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ABSTRACT
This paper presents a novel approach to support flexible
cryptographic suites on resource restricted devices. Com-
mon primitives which are used for symmetric key algorithms
have been thoroughly analysed by the hardware and cryp-
tography community to design more efficient implementa-
tions. A side product of this development and a common
fact for cryptographers is the strong modularisation of block
ciphers and the similarities therein. This contribution shows
how an efficient combination framework can exploit these
characteristics to support a large variety of cryptographic
primitives on resource restricted hardware. We present a
collection of basic building blocks, which can be combined
dynamically to implement various primitives. With the high
energy consumption of radio transmission in mind the pre-
sented work takes a different direction from existing ap-
proaches which aim at highly optimised primitives. By ex-
ploiting the modular redundancy within existing block ci-
phers the presented approach can adapt to a node context
and choose the primitives optimal for a specific task in terms
of security requirements, and resource consumption. This
work additionally discusses how this modularity enables a
device to efficiently update existing and install new prim-
itives, and how it may adapt implementations to resource
restricted execution environments.
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1. INTRODUCTION
The research area of wireless sensor networks enjoys great
popularity. Technology is increasingly supporting this trend
and devices are moving from the laboratory to real-life ap-
plications. Of course, this implies that in a couple of years
from today we will not only be surrounded by the mobile and
“bulky” devices we know today, such as Laptops, PDAs, cell
phones, etc., but also by smart, small, and cheap devices.
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They will be able to accomplish very simple tasks providing
input to the more powerful devices. With this information
the latter devices will be able to sense the environment and
support our daily life according to the context associated
with our location.

Thus, depending on the capabilities of the nodes in this sce-
nario, we will have different node perspectives. As an ex-
ample, you may think of a simple sensor device which picks
up the heart beat of a patient. This device does not apply
complicated computations to the data. It does not process
context information or communicate to other devices to de-
rive information abouts its context. Instead it simply oper-
ates within a local context and reports the information to
another more sophisticated device, e.g. a PDA carried by a
nurse. The PDA in turn can pick up several sensor readings.
According to the accumulated data and some patient profile
specified in advance it is able to raise an alarm if something
abnormal happens. Based on the readings which constitute
the context of the PDA, this device may also be able to dis-
tinguish false alarms from real alarms. Thus, in this very
simple example, a more capable node is able to adapt to
the surrounding nodes, to the environment, and to its own
characteristics. Moreover, the more capable nodes are able
to guide or instruct restricted devices which security mech-
anisms to deploy. Short: nodes adapt to the context and
application scenario in which they act and try to exhibit
autonomous behaviour.

If we specify this observation and reconceive the roles of this
scenario in the realm of security we will discover an equiv-
alent situation. There will be devices which possess more
complete information about their context. Consequently,
these nodes will also be able to take better decisions when
determining what kind of security mechanisms should be
used in order to secure communication between nodes. Pa-
rameters which influence this decision can be node char-
acteristics (battery status, processor power, radio technol-
ogy, etc.) and the characteristics of the security mecha-
nisms available (message overhead, cycles needed to en- or
decrypt a message, etc.) to name just two examples. Thus,
ideally, to always take the best decision, i.e. to use the se-
curity mechanisms, most feasible and efficient for a specific
task, every device would have to support a variety of se-
curity mechanism currently available. However, currently
existing approaches mainly aim at investigating the appli-
cation scenario in which a resource restricted device will be



used. According to this analysis separate and specific se-
curity mechanisms are determined and deployed. Most of
the time this decision is a trade-off between the security
guarantees provided by this particular and highly optimised
mechanism and its resource requirements.

This work takes an opposite approach and describes how a
resource restricted device can be equipped with a crypto-
graphic suite able to implement a number of different se-
curity primitives. It is not based on a scenario specific and
optimised cryptographic primitive which constitutes a trade-
off between security and efficiency. Instead, it focuses on a
modular approach which allows for combinations of small
and optimised components which can be combined to prim-
itives optimal within a certain context.

