserving the advantage of late
binding.

In the BIONETS project we are also facing a large-scale open
system, but instead of the Web, which is mainly build for reliable
networks, the envisioned BIONETS service platform has to cope
with high network dynamicity. Hence, the availability of services
continuously changes and several types of services may be
unavailable for a longer time. While the first challenge can be
addressed by late binding mechanisms, the latter requires an
approach to substitute service types no matching service is
available for. We assume that a service with a particular
functionality (certain type) can be exchanged with a composition of
services with different types and vice versa. In this regards we do
not aim at a perfect substitution of a service type, but rather at a
best effort functional approximation through services of other
types.

In this work we describe genetic operators to transform service
compositions into a bindable form, if for at least one constituting
service of the composition no instance is available. In the next
chapter related approaches are introduced and discussed. Chapter 2
outlines service model and the service composition model we apply
the genetic operators to. Chapter 3 briefly describes how we are
going to evaluate the appropriateness of service compositions. In 4
a cross-over operator and a mutation operator are explained. 5
concludes the current state of our work and points out how we will
proceed.

1. RELATED WORK
The emergence of service-orientation as architectural view began
with the success of Web Services and still Web Services and
Business Processes are the driving force for this continuity of this
trend. Accordingly, most approaches addressing service
composition and dynamic methods for the adaptation of service
composition are documented in the Web Services domain. Most of
the approaches that utilize genetic algorithms aim at efficiently
solving the late-binding problem.

Initially, a service composition is given as blueprint, which
describes the execution order and the dataflow for a set of abstract
services. The abstract services refer to a type of services with a
particular functionality. To execute a service composition each of
the constituting abstract services need to be replaced with a real

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee.
Bionetics’07, December 10-13, 2007, Budapest, Hungary Copyright
2007 ICST 978-963-9799-11-0.

service instance. If one abstract service can be bound with several
service instances, a selection has to be made. [3]and [4] describe
approaches that use genetic algorithms to find an optimal binding
for all abstracts services of a service composition with respect to
non-functional properties (e.g. QoS parameters). With our approach
we address the step before the actual binding. We utilize a genetic
algorithm to vary the structure of the composition itself (execution
order and dataflow of constituting services), based on an estimation
of services available for a later binding. In this context, the goal is
to substitute an abstract service by a finite number of different
abstract services or vice versa.

In [5] the actual composition problem is addressed, i.e.
automatically creating service compositions (the actual blueprint)
from scratch by a combination of AI planning method and genetic
algorithms. Although we do not aim at creating entire service
compositions, this approach is close to ours with regard to the
assumptions about the search space. However, while Yan et al.
focus on the inputs and outputs of services and limit their approach
to informative services, we introduce the semantic element service
Gain to also address services changing states without providing a
corresponding feedback as output.

2. MODELING AND DESCRIBING
SERVICE COMPOSITIONS

Within this section, a graph-based service composition
representation is introduced. Therefore, the assumed service model
is outlined first, based on semantic service descriptions. Following,
Service Compositions are defined as a non-empty set of services
and two control graphs specifying the workflow and dataflow,
respectively.

Services itself are considered as atomically executable parts of
application logic, providing outputs as the result of the processing
of its inputs, whereby the execution of the service is independent
from outer computations and data structures. In order to limit the
amount of constrictive assumptions, our service model basically
relies on I/O descriptions of services. Those descriptions are
initially restricted to primitive data types to ease the transformation
of service compositions. Beside, services may generate a special

type of semantically described outputs, referred to as Gains. Those
gains are globally managed within a Gain Queue, where they are
accessible for all services within a service composition. Those
gains are assumed to possess an importance beyond simple I/O
passage within the service composition and thereby considerably
constitute the services’ functionality. For instance, a Restaurant
Finder service may get a String as input, specifying the current
location of the user by an address within a city. The output of the
service then could be a Boolean, indicating whether a restaurant

FUNCTION Cross with composition mother and composition father
RETURNING composition first_child if stable and composition second_child if stable

 SET weight to proportionate number of transition to cross (0 < weight < 1.0)

 SET transitions_from_mother TO weight * number of transition in mother
 SET transitions_from_father TO weight * number of transition in father

 INIT cross_transitions_mother WITH a random, but less than transitions_from_mother

 number of transition from mother
 INIT cross_transitions_father WITH a random, but less than transitions_from_father

 number of transition from father

CALL SwapTransitions WITH cross_transitions_mother and cross_transitions_father RETURNING
first_child and second_child

 CALL RepairPortMappings WITH first_child
 CALL RepairPortMappings WITH second_child
END FUNCTION

Figure 1: Crossover algorithm in pseudo code.

