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ABSTRACT 
Detecting unknown virus is a challenging task. Most of the current 
virus detection approaches, such as anti-virus tools, require 
precognition of virus signatures for detection, but they are hard to 
detect unknown virus. In this paper, we present a new immunity 
based virus detection approach. This approach collects arguments 
of process calls instead of the sequence of process, which obtain 
more information of process, and then utilizes them to train 
detectors with Real-valued Negative Selection (RVNS) algorithm. 
In the stage of testing, user feedback is analyzed to adjust the 
threshold between normal files and viruses. We took two 
experiments to evaluate the performance of the approach, and the 
detection rate achieved is 0.7, which proved this approach could 
cope with unknown virus. 
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1. INTRODUCTION 
As computer virus spreads faster and threatens computer 
system more seriously than ever before, how to detect virus 
is researched intensively. Classical virus detection 
approaches aim to find signatures of known viruses, that are 
the characteristics of infected files. However, it is hard for 
these approaches to cope with unknown viruses presenting 
new signatures and with viruses obfuscating their 
signatures. 

The problems found in computer systems are quite similar 
to ones in Human Immune System (HIS). When HIS is 
attacked by unknown viruses, it will adaptively produce 
detectors and kill these viruses. Inspired by HIS, Artificial 
Immune System (AIS) [1] is considered as one of the new 
methods to defeat spreading computer viruses. Among all 
the AIS models, Self-nonself model is commonly adopted 

to detect virus. In addition, virus behaviors are considered 
by AIS as the detecting objects other than virus signatures. 
Previous virus experiments based on AIS against unknown 
viruses demonstrate that AIS is capable to find these 
viruses. 

However, mainly focusing on the sequence of process calls 
and regarding them as the embodied virus behaviors, 
former virus detecting approaches with AIS are incapable 
of  gathering enough information of virus behaviors. Same 
sequences of process calls might cause entirely different 
result due to different arguments. Moreover, when detectors 
are formed after training stage, they are limited to adjust to 
actual test result. Therefore, their performance will not be 
improved in the practical use. 

In this study, we present a framework using immunity 
based virus detection with process call arguments and user 
feedback aiming to detect unknown virus accurately and 
adaptively. The main contributions of this work include 
collecting process call arguments for training data and 
introducing user feedback to the testing stage. In the 
training stage, the arguments of normal process calls are 
used to train detectors by Real-valued Negative Selection 
(RVNS) algorithm. In the testing stage, normal samples and 
abnormal samples are tested, and the threshold between 
normal files and viruses is adjusted by user feedback. 
Differed from previous approaches adopting Linux 
platform for experiments, we choose Windows XP platform 
that are used more common. 

Related works and Background knowledge are introduced 
in next chapter. In Chapter 3, the proposed approach is 
described. At last, the experiments based on Windows XP 
platform and future work are discussed in Chapter 4 and 
Chapter 5. 

 
2 BACKGROUND 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

2.1 Signature based Virus Detection 
“Virus is a program that can infect other programs by 
modifying them to include a possibly evolved copy of 
itself.”[21] Currently, the spreading of virus has caused 
innumerous loss. Only in the first half of year 2007, Bionetics'07, December 10-13, 2007, Budapest, Hungary. 

Copyright 2007 ICST 978-963-9799-11-0 
 



111,474 new samples of virus have been found, which had 
infected 75,967,19 computers in China.[22] To respond to 
this severe situation, main computer security companies 
have released their anti-virus software. These software 
mainly adopt classic signature based virus detection method 
to detect virus. 

Former signature based virus detection approach looks for 
the existence of special files or codes, and uses a classifier 
to distinguish the virus files from normal files [9][23][24]. 
Through examining the signature, a virus is identified 
uniquely by anti-virus software. The detection rate of 
known virus is acceptable of this approach. However, this 
method does not perform well when detecting unknown 
virus since the signatures of these virus have not been 
stored in the signature base yet. To keep up with the 
increasing number of viruses, anti-virus software have to 
update to the newest signature base frequently, which cost 
time and bandwidth. Moreover, new techniques are 
employed by virus to escape from detection such as code 
obfuscation and self-evolving. It means that one virus 
might have several signatures. Thus, the size of signature 
base would increase gradually and finding a signature of 
one virus would take more time. 