To explain our approach Section 2 first links our approach
to existing work. Afterwards, Section 3 outlines the gen-
eral functionality of our solution and list the problems we
can solve with this approach. Section 4 will then explain
our solution in respect to block ciphers. We identify the ba-
sic building blocks of block ciphers exploited in this work,
present the description of these blocks and of their combina-
tion, and discuss some implementation details. Before con-
cluding our work in Section 6, we discuss this highly dynamic
approach in Section 5, regarding its efficiency, security, and
its general capabilities.

2. BACKGROUND AND RELATED WORK
Moore’s law [19] often causes people to question approaches
which design methods which provide cryptographic support
for resource-constrained devices. Their main argument: The
advancement of technology will annul the restrictions and al-
low the installation of numerous security primitives in cur-
rently existing sensor platforms. However, the current de-
velopment shows an inverse trend. Instead of small devices
with increasing resources we observe the development of de-
vices with constant or less resources which decrease in size,
price, and to some extent also in power consumption [10, 11].
Moreover, if we look at the evolution of battery resources it
becomes obvious that they currently do not keep pace with
Moore’s law and thus stay behind the current development
[31]. As a result, the last couple of years the research in
the realm of sensor networks has originated numerous se-
curity protocol suites which are feasible for highly resource
restricted devices.

The most popular representatives are SPINS [22] and Tiny-
Sec [16]. Both protocol suites are not dynamic in the sense
that they are able to adapt the security mechanisms during
deployment. Nevertheless, they give valuable insights in the
design decisions to be taken when developing new security
protocols for constrained devices. Furthermore, for higher
flexibility they pursue a modular approach which enables
the construction of more complex protocols from rather ba-
sic components. We think that this is an essential part for
future adaptive mechanisms.

A more dynamic approach is proposed in [5]. Chigan et al.
describe a framework which is capable of deploying com-
binations of security services to satisfy security needs in a
specific context. The combination process in this scheme
tries to find a trade-off between the level of security pro-

vided and the overall network performance of the wireless
ad hoc and sensor network.

A similar approach is presented in [24]. For three different
security levels this work proposes existing crypto-algorithms
and security protocols based on analyses concerning their ef-
fectiveness and potential impact on low data rate devices.
A security manager allows the network of heterogeneous de-
vices to comply with the security requirements of selected
services. This approach is rather limited in its adaptivity as
it only offers the use of RC5 and AES for the different secu-
rity levels. This work also showed how different parameters
for the security protocols and cryptographic primitives can
successfully safe resources of a sensor node and at the same
time comply with different security levels.

Finally, the work presented in [23] aims at deploying a sen-
sor node which offers strong asymmetric cryptography dur-
ing the deployment phase. After a one-time bootstrapping
procedure this crypto suite is dynamically replaced by re-
source friendly security protocols for the regular and secure
operation of the node. The research conducted in this work
does not only show how devices with very limited memory
resources can benefit from public-key cryptography but it
also emphasises the need for different security protocols for
different application scenarios and contexts. However, the
flexibility and adaptivity of this approach for real-life appli-
cations is low.

3. GENERAL FUNCTIONALITY
To understand how Highly Adaptive Cryptographic Suites
(HACS) defined in this paper are going to overcome the
limitations of the solutions described above we will outline
the basic structure of a sensor node. This outline will focus
on the logical components which enable a sensor to support
HACS. Other components not relevant for our implemen-
tation are omitted. Clearly, this structure is not limited
to wireless sensor nodes but can be transfered to any other
network node.

Figure 1 depicts a sensor node able to run HACS. The
generic communication interface allows the node to exchange
arbitrary data with proximate nodes. A security policy in-
stalled on the sensor controls when, how, and to whom the
sensor data is distributed. Of course, this security policy
can be empty. If it is not, it can for example determine that
data read by the sensor is only distributed to authenticated
nodes over a secured channel. For this purpose appropri-
ate credentials are used. The security policy is enforced by
the cooperation between the policy enforcement and policy
decision point.

The three software components relevant for enabling HACS
are the Security Primitive or Protocol Description (PDC),
the Building Blocks component (BBC), and the Combination
& Execution Unit (CEU).