Figure 2: Exemplary Service Composition

was found in, e.g., a radius of 2 kilometers. In case a restaurant was
found, a map is pushed to the requesting user indicating the
location of the restaurant. Within the presented service model, such
a map is specified as a semantically described gain. Notably, this
gain is a key feature of the service, specifying its functionality more
profoundly than the simple I/O pattern.

Thus, a service composition can be regarded as a set of services,
that are executed in a predefined order and either pass their outputs
to other services where they are used as inputs or release them as
final outputs of the whole service composition. The passage of
outputs within the service composition is based on so-called ports,
enabling the forwarding of a special output to an input port of
another service. An exemplary service composition based on the
introduced service model is illustrated in Figure 2. A service is
drawn as a rectangle encapsulating an atomic action αi. The bold
arrows define the workflow of the single services, i.e. their
execution order. The smaller squares attached to the rectangles on
top and on bottom illustrate the input and output ports, respectively.
After the execution of a service, its outputs are passed along the
dashed lines to input ports of other services. The dashed rectangles
denote the pseudo services α0 and αφ, wrapping the user input and
the final output of the service composition. Gains γi are annotated
by curled arrows leaving the rectangles. Since the generation of
gains can depend on the actual input values of the service, a service
is always annotated with all gains that can possibly be generated by
its execution. Which gains are finally produced by a service
execution thus cannot be determined offline, but has to be
evaluated at runtime based on specific input values.

Note that services are assumed to encapsulate atomic application
logic, which has to be independent from outer computations. In
case two services are meant to interact, they thus have to occur

multiple times within the service composition. For instance,
referring to the previously introduced example, α1 and α4 may be
the same service, i.e. the service executes a part of its application
logic dependent from its inputs and passes some output to service
α3. This service may react to this input, execute some application
logic on its own and pass its results back to α1 (labeled with α4 in
Figure 2).

 In order to control the execution and I/O passing within service
compositions, two graphs are defined. The Workflow Graph is
defined as a program graph, specifying the execution order within a
service composition. It consists of a set of locations and directed
transitions connecting them. Each transition is labeled with a guard
and an action. While the former one is a propositional logic
formula ensuring that the transition can only be passed if all inputs
of the service and required gains are available, the latter one
represents the service logic, whose execution entails the generation
of further gains and outputs. The second control structure is built by
a Dataflow Graph, containing the same locations as the according
Workflow Graph; it connects output and input ports of services and
thereby defines the flow of data during service composition
execution.

3. SERVICE COMPOSITION
EVALUATION

Automatic service composition is regarded as a very complex
problem still to be achieved without drastic assumptions on the
computing environment [6]°[7]. However, the main complexity is
not entailed by the composition of services itself, but by the
automatic generation of appropriate service descriptions that enable
a feasible service discovery afterwards. By proposing an algorithm
for service composition transformation, we aim at building new

Figure 3: Potential results of transitions crossover.

service compositions that are similar to those already available. In
case two service compositions are estimated to provide the same or
nearly the same functionality, the semantic description of the
already present service composition can be overtaken for the newly
created one, solving the problem of automatically creating
appropriate service descriptions for new built services.

Since the generation of gains during the execution of a service may
depend on the actual service inputs, services cannot be evaluated
offline with regard to their functionality (which is considerably
dependent from the gains it produces), but have to be estimated
during runtime. Therefore, newly created service compositions are
compared with existing ones in a Silent Execution Mode. Therefore,
two compositions are executed within a Sandbox [8] like
environment, where their execution does not directly affect the
current state of the computing environment. Depending on a
distance function taking both generated outputs and gains of a
service composition as parameters, the compositions are evaluated
according to their similarity. In case the distance between two
compositions is small enough, the semantic descriptions are
overtaken.

