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ABSTRACT
One of the today issues in software engineering is to find new
effective ways to deal intelligently with the increasing com-
plexity of distributed computing systems. In particular, one
of the aspects under study in the field of autonomic comput-
ing concerns the way such systems can autonomously reach
a configuration that allows the entire system to work in a
more efficient and effective way. In this paper we investigate
how it is possible to obtain self-aggregation of distributed
components. We have used existing self-aggregation algo-
rithms as a starting point, and, after an analysis phase, we
have discovered some aspects that could be improved. Fi-
nally we have derived new algorithms that showed improved
self-aggregating performances in most of the situations.

Keywords
Autonomic computing, distributed and self-adaptable sys-
tems, clustering algorithms, performance analysis.

1. INTRODUCTION
One of the today issues in software engineering is to find

new effective ways to deal intelligently with the increasing
complexity of distributed computing systems. This is par-
ticularly important in a pervasive context where the envi-
ronment is instrumented with devices of any kind that are
able to communicate over a network in order to solve several
types of problems and to offer various kinds of services to
their final users.

Autonomic Computing [15] applied to pervasive architec-
tures is trying to show that adding autonomic reasoning to
each computational element in the system could simplify its
management and reduce costs [24].

In this field, researches are borrowing some ideas from the
biological world [23]. In particular, they study the behavior
of colonies of insects and their capability to self-organize [9].
The main goal is to apply similar capabilities to software sys-
tems of interconnected components that singularly, like ants
for their anthill [3], have limited information and reasoning
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power, but, all together, contribute to the high-level goals
for the whole system. Using this approach many complex
problems can be solved by executing simple rules locally to
each component of the system, regardless system size and
without the need of a centralized control [6].

In this context, self-aggregation algorithms aim at estab-
lishing and maintaining groups of components that cooper-
ate more to reach a common goal. The applications of these
algorithms include all cases in which there is a need for con-
tinuously reconfiguring those groups (think for instance at
the case of a network of message brokers that need to be
restructured because of a failure in one of its portions).

This paper aims at analyzing and understanding the “ma-
gic” that is beyond existing approaches to pervasive self-
aggregation techniques, and at creating new techniques that
are more efficient and effective in specific cases.

The organization of the paper is as follows. Section 2
describes the aggregation problem and presents some dis-
tributed algorithms that address it. Section 3 describes our
improvements to the existing algorithms. Section 4 presents
a performance analysis and highlights the advantages of the
algorithms we have defined. Section 5 presents an overview
of the state of the art. Finally, Section 6 concludes the pa-
per.

2. SELF-AGGREGATION ALGORITHMS
A typical environment in which self-aggregation can hap-

pen is a network of interconnected entities called nodes.
Each node is characterized by a type and by a list of nodes
called neighbors. In this situation self-aggregation is the
capability of each node to modify the connections with its
neighbors in order to reach a more efficient and effective
configuration.

In a real network, a node can be any piece of software
that is able to communicate with the others, its type can
be defined in various ways all aiming at allowing a node to
recognize its similarity with respect to a specific application.
Thus, the type can correspond, in an object-oriented style,
to the set of services the node can provide (i.e., to its in-
terface), or, in an agent-oriented style, to the goal a node is
able to achieve, or to any combination of them. Connections
(links) between neighbor nodes correspond to the ability of
a node to know the others, and is some case, it can result
into direct physical connections established between pairs of
neighbors.

The final purpose of a self-aggregation algorithm is to re-
duce the number of links from incompatible nodes and to add
new links to compatible nodes, where the notion of compat-



Figure 1: The effect of clustering on a set of nodes.
Colors indicate the type of nodes.

ibility is related to the types of the nodes. Here we study
two simple cases of self-aggregation:

• Clustering (or normal clustering): in this case nodes
tend to establish links with neighbors of the same type.
Therefore, compatibility between nodes is defined as
the equality of their types. In a real network this can
be useful if the nodes want to balance their workload
[17].

• Reverse-clustering : in this case nodes tend to establish
links with neighbors of a different type. Thus, compat-
ibility is defined as the inequality of nodes types. This
can be useful to build a community of nodes able to
cooperate to execute and delegate difficult tasks.