HACS accesses the building blocks component to construct
the required cryptographic primitives or protocols, i.e. this
component represents some memory space which contains a
specific number of simple and optimised binary fragments
dedicated to compute specific functions, e.g., circular left
or right shifts, modulo multiplications, etc. The number
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Figure 1: Logical components required on a sensor
node for HACS support

and type of building blocks stored in this component are
discussed in Section 4.1. The second component, Security
Primitive or Protocol Description, allocates memory space
for a number of high level descriptions which determine in
which order the building blocks have to be executed in or-
der to compute the output of a cryptographic primitive or
to run a protocol instance. The two alternatives for these
descriptions are explained in more detail in Section 4 (specif-
ically in 4.3). Finally, the knowledge and the objects stored
in the last two components have to be combined and run,
i.e. the CEU reads the description from PDC derives the
required building blocks to construct the corresponding se-
curity mechanism and uses the building blocks from BBC
to generate and run it. As an example one may think of
constructing a simple RC5 cipher and encrypt sensor data
with this encryption function. This combination and execu-
tion process and its variants are also described in Section 4.
The logical representation of the sensor node in Figure 1
also contains an update interface. Similarly to users which
are able to connect to the sensor node via the communica-
tion interface it is possible to update building blocks and
descriptions of security mechanisms using the update inter-
face. Thus, controlled by the security policy it is possible
to update either the elements of the PDC or of the BBC.
In this way, it is fairly easy to install a new security mecha-
nism which makes use of the installed building blocks. Also
new mechanisms which may lack of some elements in BBC
can be installed with less effort as the BBC has to undergo
only slight modifications. In this way, security relevant up-
dates on the installed mechanisms can be conducted effi-
ciently too. Instead of providing large monolithic blocks
which would represent the security mechanism itself only
single small building blocks or compact descriptions are ex-
changed.

Apparently, it is obligatory to control this update process in
order to avoid that unauthorised nodes or users are able to
infiltrate the node with either building blocks or descriptions
which are not providing the functionality they were designed
to. Thus, the policy enforcement controls the access to both,
BBC and PDC.

Currently, the decisions about which security mechanism
should be employed are taken locally by the policy decision

point (PDP). However, this architecture also allows input
from authorised remote nodes. Hence, other nodes are able
to cooperate with the local PDP in order to find, for ex-
ample, a good encryption mechanism which is a good trade
off between resource consumption and the required security
level, respecting the context of both nodes.

With this very abstract view on our approach it is possible
to see how this architecture can reduce the resource con-
sumption during the deployment phase of “long-life” wire-
less sensors. Installed security primitives may become sub-
ject to vulnerabilities or may be outdated. Their update or
replacement can be conducted efficiently with HACS. Addi-
tionally, we tremendously increase the flexibility of existing
approaches by offering a wider range of security mechanisms.
As a consequence, this flexibility may also improve the re-
source consumption of sensors implementing HACS.

To specify this high-level view the next section will focus on
cryptographic block ciphers and cryptographic hash func-
tions. We explain which kind of building blocks and de-
scription languages can be chosen in order to implement the
architecture outlined above.

4. DYNAMIC CRYPTOGRAPHIC SUITES
Efficient encodings of cryptographic primitives which would
consume only very little space but yield very complex and
flexible structure and functionality are the focus of this work.
Please note that this approach does not aim at optimis-
ing single cryptographic primitives for space, performance,
and low power consumption. Instead, it splits block ciphers
into their building blocks and defines a mechanism to com-
bine them in an easy and straightforward way. Obviously,
this mechanism will result in less resource efficient primi-
tives. However, at the same time it will increase flexibility
and functional diversity by providing a cryptographic suite
which can offer different primitives for different application
scenarios. Further work will show how this approach can
also effectively reduce the average power consumption.

The next questions are: Which building blocks for crypto-
graphic primitives can be used? How do we combine them?
Is the execution process for the resulting combination sim-
ple enough? How much overhead does it introduce? Sections
4.1 through 4.7 are going to address theses questions. For
this purpose we are going to use the following terms: A
primitive is a specific cryptographic algorithm (e.g. RC5,
SHA-1). Building blocks or code blocks designate pieces of
code, which execute a basic operation (S-Boxes, rotation of
bytes, XORing, etc.) on data. The data used to steer the
control flow is kept in information blocks, each of them con-
taining information for the execution of a single code block.
Finally algorithm-specific constant data (like a substitution
matrix) are kept in constant data blocks, which can be used
as input for code blocks.