2.2 Artificial Immune based Virus Detection 
In order to overcome these disadvantages of signature 
based virus detection, Artificial Immune based virus 
detection is proposed recently for detecting computer virus.  

Among various mechanisms in the biological immune 
system that are explored by AISs, negative selection, 
immune network model and clonal selection are still the 
most important mechanisms. In this paper, we focus on 
Negative Selection models [11][12]. 

Negative Selection is a mechanism to train detectors based 
on the self/non-self discrimination principal in immune 
system. After this process, tolerant detectors are generated, 
and they can detect unknown antigens, which fail to react to 
detectors correctly.  

The algorithm contains two steps. At first step, the training 
step, normal self samples are changed into n-dimensional 
points, and the algorithm receives them as the input. The 
detectors are trained to cover nonself space while do not 
intersect with self space and other detectors. When a 
detector is mature (go through given generations and still 
suit for the condition), it is removed from the population, 
and can be used to detect antigens. This iterative process is 
finished by generating sufficient detectors to cover given 
portion of non-self space or reaching given generations. In 
second step, the testing step, detectors from first step are 
used to classify samples with normal ones and abnormal 
ones.  

Forrest first proposed a method for change detection using 
negative selection algorithm, and it aimed to build an 

intrusion detection system based on the notion of self 
within a computer system [2].  

Building on previous work by the Forrest, A universal 
architecture of AIS (ARTIS) is proposed by Hofmeyr 
et.[3][4][5]. Concepts and mechanisms of HIS are 
implemented in ARTIS such as self-nonself, detectors, self-
tolerance, clonal selection. Since then, many AIS based 
applications adopted ARTIS as their architecture. 

The Artificial Immune based virus detection system 
described by Kephart from IBM focused on the automatic 
detection of computer viruses and worms [6]. Unlike 
ARTIS, in purpose of saving time and increasing efficiency, 
it does not utilize all the mechanisms of HIS, and 
techniques like blueprint [7] and trap [8] are included in the 
system. 

Currently, there are some researchers combine AIS and 
signature to build their Artificial Immune based virus 
detection systems. AIVDS proposed by Hyungjoon Lee 
extracts signatures from normal files as self in order to train 
detectors, and signatures are fixed length strings from the 
head of files. Files infected by viruses should represent 
different signatures and can be detected [9]. 

3 APPROACH FOR VIRUS DETECTION 
3.1 algorithm process 
In this work, a Real-valued Negative Selection (RVNS) 
algorithm [13] based virus detection approach is 
implemented. Figure 1 illustrates the algorithm with four 
stages. In the data input stage, self samples are collected 
and processed. The process monitor collects value of given 
arguments of the file operaions done by process, and 
converts them into self samples for training. We choose 
real-valued type other than traditionally used binary type to 
present self samples. Due to the wide range of each 
parameter and large space for a long binary to code a large 
value, binary type is deficient in this case. 

At the detectors generating stage, all of the self samples are 
considered as hypersphere in Rn space. Affinity of a 
detector and an antigen is judged by membership function, 
which establishes whether a point lies in the shape. This 
function depends on the shape of detectors, such as 
hypersphere, and the distance measure. By means of Monte 
Carlo algorithm, the fitness of detectors can be readily 
calculated and thus detectors covering sufficient space are 
produced. 

At the testing stage, we first set the threshold - the rate of 
abnormal file operations to all the file operations- and then 
evaluate the algorithm with normal and abnormal samples. 
This stage integrates user feedback to regulate the threshold 
dynamically in order to detect various virus in real 
environment. Accordingly, the detection rate is improved 
and the false alarm rate is reduced. 