Figure 1 shows the situation of a network of two types
nodes (depicted by the black and white colors) before and
after the execution of the clustering algorithm: as it can
be seen from the picture, the network tends to organize in
two areas, one containing nodes of type black and the other
nodes of type white. Clustering algorithms, per se, are not
new in the literature (see the state of the art analysis pre-
sented in Section 5). Here the interesting aspect is that
clustering is not executed by a centralized entity, external
to the network. Instead, it is executed in a distributed way
thanks to the ability of each node to take a simple ”discon-
nect/maintain the link” decision on the basis of the type of
each neighbor.

Our analysis of such distributed algorithms has started
from those developed by Fabrice Saffre for the CASCADAS
project [16], with the objective of improving, if possible,
their effectiveness and performances.

The algorithms support both clustering and reverse clus-
tering, but for the sake of space we focus here mainly on
the clustering ones. Two different algorithm modes have
been envisaged to achieve the same result: passive cluster-
ing and active (or on demand) clustering. In the following
paragraphs we will describe all of them.

2.1 Passive Clustering
The definition of Passive Clustering is presented in Algo-

rithm 1. The following is an explanation of each iteration:

• a random node of the network elects itself as the match-
maker node;

• the matchmaker node chooses two neighbors that are
compatible to each other and makes them establish a
new link;

• the matchmaker removes a link between itself and one
of the chosen neighbors.

Algorithm 1 Saffre Clustering Algorithms
Passive Mode

matchmaker = LOCALNODE
for i=1 to NUM_ITERATIONS
do

if (matchmaker has neighbors n1 and n2
such that n1 is compatible with n2) then
add link between n1 and n2
remove link between matchmaker and n1

fi
od

Active Mode

initiator = LOCALNODE
for i=1 to NUM_ITERATIONS
do

if ((initiator has neighbor matchmaker) and
(matchmaker has neighbor n1 such that n1
is compatible with initiator)) then

add a link between initiator and n1
remove a link between matchmaker and n1

fi
od

The author’s analysis in [16] found that this algorithm has a
side effect: nodes with more neighbors have a greater prob-
ability to be chosen and earn a new link after an algorithm
iteration. This side effect leads to the creation of super-
nodes in the network that may become points of failures.
To solve this problem a variant of this algorithm has been
proposed by its author.

2.2 Active (or on demand) Clustering
The Active Clustering is a variant of the first algorithm

that solves the side effects of the previous algorithm, but
requires more communication between nodes. The following
is an explanation of each iteration:

• a random node elects itself as the initiator node and
elects a matchmaker node among its neighbors;

• the matchmaker node chooses one neighbor that is
compatible with the initiator and makes them estab-
lish a new link;

• the matchmaker removes a link between itself and the
chosen neighbor.

3. PROPOSED ALGORITHMS
The algorithms presented in the previous section show

that by using simple local rules it is possible to reach the
high level goal of grouping together nodes of the same type
(or of different types if we used the reverse clustering ap-
proach). The performance of these algorithms has been
evaluated in [16] and clearly shows that the system tends
to reach a steady state. Starting from these results we have
tried to understand why such simple and local laws are able
to organize complex networks in order to investigate possible
further optimizations. The most relevant thing we can note
is that the previous algorithms not always perform opera-
tions that increase the number of links between compatible
nodes. In this case it is said that the algorithm introduces
some noise into the system. We will show that by trying to
either limit or increase the level of noise within a network
we can improve some aspects of the overall performances of
the algorithm.



Algorithm 2 Fast Clustering Algorithms
Passive Mode

matchmaker = LOCALNODE
for i=1 to NUM_ITERATIONS
do

if ((matchmaker has neighbors n1 and n2
such that n1 is compatible with n2) and
(matchmaker is not compatible with n1)) then
add link between n1 and n2
remove link between matchmaker and n1

fi
od

Active Mode

initiator = LOCALNODE
for i=1 to NUM_ITERATIONS
do

if ((initiator has neighbor matchmaker) and
(matchmaker has neighbor n1 such that n1
is compatible with initiator) and
(matchmaker is not compatible with n1)) then

add a link between initiator and n1
remove a link between matchmaker and n1

fi
od

3.1 The Concept of Noise
The algorithm noise or randomness occurs when in the

same algorithm iteration a new link is added between com-
patible nodes and then a link between compatible nodes is
removed. In [10, 19] it is explained that in the biological
world this noise is necessary to obtain an optimal solution,
therefore it is reasonable to investigate the effects of an in-
crease or a decrease of noise in the original self-aggregation
algorithms.