4.1 Building Blocks
At first sight, finding suitable building blocks for crypto-
graphic primitives appears to be straightforward. Reasons
for this are of historical and cryptographic nature.

In this work, we consider symmetric key block ciphers. Al-
most all of these primitives are based on the iterated applica-
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Figure 2: Comparison of block ciphers RC5 and RC6

tion of a function f . This function can be composed of sim-
ple transformation rules which are based on permutation and
substitution methods. The number of iterated applications
of f can increase the security of such a scheme. Depending
on the amount of information used in f and the manipu-
lation of round-data these schemes are either called Feistel
networks or substitution and permutation networks (SP).
The uniformity of the networks of different cryptographic
algorithms can be illustrated as a graph in which nodes rep-
resent the required operations (see Figure 2). Further, new
cryptographic primitives are often successors of existing ones
which show better crypt-analytical characteristics. As an ex-
ample, RC6, constitutes a construct which is based on two
parallel RC5 algorithms [29] with an additional multiplica-
tion [28] (also see Figure 2). Likewise MD5, SHA-x, and
RIPEMD-x are based on MD4 [25]. Of course, this causes a
high redundancy between these algorithms. We are not the
first to discover these modular and redundant characteris-
tic. Especially in the realm of hardware design numerous
similar observations have been made. Hence, we can exploit
these contributions and compile a list of the common build-
ing blocks of the most popular block ciphers (see Table 1).
This list is a modified and slightly enhanced version of the
list provided in [14, 15].

Although there are building blocks which are solely used by
one algorithm we can identify numerous elements which are
common to almost all of the primitives. Consequently, espe-
cially the latter elements will assure code reduction if used
with our approach. This statement cannot be generalised,
yet. The effective code reduction will depend on the variety
of parameters relevant for the algorithms, e.g. the word size
used, the block size processed, the number of rounds of the
algorithm, etc.

Whether these building blocks have best granularity for our
approach is subject for future research. However, we cur-
rently claim these building blocks to be a good trade-off be-
tween fine granular operations and coarse modularisation.
Obviously, in the first case we have to face higher adminis-
trative overhead due to the description and combination of
the single building blocks. The next sections are going to

Table 1: Building blocks for common block ciphers
and hash functions
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address both of these issue and show how this overhead can
be kept to a minimum.

4.2 Primitive Description
Comparable to the commonly used representation for ci-
phers (see Figure 2) we are going to use a graph representa-
tion to describe the proper combination of our cryptographic
primitives. Of course, the graph used has to be more ex-
pressive than the visual representation as it has to properly
describe how building blocks have to be combined in order
to yield correct primitives. On the other hand the graph has
to avoid redundancy as much as possible to guarantee low
overhead. Accordingly, its processing has to be as simple as
possible.

The primitive description shall be composed in a language,
that allows to describe graphs of the needed complexity,
identifying data types and code blocks and their respective
interfaces unambiguously, such that the system is capable of
mapping them onto existing building blocks. As algorithms
will most likely be designed by humans, the language should
be easily readable and understandable. This excludes com-
plex text formats and binary formats (at least at the first
stage).

4.3 Interpretation vs Compilation
A straightforward implementation might execute a given de-
scription via interpretation. A simple interpreter would read
the description, split it into instructions (here: basic build-
ing blocks), retrieving, and executing them one by one. Dur-
ing the runtime every statement of the description will be
re-evaluated before execution. While this is a simple and
easily implementable approach (no need for generation of
code, often no need for low-level system actions like address



space management), it has its drawbacks as interpreted so-
lutions tend to have a larger time and memory footprint.
Especially the latter is of concern in modern embedded sys-
tems as memory tends to be the most limiting resource.

Because of these factors, we have chosen a different ap-
proach, which employs pre-compilation of the algorithm’s
description in order to reduce interpretation overhead. In
this process, some code may be generated to execute on its
own, reducing the interpretation of descriptions to a single
run, which emits the respective code and/or data structures
(see below). While this creates some additional workload
when first implementing the algorithm, subsequent runs will
be executed faster and with a smaller memory footprint. As
algorithms don’t change as often as they are executed, we
believe this to be a reasonable trade-off.

4.4 Implementation via chained code blocks
This implementation is based on the idea of supplying the
individual code block with enough information to guide the
control flow themselves - a controlling (or interpreting) in-
stance is not needed in this approach.