 
 

Figure 1. Algorithm process 

3.2 Transform of operations 
When a host PC is infected by computer virus, virus will try 
to gain control of the host and commit different kinds of 
destructions. As the differences of architectures and 
implementations between various operating systems, 
general behaviors of viruses vary greatly. Virus behaviors 
on Windows XP platform are shown as following. 

Modify Registry: Add startup registry key at the place such 
as Run, Runonce, RunonceEx, RunServices. When system 
starts, virus executes by itself. 

Hijack Files: When host is infected, the virus replaces 
certain content of system files or inserts itself into certain 
system files. After that, the virus code will be executed 
before the original code when operating system accesses 
the file. 

Copy Files: Virus copies files it self-extracts to the system 
folders. Therefore, it can hide the executives. 

Modify System Files: Autorun.exe, win.ini, system.ini are 
vulnerable and are often modified by virus. By adding the 
commands of virus, malicious code is executed when host 
starts up. 

Between all these operations, manipulations of files are the 
most frequently operations of one application, which can 
indicate whether an application is malicious. Nevertheless, 
even if the APIs called by one application are the same, the 
arguments of the calls differentiate. Take Word of 
Microsoft co. as an example: this application also modifies 
registry and system files, though it is a normal application. 
Thus, we cannot simply rely on finding out suspicious 
sequences to distinguish virus from normal applications. 
This paper takes into account arguments of process calls as 
the important characteristics of viruses behaviors, and 
regards the file operations as the monitoring objects [15]. 

In one file operation, there are six pivotal arguments: 
operation kind, path, file name, success or not, parameter 1, 
parameter 2 (referred to FileMon [16]). These attributions 
determine the effect of one file operation. Table 1 shows 
the fields and descriptions. 

 
 
 
 
 
 
 

Table 1.  Details of attributions 
 

Attributions Field Description 
Operation 

 Kind 
{Create, 
 Delete, 
Write} 

The action to one file 

Path String type The directory of the 
manipulated file  

File Name String type The name of the 
manipulated file  

Success 
or Not 

Boolean type If one file operation is 
successful, the result is 

true, else false. 
Parameter 1 Integer type When operation kind is 

Create, it is the options 
（Create, Overwrite）.
When operation kind is 
Writing, it is the offset 

to the file head. 
Parameter 2 Integer type When operation kind is 

Create, it is the access 
method (Read, Write, 

etc.). 
When operation kind is 
Writing, it is the length 

of file writing. 
 
The passages below describe the concrete meaning of Table 
1. 
Path and filename determine the position of one file. As 
normal applications hardly modify or delete the system files, 
they can be important signatures of one application. 

Parameter 1 and Parameter 2 reflect the manner one 
application manipulates the file. Normal applications rarely 
modify or overwrite specific areas of one file. Hence, they 
can be other useful elements. 

Success or Not is the result of file operation. The 
inexistence of one file or the restriction to access one file 
will lead to the failure of one operation. It can indicate 
whether an operation is legitimate. 

Each attribution should be changed into real value type 
ranged in [0,1]n as the input of training stage. First, the 
attributions are changed into Integer type, and then 
normalized to real-valued type. The technique is described 
below. 

The field of Operation Kind includes Create, Delete, Write, 
which can be marked as 1, 2, 3. 

Path and file name are string type, we sum up the ASCII 
value of characters included in these two attributions to 
obtain the integer value. Let c1, c2, c3… cn be the ASCII 

value of the characters of one string, the value is 1

N

i

i

c
=
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Success (true) or not (false) is Boolean type, and are cast 
into 1 and 0. 

Parameter 1 and Parameter 2 store the call parameters of 
Create and Write. They are already integer type, so they are 
not changed. Since Delete does not have arguments, the 
value of parameter 1 and parameter 2 are 0 for Delete. 