3.2 Noise Reduction: Fast Algorithm
The first investigation we have done was to remove all the

noise from the original algorithms: this resulted in a new al-
gorithm (see Algorithm 2) that we call Fast Algorithm that
is similar to the original one, but with the additional con-
straint that an algorithm iteration can never remove a link
between compatible nodes. From the preliminary simula-
tions we have seen that with respect to the original algo-
rithm this one has a faster convergence rate because it avoids
“noisy” iterations, another advantage is that it reduces the
total number of link exchanges because of the lower number
of neighbors that can be chosen. The disadvantage of this
approach is that the increase in the number of links between
compatible nodes is not as good as the original clustering.
This means that the noise is a key factor for the accuracy of
the algorithm.

3.3 Noise Increase: Accurate Algorithm
The second investigation we have done was to increase

the algorithm noise in the following way (see Algorithm 3):
the decision of adding and removing links for each algorithm
step is fully unconstrained, except for the fact that the to-
tal number of links must remain the same and that a link
between incompatible nodes can be added only if a link be-
tween incompatible nodes is removed in the same iteration.
This constraint ensures that the aggregation of the system
in the worst case remains constant and will never decrease.
After the preliminary simulations we have seen a lower con-
vergence rate and a larger number of exchanged messages

Algorithm 3 Accurate Clustering Algorithms
Passive Mode

matchmaker = LOCALNODE
for i=1 to NUM_ITERATIONS
do

if ((matchmaker has neighbors n1 and n2) and
(matchmaker is not compatible with n1)) then
add link between n1 and n2
remove link between matchmaker and n1

fi
od

Active Mode

initiator = LOCALNODE
for i=1 to NUM_ITERATIONS
do

if ((initiator has neighbor matchmaker) and
(matchmaker has neighbor n1 such that n1
is not compatible with matchmaker) and
(n1 != initiator)) then

add a link between initiator and n1
remove a link between matchmaker and n1

fi
od

Figure 2: Particular network that can be clustered
only by the accurate algorithm.

with respect to the original algorithm, however the num-
ber of links between compatible nodes has been increased.
This strategy is similar to what happens in genetic algo-
rithms [14]: in a genetic algorithm each iteration has a mu-
tation operation that randomly modifies the solutions that
are computed until that moment. This prevents the genetic
algorithm to get stuck in local optima and therefore im-
proves the accuracy. Intuitively if we consider the situation
in Figure 2, only a “noisy” operation (for example adding a
link between incompatible nodes A and C ) makes possible
to add later a link between A and D and achieve the optimal
level of clustering.

3.4 Adaptive Algorithm
This algorithm is a self-adaptive version of the previous

algorithms with the aim to modify its behavior according
to some local rules. These local rules have been modeled
as a Finite State Machine (FSM). The general logic is that
the algorithm starts behaving as the most constrained algo-
rithm (Fast Algorithm) and stays in that state until the con-
straints inhibit further iterations (this happens when a node
gets stuck because it does not have neighbors to choose that
satisfy the algorithm requirements). In such a case the algo-
rithm switches to a medium constrained algorithm (Original
Saffre Clustering) first and then to the less constrained algo-
rithm (Accurate Clustering) if it gets stuck again. Finally, as
soon as a new neighbor is added in a local node, it switches
again to the most constrained algorithm.

The FSM in Figure 3 represents the current algorithms
as states and the events as transitions. Failure transition
is triggered when an algorithm is not able to complete an
iteration because of its constraints:

• the matchmaker node does not have neighbors that are



Figure 3: Adaptive Clustering Algorithm FSM

compatible to each other in original clustering;

• the matchmaker node does not have neighbors that are
compatible to each other and whose one of them is not
compatible with the matchmaker.

Success transition is triggered when an iteration terminates
successfully.

New Neighbors transition is triggered when a new neigh-
bor has been added to the local node.

4. PERFORMANCE ANALYSIS
In this section we will study the behavior of the proposed

algorithms in different situations in order to identify their
fields of applicability. We first describe the experiments set
up and then present the results we have obtained.

4.1 Setting up the Experiments
This paragraph will discuss all the steps that are needed

to study the performances of the self-aggregation algorithms
that have been proposed in the previous section.