While the structure of an algorithm’s description graph may
contain forking (i.e. nodes with more than one output edge),
execution on the machine will usually be linear. Effectively
this requires us to transform the graph into a linear list of
blocks to execute, probably storing some results in memory
for consumption by other blocks (so while transferring the
control to a block along one edge, a block along another
edge processing the same results later will still have these
available).

Once a linearisation (and storage for intermediate results) is
found, the addresses of the code blocks (which can vary for
different devices and thus cannot be part of the algorithm’s
description) must be resolved to actual values. This also
applies to addresses of data blocks used in this algorithm,
e.g. constant S-boxes in DES.

Finally all data gathered must be stored in a special form
of the description, which consists of a series of information
blocks, each corresponding to a code block. Every informa-
tion block starts with the address of the code block and
an offset to the next information block. These values are
then followed by a series of arguments (defined by the code
block), which may be addresses (for input or output of data),
behaviour-influencing parameters (e.g. block sizes) or con-
stants. The sequence of information blocks is terminated
by a block only consisting of the address of a special termi-
nation code block which will end the execution and return
to the caller. As every code block during execution is sup-
plied with a information block according to its current role
(e.g. XOR 4096 bytes starting at address 0x1000 with those
starting at 0x2000 to 0x3000), it is able to execute its task as
well as transferring control transfer to the next code block,
supplying it with a new information block.

4.5 Pre-Compiler
As mentioned before, the graph needs to be transformed to
the internal pre-compiled data structure as described above.
This addresses various problems:

argument #1

argument #2

argument #1

address of codeblock #20x0004

0x0007 address of exit()

address of next block

address of next block

IBP

IBP+1

IBP+2

IBP’

IBP’+1

IBP’+2

IBP’’

IBP+3

address of codeblock #10x0000

Figure 3: Example information block structure

1. Linearisation: The graph structure of the algorithm
has to be transformed to a linear sequence of code
blocks instead of a branching tree-like structure. De-
pendency-resolving algorithms can be used to create a
linear order of execution of code blocks.

2. Address resolution: Names of code blocks and constant
data referenced in the description have to be resolved
to addresses on the target machine.

3. Data storage allocation: As intermediate results often
consist of large blocks of data (more than a processor
may hold in its internal registers), storage for this data
must be found and allocated. This is a rather critical
part of pre-compilation as memory seems to be one
of the more critical physical resources in embedded
systems.

4. Storage: As algorithm descriptions should be pre-compiled
only once and be ready for execution in the future, the
pre-compiled description should be stored in memory
(possibly flash or EEPROM) in such a fashion that it
can be retrieved by name or signature.

Although the implementation of the pre-compiler on the tar-
get system seems straightforward because of the easily avail-
able information (e.g. addresses) it might be more feasible
to move this process to higher instances with more com-
putational power and resources. While this may introduce
additional overhead in form of communicating the neces-
sary data (addresses, current memory layout of the device),
it allows the pre-compilation to employ better optimisations
techniques because the device restrictions do not apply in
this environment.

4.6 Format of code blocks
The special form of the pre-compiled description imposes
a special calling convention upon the code blocks that is
specially crafted to efficiently use the information given in
the pre-compiled description.



A register of the processor has to be selected as informa-
tion block pointer (IBP). This register will always contain
the address of the current information block. Every code
block thus may retrieve the address of the next information
block at the address IBP+1 (also see Figure 3). When the
IBP is set to this address (after the code block executed),
the address IBP contains the start address of the next code
block.

This allows us to create a generic template for code blocks
(Memory[Addr] denotes the value in memory at address
Addr):

begin_codeblock:

; parameters may be accessed using the values at

; addresses IBP+2, IBP+3...

...

IBP = Memory[IBP+1]

jump to Memory[IBP]

Depending on the code block parameter values may or may
not be cached in registers, but this is up to the code block
implementation. Also this may be used as a mere wrapper to
a function using another calling convention or as a template
for an assembly-implemented function.

This template establishes a clear interface for code blocks,
which utilises the pre-compiled description structure to ex-
ecute an algorithm without a supervising (and resource-
consuming) interpreter instance.