Then values are normalized to real-valued type ranged in 
[0,1]n. We denote maxp as the maximal value of one 
attribute in operation set, and minp as the minimal value of 
one attribute in operation set, and p is the value of one 
operation needs to be transformed, and pn is the new value, 
which is defined as: 

pn=(p-minp)/(maxp-minp) 

If maxp and minp are the same value, an extra value will 
add to maxp to avoid divide-zero error.  

3.3 Algorithm for detectors generation 
The approach developed in this paper uses RVNS to train 
as many detectors with high fitness as possible. The 
following sections describe the details of RVNS such as 
representations of self/nonself, detectors, fitness 
calculation , generic operators. 

3.3.1 Detector Representation 
The file operations are cast into points in [0,1]n after the 
attributions are extracted and transformed. Likewise, 
detectors should be represented in [0,1]n. In this approach, 
we choose hyper-sphere with an n-dimensional center and a 
radius as the form of detectors. 

Besides the representation of one individual, to judge 
whether a point is in the detector needs a membership 
function. We choose Minkowski distance function to 
compute the distance of a point and a detector. Minkowski 
distance between point x and y is: 

1/( , ) ( )n n
i idist c x c x= −∑  

A point lies in a detector if the distance is less than the 
radius of the detector. 

3.3.2 Fitness Calculation 
Fitness is the evaluation of the quality of one individual. 
Detectors with higher fitness would be selected. As 
detectors are hyper-spheres in [0,1]n, the fitness of one 
detector is high when it covers large non-self space and 
overlaps small space with other detectors. Meanwhile, the 
detector must have no intersect with self points. The fitness 
function of detector D is defined as follows: 

fitness(D)=effective-coverage(D)-C(m)*m 

The effective coverage is the volume that one detector 
covered while not yet covered by other detectors. Let V(D) 
be the volume of detector D and OL(D) be the overlap 

between D and other detectors, then fitness(D)=V(D)-
OL(D). The volume of a 2k or 2k+1 dimensional hyper-
sphere of radius r is 

2
2 ( )

!

k
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=
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However, the overlap between detectors is not easy to 
calculate.  As calculating the intersect volume of two n-
dimensional shapes is difficult. Moreover, the arithmetic 
complexity of geometry overlap calculating algorithm rises 
sharply when the dimension of space increases.  
In this work, Monte Carlo technique, a well-established 
calculation technique, is used to estimate the volume of 
overlap. To compute the volume, a set of N random points 
uniformly distributed in [0,1]n are generated. Sump is 
defined as the number of the points which lie both in the 
areas of detector A and B. Then the volume of the overlap 
is sump/N*1. The arithmetic complexity of volume 
calculating is O(N), and the cost is relatively smaller 
consequently. 

When a detector intersects with self points, the fitness 
subtract m * C(m). m is the self points that lie in the area of 
detectors. C(m) is the penalty function that prevent 
detectors from covering self points. 

3.3.3 Genetic Algorithm 
Figure 2 shows the genetic algorithm used to train detectors. 
We use Roulette Wheel Selection to select best individual, 
two-point crossover and bit-flip mutation f crossover and 
mutation. When the coverage reaches the desired coverage 
or desired number of detectors have been generated, the 
algorithm terminates. After the training, a certain number of 
detectors go into testing stage. 



 
 

Figure 2. Process of Algorithm 

3.4 User Feedback 
The objective of user feedback in testing stage is to 
improve the detection rate and reduce false rate. We define 
the rate of abnormal file operations to all the file operations 
as the threshold between normal files and virus. Before 
testing, a given threshold is set by previous knowledge, and 
the rate of abnormal file operations to all the file operations 
is calculated when a sample comes into the testing stage. A 
test sample is malicious only if the rate is bigger than the 
threshold. Since the distribution of the rate of normal files 
and virus vary greatly, rightly adjusted threshold would 
enable detectors to perform more accurately. When 
carrying out one test, the threshold is moderated based on 
user’s opinion about previous result and current result. 
Users are not required to give judgment to all the detections 
result but just several.  