4.1.1 Methodology
The performances of the algorithms have been evaluated

using the simulation framework for self-organization algo-
rithms that has been developed in [13]. All the data that will
be presented in this section have been obtained using Monte
Carlo simulations. Each simulation has been repeated at
least 20 times to provide some statistical validity, in addi-
tion, some preliminary simulations have been performed in
order to identify which input parameters and performance
indexes to consider when setting up the definitive thorough
simulations. From the preliminary simulations we have also
seen that the various algorithms do not show different behav-
iors if they run over 100 seconds, therefore we have chosen
this number as the standard fixed duration for all the exper-
iments. The most relevant parameters are described in the
following paragraphs.

4.1.2 Input Parameters
The input parameters are determined by the environment

in which the algorithms are run and by the algorithm itself.
The bound values for these parameters have been chosen
by observing the minimum/maximum values that have pro-
duced significant changes in the algorithms results of the pre-
liminary experiments. The following is a list of environment-
dependent parameters.

Number of nodes of the network : this is the fixed number
of nodes of the network. During the simulations we have
considered networks of 100, 200 and 300 nodes in order to

obtain results comparable to the results that can be found
in [11].

Number of types for all the nodes: all the network nodes
will be differentiated using a uniform distribution of types.
The least mixed network we considered has only 2 types,
that is the minimum. The most mixed one has 15 types,
that, over a population of 300 individuals, represents an av-
erage variety of 20 individuals per type. We also considered
some intermediate number of types (5 and 10) to show what
happens between the two bounds.

Average number of links for each node: the average num-
ber of links is stated at the beginning of the simulation and
remains constant during all the experiment. The values that
have been chosen for this parameter are 3 links, 4 links, and
5 links. Values under 3 links are not interesting because they
produce topologies that tend most of the time to have too
many nodes without links, while with values greater than 5
there is a tendency of creating a few super-nodes that group
in their neighbors all the others.

Initial topology : this is the strategy that states how the
initial links are established. With this parameter we wanted
to create an initial pattern of interconnections that is similar
to what we can find in different types of real networks. The
topologies we have considered are:

• Random topology : all the links are created in a totally
random way;

• Torus topology : all the nodes are connected to each
other using a donut-like pattern;

• Scale-free topology : all the nodes are connected to each
other in such a way that the probability of a generic
node to be connected to k nodes is P (k) = k−γ where
γ is a generic constant between 2 and 3 for most real
networks [5].

The following additional input parameters are the algorithm-
dependent parameters:

Algorithm mode: can be active or passive.
Maximum neighbor limit constraint : prevents the algo-

rithm from adding new neighbors to nodes that have reached
the maximum neighbor limit. This constraint is useful only
when using the passive mode because this is the only mode
that makes “rich” nodes become “richer” [21].

Definition of compatibility : in normal clustering two nodes
are defined compatible when their type is the same, while
in reverse-clustering two nodes are defined compatible when
their type is different.

4.1.3 Performance Indexes
The performance indexes are the output parameters of the

simulations we have done. Their purpose is to investigate
about which goals the algorithm can reach in different situ-
ations and how well they can be reached. The following is
a list of performance indexes that have been calculated and
presented after the simulation process.

Homogeneity. This performance index, defined in [16],
represents the aggregation of the network. This index is
a number between 0 and 1: lower values mean a reverse-
clustered network, while higher values mean a clustered net-
work. The definition of this index is the following:

H =

PN
i=1 v(nodei)

L



Figure 4: Example where a 100% homogeneity is
not reachable

Where N is the total number of nodes, v(x) is the total
number of nodes of the same type linked to x and L is the to-
tal number of links in the system. A problem of this index is
that its bound values of 0 and 1 are not always reachable by
simply moving links among nodes because of the structural
characteristics of the network. Therefore it does not always
give information about how far a generic self-aggregation al-
gorithm is from its goal. This can be easily seen in Figure
4: the homogeneity is 67% and there is no algorithm that is
able to improve this value using simple link movements.

Optimality. To solve homogeneity-related problems a new
performance index called optimality has been defined. This
index aims to be algorithm-related and it is a number be-
tween 0 and 1 like homogeneity, with the difference that
its upper bound is always theoretically reachable. Reaching
a value of 1 for optimality means that a clustering algo-
rithm reaches the upper bound for the homogeneity, given
the structure of the network. The formula that calculates
optimality for a clustering and reverse-clustering algorithm
is the following:

optclustering =
H

maxH
, optreverseclustering =

1−H

1−minH

Where H is the homogeneity, maxH is the upper bound for
homogeneity calculated by the simulator using a centralized
optimal clustering algorithm, minH is the lower bound for
homogeneity using an optimal reverse-clustering algorithm.