4.7 Calling convention transition
While the special calling convention used in this implemen-
tation is acceptable within the execution of an algorithm,
normally the surrounding system dictates some other call-
ing convention. To create a usable implementation some
transition code has to be written in order to allow external
code to call algorithms and use their results. This requires
two special code blocks for entry and exit.

4.7.1 Entry code
The entry function has to take parameters in the system’s
calling convention (a pointer to the pre-compiled algorithm
description; lookup, fetching and possibly address substitu-
tion for input and output parameters can be handled by
regular code), which will be loaded into the IBP. It may
also be necessary to save some register values on the stack
for later restoration if the surrounding system requires this.
The entry function then transfers control to the address in
Memory[IBP], the first code block.

4.7.2 Exit code
The exit code has to implement the other half of the sur-
rounding calling conventions. This primarily consists of pos-
sibly restoring stored registers off the stack and supplying
a return value if necessary (although data mostly will be
exchanged via memory).

4.7.3 Execution
These code blocks for entry and exit encapsulate the special
calling convention used in HACS. The entry function can
be called by the surrounding system like any other func-
tion. At this point the special calling convention used here
is used, every code block calls its successor until the exit
block is reached. This block returns to the system’s calling
convention. All of this is transparent to the surrounding en-
vironment, which may treat the algorithm like any normal
function.

5. DISCUSSION
Before we conclude our paper this section discusses some of
the characteristics of the presented approach. We especially
consider security issues, the capabilities and limitations of
our mechanisms, and start with arguing about the efficiency
of our solution.

5.1 Efficiency considerations
Algorithms expressed in the given description, executed by
code blocks will not reach the efficiency of monolithic, opti-
mised code, but the flexibility we gain using our approach
is much greater than the apparent overhead.

• Code execution time overhead depends strongly on the
code blocks. As many code blocks will operate on large
chunks of data, the block runtime will dominate the
overall runtime, while the instructions used to main-
tain the control flow will use little time. Because of
this, the actual time overhead should be minimal.

• Memory consumption overhead depends on the num-
ber of algorithms currently needed. The more algo-
rithms have to be available, the more memory is con-
served as the pre-compiled descriptions naturally tend
to be smaller than the corresponding code. While ini-
tially there is some overhead for the maintenance struc-
tures (look up tables etc.) this impact is reduced when
more and more algorithms are added.

• Communication overhead happens primarily whenever
a new algorithm is added. As this should not be as
frequent as the execution of an algorithm, we believe
this is of little concern.

The execution of the algorithm could further be optimised
by imposing more rules on the code blocks. Registers or
specially assigned data areas (local on-chip memory for ex-
ample) might be used to pass data between code blocks more
efficiently. Of course, these characteristics have to be known
and used by the pre-compiler. These data would be part of
the memory management information supplied by the re-
source constrained device during pre-compilation. Further
research has to show if this is a viable attempt to increase
performance and reduce power usage.

5.2 Security considerations
As this implementation allows dynamically defined code ex-
ecution, security has to be a consideration. First of all,
new code blocks might be necessary or desirable. These
should only be supplied and accepted from the same autho-
rised sources, which are also capable of code updates. As the



code blocks basically execute unsupervised, they have to be
as authenticated as any other code to be executed on the
machine.

While entering new algorithm descriptions into the system
could be restricted in the same way as code updates, it may
be eligible to allow unauthorised (in respect to code updates)
clients to access data from the node while still employing
cryptographic algorithms (e.g. a normal user of the system
who may process the data but not change the node’s code
base). As stated before the needed cryptographic algorithms
may depend on the current environment and are possibly not
yet known to the resource restricted device. This scenario
poses an interesting question, should the client be rejected
or could it supply an algorithm description although it is
not eligible for code updates?

An unchecked pre-compiled description may lead to vari-
ous security breaches, as addresses of data and code blocks
are part of the description. Still, it is possible to allow en-
try of new, unauthenticated algorithm descriptions, in this
scenario though, the description has to be subject to consis-
tency checking:

• Code block addresses may only point to the start of
known code blocks.

• Constant data block addresses may only point to the
start of known constant data blocks, additionally a
possible length parameter may have to be checked to
avoid reading past the end of the constant data block
and potentially leaking data.