In the real environment, when a detection event happens, 
system pops up a dialog to inform user and asks user 
whether this result is correct. User estimates the result 
based on the information such as infected file and 
suspicious process delivered by the system. And the 
threshold will be adjusted based on user response. 

There are three kinds of feedback given by user: correct, 
false positive of virus and false negative of normal files. 
Different methods of threshold calculation according to 
three scenes are described as follows: 

A. Scene 1 (correct): 

   There is no need to modify threshold for a correct result, 
and the threshold is fixed. 

B. Scene 2 (false positive of virus) 

Let th be the threshold and p be the rate of the virus test 
case. According to previous experiments, the rate of a 
normal file is likely to be less than the threshold and the 
rate of virus is likely to be bigger than the threshold. Thus p 
is less than th and the new threshold th`=th-dt, (dt>0). 

Denote N as the number of all the tested normal cases, n as 
the number of cases whose rates are between p and th, then: 

dt=th-p    n=0, 

dt=(1-n/N)*(th-p)*M n>0 

M is a constant value, which decides the level of threshold 
change. 

C. Scene 3 (false negative of normal files) 

th and p are defined the same as Scene 2. But in this circs, p 
is bigger than th and the new threshold th’=th+dt, (dt>0). 

Denote N as the number of the entire tested virus cases, n 
as the number of cases whose rate is between th and p, then: 

dt=p-th    n=0, 

dt=(1-n/N)*(p-th)*L n>0 

L also decides the level of threshold change. Nonetheless, 
M is relatively bigger as the problem brought by false 
positive of virus is more severe than false negative of 
normal files. Based on previous experiments, M and L are 
set to 1.1 and 0.9. 

4 EXPERIMENTS 
The primary goal of the experiments is to test whether this 
approach can detect virus while does not mistake the 
normal application for virus. We chose Macro Virus as 
detect object, since the behaviors of their host application 
are easy to capture. “Macro viruses, as the name suggests, 
are designed to add their code to the macros associated with 
documents, spreadsheets and other data files. “ [19]. As the 
approach aimed to run on Windows XP platform, and “the 
vast majority of macro viruses were designed to spread on 
the back of Microsoft® Office data files” [19]. We selected 
Word (with most Macro virus cases) as the monitoring 
object. Generally, Macro Virus infects document formatted 
by Word and damages files through Word, Excel, etc.   

4.1 Experimental Arguments 
The parameters used in the experiments are listed as 
following: crossover rate = 0.8; mutation rate = 0.8; max 
generations = 150; population size = 40; desired 
coverage=0.99; self threshold = 0.1. In the training stage, 
the terminating condition is that maximum generation 
reaches 150 or coverage reaches 85%. 



4.2 Data preparation 
To capture the file operations of one application, we use 
FileMon[16] as system monitor and collector. This tool can 
capture all file system activities at real-time. We confined 
the monitoring scope to process named WINWORD. 
Meanwhile, the operation kind must be create, delete and 
write. The operations are saved to a log file. 

Since the coverage of a ball in a given area with the same 
radius reduces when dimension increased, many detectors 
are needed in order to cover six dimensions space, which is 
inefficient and costs time. So the dimensions are eliminated 
to three with the combination of different dimensions. 
“Operation Kind” and “Success or Not”, “Path” and “File”, 
“Parameter 1” and “Parameter 2” are combined separately. 
Let a be the value of the first argument and b be the value 
of second argument and nb is the number of digits of b, 
then the combined value is a*10nb+b.  

Another problem is that different file names would 
influence the result of test, as file name is also an 
attribution. The file name in each train or test case is set to 
a constant value. Path is similar processed with file name. 