4. SERVICE COMPOSITION
TRANSFORMATION

In the last section we showed how we are going to estimate the
appropriateness of service compositions for solving particular
problems. In this section we discuss the modification of service
compositions by genetic operators. Since service compositions are

described as graphs, the modification of a service composition is
realized as a structural transformation on its graph representation.
The aim of the transformation is to vary the service composition
structure in order to:

1. Replace service types by more accurate ones, with
respect to the addressed problem

2. Substitute services referred in the workflow, when no
corresponding service instance is available in the current
computing environment

For these purposes we started developing two genetic operators to
be applied to service composition graphs as introduced in section 2.
The first one is a crossover operator, which involves at least two
service compositions. The second one is a simple mutation operator
to be applied to single service compositions. In the following the
underlying algorithms are briefly explained.

4.1 Crossover
The crossover operator takes two service composition graphs, in the
following referred to as mother and father. The service
compositions should be known to perform semantically similar
tasks to forward the usefulness of the result. The operator randomly
selects elements from both graphs and exchanges them. In practice,
the algorithm for the crossover operator is composed of two steps.
In the first step service references (given as transitions) from both
compositions are selected and swapped, in the second step the
dataflow is repaired. The overall algorithm is summarized as
pseudo-code in Figure 1.

FUNCTION RepairPortMappings WITH composition
CLEAR port mappings of composition from removed transitions
SET preferred_output_ports to transition output ports that are not part of any port mapping to an
inport port

FOR each new transition target_transition in composition
 CALL RepairInputs with target_transition and target_transition RETURNING candidate_port_mappings

ADD one port mapping for each input port of target_transition in candidate_port_mappings TO
composition, while preferring those with an output port contained in preferred_output_ports

END FOR

FOR each transition target_transition in composition whose input ports are not target of any port
mapping in composition
 CALL repairInputs WITH target_transition and target_transition RETURNING candidate_port_mappings

ADD one port mapping for each input port of target_transition from candidate_port_mappings TO
composition, while preferring those with an output port contained in preferred_output_ports

END FOR
END FUNCTION

FUNCTION RepairInputs WITH target_transition and current_transition RETURNING candidate_port_mappings
 FOR each directly preceding transition pre_transition of current_transition
 FOR each input port input_port of the service in target_transition

IF service of pre_transition has an output port output_port with the same type as input_port
AND there is no port mapping in composition to input_port so far THEN

 ADD new port mapping from output_port to input_port to candidate_port_mappings
 END IF
 END FOR

 CALL RepairInputs WITH target_transition and pre_transition RETURNING new_candidate_port_mappings
 ADD new_candidate_port_mappings TO candidate_port_mappings
 END FOR
END FUNCTION

Figure 4: Algorithm to repair dataflow graph in pseudo code.

For swapping transitions between the workflows a random number
of transitions form both graphs is selected. These two sets of
selected transitions are cut out of the graphs they originated from.
The set of selected transitions (i.e. the referenced services) form the
composition graph mother is then pasted into father and the set of
selected transitions from father is pasted into mother. For this
pasting the locations of the cut out transitions are used in order to
recreate a consistent workflow. The transitions pasted into the
workflow are by random arranged sequential or parallel, either.
Figure 3 illustrates this exchange of transitions. If there are less
transitions to paste available than legs between locations that need
to be fixed, transitions are randomly cloned or two locations
combined.

After swapping the transition between mother and father, the
overall dataflow of the resulting graphs is likely to be broken. Thus,
a rearrangement of the port mappings between the old and the new
transitions is required. For this purpose, the input ports of all
transitions are checked. If they are not assigned to an output port of
a transition precedent in the workflow, a back-tracking search in
the workflow is performed to find an output port (including the
overall composition inputs) with the same type like the input port to
be bound. Instead of taking the first match, all candidates are
collected and afterwards one is chosen by random. The algorithm is
summarized in Figure 4. If nonetheless input ports remain unbound,
the entire service composition is discarded.