• All data storage addresses have to be checked in the
same way to secure the system against buffer-overflow-
alike vulnerabilities and data disclosure.

Meta-data for this consistency checking has to be supplied
by the code block directory as the meaning of parameters
and their usage as data fields solely depend on the imple-
mentation of the code blocks.

During the pre-compilation phase, the resource constrained
device has to disclose some internal data, namely the ad-
dresses of various data and code blocks as well as some parts
of the memory layout. While this in itself is benign informa-
tion, past experience has shown that this information may
be valuable to an attacker. Although security by obscurity
itself has been shown to be infeasible, this at least has to be
taken into consideration.

While allowing limited access to unauthorised sources most
likely will add some complexity to the system, in some sce-
narios it may be feasible in order to restrict code access
to rarely used machines and/or persons, while opening the
flexibility of dynamic algorithm selection to all users of the
system.

5.3 Capabilities and Limitations
With this approach we aim at increasing the flexibility of
resource constrained devices to enable them to choose the
best cryptographic primitive to save resources and to se-
curely communicate with a wide range of other devices.

Due to the high level description of the cryptographic prim-
itives we also simplify the process of distributing and em-
ploying new primitives. Instead of providing each platform
with a new implementation we simply have to distribute the
high level description and potentially a small number of ad-
ditional building blocks.

Directly linked to this issue is the simplification of the update
and patching process which will only require either the ex-
change of existing building blocks or graph representations
of a primitive.

We also plan to use our graph model to account for other
resource constraints such as small RAM or register sizes. We
organise blocks in a tree structure. If we are able to specify
in which order these cells are executed (e.g. by using work
flow graphs) we can also compute intermediate results or key
schedules and store them on different memory until needed
for further processing. Similarly, we can split up word sizes
and tailor the processing to the available word size of the
registers of the hardware platform.

Additionally, we also imagine to exploit the dependencies
between primitives. As explained above many primitives
are modifications of already existing algorithms. Thus, to
express advanced or evolved primitives which are based on
others we think of using linear combinations. The vectors of
these combinations would be graph representations of the
underlying cryptographic primitive. Their scalars would
correspond to parameters, such as, permutation matrices,
round parameters, or building blocks combining the graphs.

The presented solution will require a dynamic loading pro-
cess which is not supported in widely employed operating
systems for resource constrained architectures such as TinyOS
[12]. However, recently developed operating systems and ex-
tensions can account for this lack of functionality [1, 2, 3, 9,
18]. Research has to show what implications the dynamic
loading process will have on resource consumption (in terms
of battery, memory, processor cycles, etc.).

Our approach is not able to also effectively address asym-
metric cryptographic primitives. The underlying principles
for these algorithms are of mathematical nature. Therefore,
within our research we will have to find out whether we can
also identify simple building blocks which can be used to
also yield asymmetric cryptographic primitives.

6. CONCLUSIONS AND OUTLOOK
This contribution presented a new approach which allows
the provisioning of sensor nodes or similarly resource-restricted
devices with a large variety of cryptographic primitives. To
achieve this goal we explained how the characteristics of
block ciphers can be exploited and assembled a list of primi-
tive building blocks. We further showed two possible ways -
pre-compilation and interpretation - to efficiently combine
these building blocks to construct existing block ciphers.
The presented approach also enables a device to use a large
variety of cryptographic primitives. This may not be op-
timal in terms of resource consumption. However, we aim
at increasing the flexibility and variety of use of the device.
Due to the ability to choose a cryptographic primitive which
offers the best trade-off between security and resource con-



sumption in a specific context we assume that our approach
will decrease the average power consumption of a device.

In order to implement a working system as described in this
paper, several steps have yet to be taken, which will be part
of our future research. At first, a specification for the basic
building blocks and their interfaces is required. Based on
that an implementation of these building blocks on different
target architectures will be provided. With a formal speci-
fication of our description language we will then be able to
combine the building blocks to valid cryptographic primi-
tives. Of course, this pre-compilation process has to be de-
veloped and compared with a naive interpretation process.
A thorough specification of the communication protocols be-
tween nodes (especially during pre-compilation) will be re-
quired in order to avoid possible new attack vectors which
are based on our solution. To finally validate, compare, and
assess our approach with existing solutions appropriate test-
cases will be designed and simulated.
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