For example, there is one operation with six attributes 
(CREATE, 
C:\DOCUME~1\lizhou\LOCALS~1\Temp\~DFD485.tmp, 
~DFD485.tmp, S, CREATE, 0013019F) as (Operation 
Kind, Path, File Name, Success or Not, Parameter 1, 
Parameter 2), and the filename is changed into A. After the 
process of integer presentation, normalization and attributes 
combination, one self point is generated with three real-
valued parameters (0.009900990099, 0.038940400873, 
0.26787898835). 

We used three sample sets to carry out the experiments. 
The first set is the file operations of normal document, 
which we used to train detectors.  

Table 2 shows the specific training cases. We list ten cases, 
and each case contains normal file operations. As other 
operations such as modify the document only modify the 
data in memory, the case only contains these operations are 
not used to test. 

Table 3 shows the virus test cases. We obtained the entire 
virus samples from VX Heaven [20]. In addition, we select 
the virus described in Viruslist [19]. Before starting test, we 
open the virus infected documents, create another document 
and save it. Each created document (also infected) is used 
to test. 

Table 4 shows the normal test sets. There are five cases to 
test. Since the content and structure of one document does 
not have any impact on the test result. We prepare four 
normal cases with Macro and one case without Macro. 

 
Table 2.  Specific training cases. 

 
Case No Description 

1 Open normal document without Marco. 
2 Open normal document with Marco. 
3 Save normal file already opened. 
4 Save document as template. 
5 Run Word. 
6 Create a document. 
7 Close document in Word. 
8 Exit Word. 
9 Edit document in Word. 

10 Save document newly created 
 

Table 3.  List of Macro Virus. 
 

Case No  Virus Name 
1 Virus.MSWord.Beast 
2 Virus.MSWord.Dub 
3 Virus.Multi.Cocaine 
4 Virus.MSWord.Inexist.b
5 Virus.MSWord.Mentes 
6 Virus.MSWord.Mimir 
7 Virus.MSWord.Natas 
8 Virus.MSWord.Outlaw 
9 Virus.MSOffice.Shiver 

10 Virus.MSWord.Titasic 
 

Table 4. Testing cases of the file operations of normal 
documents 

 
Case No Description 

1, 2 Open normal document  
without Marco. 

3, 4 Open normal document  
without Macro and save it.

5 Open normal document  
with Macro and save it. 

4.3 Result 
After 10 times training, the best training result is the 
detector list including 150 detectors with coverage 0.87575. 
This detector list was used for test. 

To evaluate the improvement that user feedback takes on 
the test result. We carried out experiments with or without 
user feedback. 

A. Experiment 1 

This experiment is free of user feedback and Table 5 shows 
the testing result for Macro Virus cases. The threshold of 
ratio of nonself points to all the points is fixed to 0.15, and 
the cases above that threshold are abnormal. The detection 
rate is 0.5, while the false positive rate is 1. Half of the 



cases are not detected, and their results are between 0.05 
and 0.15, which is much smaller than the average ratio of 
abnormal cases.  

Table 5.  Testing result for Macro Virus cases 
 

Case  
No 

Total  
points 

Nonself  
points 

Ratio Result  
(ratio=0.15)

1 5497 5402 0.982 Abnormal 
2 35 4 0.114 Normal 
3 5681 5449 0.959 Abnormal 
4 5454 5446 0.998 Abnormal 
5 121 2 0.016 Normal 
6 64 9 0.141 Normal 
7 5496 5446 0.991 Abnormal 
8 12 1 0.083 Normal 
9 79 4 0.051 Normal 

10 5681 5461 0.961 Abnormal 
 
Table 6 shows the test result for normal cases, the ratio is 
also 0. 08. No normal case is detected and false negative 
rate for normal cases is 0.  