Links-variance. This index gives information about how
the node degree differs among the nodes.

linksv =

PN
i=1(di − 2N

L
)2

N

Where N is the total number of nodes, L is the total
number of links, and di is the number of neighbors of node
i. A high value of this index means that there are many
super-nodes, a value of zero means that all the nodes have
the same number of neighbors. A low value for this index is
usually preferable, unless the logical super nodes correspond
to the physical high capacity nodes.

Number of Messages. This index is directly computed by
the simulator and gives an idea about how many messages
are needed by an algorithm in order to achieve a goal. An
example of goal can be the achievement of an 80% optimality
in the case of normal clustering.

4.2 Results
What we are going to present now are the results of the

experiments that have been run. For each experiment we
will compare the various clustering approaches with a theo-
retical interpretation of each result. All results and charts of
the experiments (also the ones that have not been included
here) can be found in [1].

4.2.1 Reference Experiment for Clustering

In order to see how the algorithm performances are af-
fected by changes of the input parameters, we have per-
formed a particular experiment that has been used as ref-
erence. In this experiment we have run all the algorithms
using values for the input parameters with the property of
being the mean value between the bound values that have
been chosen in section 4.1.2. The simulation results can
be seen in Figures 5-8. In each figure the various algorithm
variants have been grouped into two different charts in order
to make the various curves more readable.

Figure 5: Reference Experiment: optimality aver-
age.

Figure 6: Reference Experiment: optimality vari-
ance.

The results in Figure 5 show how the noise can affect the
convergence of the algorithms. In the fast algorithm a local
maximum is reached quickly with less messages, but then
the homogeneity does not improve beyond that value. In
the accurate algorithm local convergence is slow and requires
more messages because of the noisy iterations, but then the
algorithm convergence goes close to the global maximum.
In this situation the adaptive algorithm tries to get advan-
tage of both local and global convergence of the previous
algorithms, therefore it seems a good choice in the average
case if we want to improve homogeneity. On the other hand



if the number of messages is more important than homo-
geneity, using the passive version of the fast algorithm is
preferable because the passive protocol uses less messages
than the active one (see algorithm 2).

Figure 7: Reference Experiment: number of mes-
sages.

Figure 8: Reference Experiment: links variance.

4.2.2 Varying the Number of Types
In Table 1 we can see that if we reduce the number of

types all the algorithms perform better than if increasing
it. A first explanation is that the initial optimality tends
to be optinit ≈ 1

Ntypes
where Ntypes is the number of types,

therefore if the initial optimality is lower, more iterations
are needed to reach the global optimum. The second ex-
planation is that if Ntypes is lower, then the probability to
find equal neighbors after each iteration is higher because
there are less different nodes. The fact that the algorithm
requires a higher number of iterations to reach convergence
when increasing the types results in a slight increase in the
number of messages.

4.2.3 Varying the Number of Nodes
This test has been performed to see how much scalable are

the algorithms when changing the number of nodes. From

Table 1: Comparison of the algorithms optimalities
after 2s and after 100s when changing the number
of types to the reference experiment.

Types: 2 5 10 15

Initial. opt. 50% 20% 9.2% 5.7%

Algorithm 2s/100s 2s/100s 2s/100s 2s/100s

Act. Saffre 66%/85% 38%/57% 23%/35% 17%/25%

Act. Fast 70%/84% 38%/55% 24%/34% 17%/24%

Act. Accurate 67%/98% 26%/94% 14%/84% 8.6%/71%

Act. Adaptive 66% 94% 36%/87% 21%/82% 15%/77%

Pass. Saffre 65%/86% 39%/58% 27%/36% 20%/26%

Pass. Fast 73%/86% 44%/57% 28%/34% 21%/24%

Pass. Accurate 59%/88% 26%/65% 12%/42% 8.6%/32%

Pass. Adaptive 71%/96% 40%/82% 26%/62% 19%/48%

Figure 6 we can see that this does not affect the optimality
with respect to the experiment of reference in most of the
cases. The slight reduction in the local convergence (opti-
mality after 2s) is due to the fact that the network is slowed
down by the additional messages sent by the new nodes.

Table 2: Comparison of the algorithms optimalities
after 2s and after 100s when changing the number
of nodes to the reference experiment.