4.1 Mutation
The mutation operator removes information from the service
composition or includes new information. In practice, the
application of the operator to a service composition may either
change dataflow or workflow and dataflow. In the first case, a
random number of connections from service output ports to service
input ports are broken up and the input ports allocated with
correctly typed constants. In the second case, transitions are
removed from the workflow or new transitions added. The removal
of transitions may cause an inconsistency in the workflow and
require the combination of the two locations spanned by the
removed transition. If the workflow is consistent again, the
dataflow is repaired with an algorithm analog to the one described
in Figure 4. If the dataflow cannot be recovered, the mutated
service composition is discarded.

5. CONCLUSION AND OUTLOOK
In this work we outlined a model for the description of service
compositions and explained two genetic operators tailored to this
model. Our work aims at evolving service compositions that cannot
be applied in their current computing environment, either because
no appropriate service instances can be found or no binding with
sufficient accuracy. We implemented prototypes for the genetic
operators as well as a simulation environment that gives us the
freedom to evaluate the appropriateness of our approach. The first
results looked very promising. At the moment we are running test
series to get reliable data for later publication.

The evolution of services is a crucial element of the bio-inspired
service life-cycle described in [9]. Finally, we plan to integrate the
developed principles with a service runtime environment to an
autonomic service platform for highly dynamic computing
environments.

6. ACKNOWLEDGMENTS
This work has been partially supported by the EC within the
framework of the BIONETS project IST-FET-SAC-FP6-027748,
www.bionets.eu.

REFERENCES
[1] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion,

C. Ferris, D. Orchard: Web Services Architecture, Available:
http://www.w3.org/TR/ws-arch/, 2004

[2] R. Khalaf, N. K. Mukhi, and S. Weerawarana, “Service-
Oriented Composition in BPEL4WS,” in Proceedings of the
12th International World Wide Web Conference (WWW
2003) Alternate Track Papers and Posters, Budapest, Hungary,
May 2003.

[3] C. Gao, M. Cai, H. Chen, "QoS-aware Service Composition
Based on Tree-Coded Genetic Algorithm," Computer
Software and Applications Conference, 2007. COMPSAC
2007 - Vol. 1. 31st Annual International/ , vol.1, no., pp.361-
367, 24-27 July 2007

[4] Di Penta, M., Esposito, R., Villani, M. L., Codato, R.,
Colombo, M., and Di Nitto, E. “WS Binder: a framework to
enable dynamic binding of composite web services”. In
Proceedings of the 2006 international Workshop on Service-
Oriented Software Engineering (SOSE '06). ACM Press, New
York, NY, 74-80, Shanghai, China, May 27 - 28 2006

[5] Yuhong Yan; Yong Liang; Han Liang, "Composing Business
Processes with Partial Observable Problem Space in Web
Services Environments," Web Services, 2006. ICWS '06.
International Conference on/ , vol., no., pp.541-548, Sept.
2006

[6] M. H. ter Beek , A. Bucchiarone and S. Gnesi, “A Survey on
Service Composition Approaches: From Industrial Standards
to Formal Methods”. Technical Report 2006-TR-15, Istituto di
Scienza e Tecnologie dell'Informazione, Consiglio Nazionale
delle Ricerche, 2006.

[7] Koehler, J., Srivastava, B.: “Web service composition: Current
solutions and open problems”. In: ICAPS 2003 Workshop on
Planning for Web Services. p 28-35, (2003).

[8] P. Cicotti, Michela Taufer, and Andrew A. Chien.
DGMonitor: “A Performance Monitoring Tool for Sandbox-
Based Desktop Grid Platforms”. In Third International
Workshop on Performance Modeling, Evaluation, and
Optimization of Parallel and Distributed Systems (PMEO),
CD-ROM / Abstracts Proceedings, 26-30 April 2004.

[9] H. Pfeffer, D. Linner, I. Radusch, and S. Steglich: “The bio-
inspired Service Life-Cycle”: An Overview. Proceedings of
the 3rd IEEE International Conference on Autonomic and
Autonomous Systems (ICAS'07), CD-ROM, Athens, Greece,
June 19-15 200

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