Table 6.  Testing result for normal cases 

 
Case 
No 

Total  
points 

Nonself  
points 

Ratio Result  
(ratio=0. 08)

1 49 0 0 Normal 
2 16 0 0 Normal 
3 61 4 0.066 Normal 
4 56 4 0.071 Normal 
5 19 0 0 Normal 

 
B. Experiment 2 

This experiment relies on user feedback. Similar to 
Experiment 1, we used cases described in Table 2 for 
detectors training. In the testing stage, we still used cases 
described in Table 3 and Table 4. However, threshold is 
adjusted in six virus samples and three normal samples. The 
rest our virus samples and two normal samples are tested 
with the adjusted threshold. Every Two virus samples are 
followed by one normal sample. 

Table 7 shows the threshold change towards each test case. 
The threshold is set to 0.15 initially. When a case goes 
through testing, the threshold is adjusted. After testing V1, 
N2 and V6, the threshold is modified as error detection 
happens.  

 
 
 
 
 
 
 

Table 7.  Testing result for cases to adjust threshold 

 
Case 
No 

Ratio Adjusted 
Threshold 

Result  
 

V1 0.982 0.15 Abnormal 
V2 0.114 0.114 Normal 
N1 0 0.114 Normal 
V3 0.959 0.114 Abnormal 
V4 0.998 0.114 Abnormal 
N2 0 0.114 Normal 
V5 0.016 0.016 Normal 
V6 0.141 0.016 Abnormal 
N3 0.066 0.066 Abnormal 

(V= virus, N= Normal) 
 

The final threshold is 0.066 after training with user 
feedback. 

Six cases are tested with adjusted threshold. Table 8 shows 
the detection result for these samples. 

Table 8.  Testing result for cases with adjusted threshold 

 
Case
No 

Ratio Result  
(ratio=0.15)

V7 0.991 Abnormal 
V8 0.083 Abnormal 
N5 0.071 Abnormal 
V9 0.083 Normal 

V10 0.961 Abnormal 
N6 0 Normal 

(V= virus, N= Normal) 
 

After the two-stage test, the detection rate is 0.7. False 
positive rate for Macro Virus cases is 0.43 and false 
negative rate for normal cases is 0.66. The detection rate 
improves by 0.2 while the false positive rate drops by 0.57 
and false negative rate rises by 0.66.  

C. Result Analysis 

The detection rate and false negative rate are relatively 
higher and false positive rate is relatively lower in 
Experiment 2. We can reach conclusions from the result 
above: 

 Adjusting threshold with user feedback is able to 
provide higher detection accuracy but might increase 
the possibility of false negative of normal files. As 
detecting virus is more important to user, the result in 
Experiment 2 is acceptable.  

 When the number of points is high, it is very likely 
that virus infects a file. 

 When opening a normal document, the operations are 
limited to several kinds. However, at the time saving a 



modified document, a large number of different 
“Write” operations would influence the testing result. 

Though over half of the cases of Macro virus are detected, 
there are some cases not detected. To enhance the system 
performance, modifying the parameters for training 
algorithm, obtaining more samples of Macro virus, 
adjusting the initial threshold ratio might improve the 
system’s performance. 

5 CONCLUSION 
This paper presents an approach for detecting virus with 
user feedback. In the training stage, we implement the 
algorithm for training detectors based on RVNS. In the 
testing stage, we utilize user feedback to adjust threshold. 
Finally, we carry out experiments aimed at detecting Macro 
virus. In addition, the experiments show that this approach 
can detect virus while avoid mistaking normal applications 
for virus. Preknowledge of the specific virus and specific 
application is not required. 

Current work mainly focuses on detecting virus from the 
log file of the operations done by virus. To fulfill the 
requirement for detecting virus at real time, it needs to 
monitor the application when it runs, and the efficiency of 
the algorithm needs to be considered. Multi-shaped 
detectors [14] can be used to improve the detection rate and 
reduce the false negative rate and false positive rate. Other 
operations such as operations to Registry would be included 
in the future development of the approach to collect more 
information of an application. Finally, though user’s 
feedback only plays an important role in threshold adjusting 
in the current model, we will consider the detectors’ 
generation with user feedback in next step. 
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