Nodes: 100 200 300
Initial. opt. 20% 20% 20%

Algorithm 2s/100s 2s/100s 2s/100s

Act. Saffre 38%/57% 35%/57% 32%/56%

Act. Fast 38%/55% 39%/56% 40%/57%

Act. Accurate 26%/94% 26%/94% 21%/86%

Act. Adaptive 36%/87% 33%/87% 24%/83%

Pass. Saffre 39%/58% 36%/57% 32%/57%

Pass. Fast 44%/57% 41%/57% 36%/57%

Pass. Accurate 26%/65% 25%/64% 23%/66%

Pass. Adaptive 40%/82% 34%/85% 29%/89%

4.2.4 Varying the Number of Links
A modification in the number of links has the following

effect: it makes node communication easier because it in-
creases the probability that a given neighbor has a connec-
tion to a node of the required type. Thanks to this effect the
highly-constrained algorithms (Saffre and Fast algorithms)
can perform more link exchanges and increase the optimal-
ity. On the other hand having more links may generate ad-
ditional noise for the other algorithms that can slow down
their convergence rate. This explains why when increasing
the number of links per node the Saffre and the Fast algo-
rithms become better while Accurate and Adaptive become
worse (these results can be found in Table 3).

4.2.5 Varying the Initial Topology
In this experiment we want to see if the results we have

obtained till now are generalizable if we change the way
in which nodes are connected at start-up. From Table 4
we can see that the torus topology makes all algorithms go
slower (and therefore with more messages) because the aver-
age distance between two nodes is larger (expressed in terms
of number of links to traverse). A larger distance between
nodes requires therefore more iterations and links exchanges



Table 3: Comparison of the algorithms optimalities
after 2s and after 100s when changing the number
of links to the reference experiment.

Links per node: 3 4 5

Initial. opt. 19% 20% 19%

Algorithm 2s/100s 2s/100s 2s/100s

Act. Saffre 39%/50% 38%/57% 38%/62%

Act. Fast 42%/51% 38%/55% 39%/59%

Act. Accurate 31%/94% 26%/94% 26%/94%

Act. Adaptive 38%/88% 36%/87% 36%/86%

Pass. Saffre 40%/51% 39%/58% 37%/63%

Pass. Fast 43%/51% 44%/57% 44%/60%

Pass. Accurate 28%/69% 26%/65% 26%/62%

Pass. Adaptive 42%/85% 40%/82% 40%/80%

in order to connect distant nodes. The opposite of this phe-
nomenon can be seen in the scale-free experiments, in which
the distance between nodes is small. Apparently strange re-
sults can be observed with the star experiments in which
most of the nodes have only one neighbor and therefore in
many situations they are not able to start an algorithm it-
eration.

Table 4: Comparison of the algorithms optimalities
after 2s and after 100s when changing the initial
topology to the reference experiment.

Topology: Random Torus Scale-free Star

Initial. opt. 20% 4.0% 19% 20%

Algorithm 2s/100s 2s/100s 2s/100s 2s/100s

Act. Saffre 38%/57% 7.1%/11% 34%/68% 28%/97%

Act. Fast 38%/55% 7.4%/8.1% 38%/64% 29%/96%

Act. Accurate 26%/94% 7.6%/93% 24%/92% 22%/90%

Act. Adaptive 36%/87% 11%/86% 32%/88% 27%/97%

Pass. Saffre 39%/58% 8.8%/11% 33%/70% 21%/73%

Pass. Fast 44%/57% 8.1%/8.2% 35%/67% 21%/94%

Pass. Accurate 26%/65% 6.8%/65% 25%/59% 19%/34%

Pass. Adaptive 40%/82% 13%/67% 33%/73% 21%/82%

4.2.6 Limiting the Maximum Number of Neighbors
This test has been performed to see what happens to the

passive algorithms when limiting the maximum number of
neighbors for a node. The limit has been introduced to make
the links variance as low as in the active algorithms in or-
der to avoid the creation of the scale-free topologies we have
seen in Figure 8. Looking at Table 5 we can see that if this
limit is not too low (for example 8) we have an optimal-
ity improvement with respect to the reference experiment.
This can be explained by the fact that the “noisy” iterations
responsible for the creation of the scale-free topology are re-
moved, therefore the algorithm can converge in a smoother
way. However, if the limit is too low (for example 4) we
obtain the opposite effect on the optimality because many
nodes become stuck due to the too restrictive limit. Finally,
the reduction of the links variance, particularly for the noisy
algorithms (Accurate and Adaptive), can be seen in Table
6.

4.3 Summary

Table 5: Comparison of the algorithms optimalities
after 2s and after 100s when changing the neighbors
limit to the reference experiment.

Max Neighbors: 4 6 8 unlimited

Initial. opt. 19% 18% 19% 20%

Algorithm 2s/100s 2s/100s 2s/100s 2s/100s

Pass. Saffre 27%/39% 33%/56% 36%/60% 39%/58%

Pass. Fast 26%/37% 37/53% 41%/55% 44%/57%

Pass. Accurate 20%/42% 23%/78% 25%/78% 26%/65%

Pass. Adaptive 27%/48% 33%/82% 37%/87% 40%/82%

Table 6: Comparison of the algorithms links vari-
ances after 2s and after 100s when changing the
neighbors limit to the reference experiment.

Max Neighbors: 4 6 8 unlimited

Initial. linksv. 3.8 3.4 3.9 3.7

Algorithm 2s/100s 2s/100s 2s/100s 2s/100s

Pass. Saffre 3.2/1.7 3.2/2.1 4.2/4.2 4.5/7.8

Pass. Fast 3.3/2.5 3.3/2.9 3.7/3.3 4.0/3.6

Pass. Accurate 3.5/0.52 4.0/3.7 5.0/7.6 5.6/32

Pass. Adaptive 3.2/1.6 3.8/4.0 5.0/7.7 5.8/22

In these experiments we have compared four clustering
algorithms executed with different modes. What we have
learned is that, if we need speed, the fast and the adaptive
algorithms are good choices in almost all situations. If we
want to reduce the number of messages, the fast algorithm
with passive protocol (with a limit in the number of neigh-
bors if super-nodes are not acceptable) is usually the best
choice. If homogeneity or optimality are critical factors, then
the accurate and the adaptive algorithms are preferable. In
conclusion, the adaptive algorithm, due to its “adaptive”na-
ture, performs well in most common situations, however in
extreme situations it can be overcome by the others.

Some experiments have been executed by using the reverse-
clustering algorithm: the results are pretty similar, with the
difference that the increase in the number of types in this
case improves the algorithm results instead of the opposite.

5. RELATED WORK
Self-aggregation techniques are based on the principles of

the cluster analysis that seeks to identify homogeneous sub-
groups of cases in a population. This is a widely known disci-
pline applied in areas like economics, social sciences and also
in software engineering [8]. Cluster analysis aims at iden-
tifying a set of groups which both minimize within-group
variation and maximize between-group variation.

However, these techniques are mainly applied using a cen-
tralized approach, where a dedicated entity is in charge of
establishing the desired global property applying suitable
techniques/algorithms. The paradigm of self-aggregation,
instead, is to distribute the responsibilities among the in-
dividual entities: no single entity is in charge of the over-
all aggregation, but each contributes to a collective behav-
ior. Following this philosophy, mainly inherited from natu-
ral adaptive systems, the local behavior rules applied in all
entities lead (hopefully) to the desired global behavior. Ex-
amples of application of these rules can be found in the area
of communication networks: for example for the control of



topology in wireless multi-hop network [7], or the compu-
tation of a maximal independent set in radio networks [18].
Several kind of application of self-organization techniques in
communication network are reviewed in [20].

Apart from self-aggregation approaches, bio-inspired tech-
niques have recently be applied in several fields, spanning
the robot self-organization [25], the behavior of autonomic
network [4], the actions of swarms of autonomous vehicles
performing dangerous tasks [26], and to organize the sensor
network deployment [12].

Different lines of research apply methods based on the
use of genetic algorithms or neural networks to define and
to study the problems related to cluster formation, e.g., [2]
or the multi-agent approach like in [22].

In this paper we have tried to understand the rationale of
the behavior of existing self-aggregation techniques working
on a distributed environment and giving rise to collective be-
haviors on a large scale. Besides, starting from these results
we have defined some improved versions of the algorithms
that upgrade the self-aggregation performances in specific
cases.

6. CONCLUSIONS
In this paper we have proposed some self-aggregation al-

gorithms that, based on simple local rules, are able to de-
termine some global properties to the whole system without
any centralized control nor scaling issues.

The study on these algorithm has been performed by sim-
ulating their execution through a distributed simulator. The
results of this analysis have been used to identify strengths
and weaknesses of each algorithm, and therefore to produce
self-decision heuristics that can be used to choose the algo-
rithm that best fits a particular situation.
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