
Access Control Mechanisms for Fraglets

Fabio Martinelli
IIT-CNR

Pisa, Italy
fabio.martinelli@iit.cnr.it

Marinella Petrocchi
IIT-CNR

Pisa, Italy
marinella.petrocchi@iit.cnr.it

ABSTRACT
The paper describes a revised version of Crypto-fraglets, and an en-
hancement of the framework with access control mechanisms. Fra-
glets is an interesting computing model that has connections with
communication protocols, formal rewriting systems and biological
systems. Indeed, fraglets basic mechanisms resemble bio-chemical
reactions.

1. INTRODUCTION
In [14, 15, 16, 17], an execution model for communication pro-

tocols that resembles the chemical reactions in living organisms has
been introduced and applied to protocol resilience and genetic pro-
gramming experiments. The goal was to propose a framework for
making automatic the whole process of protocol development, in-
volving the various phases of design, implementation and deploy-
ment. Trying to make automatic as much as possible operations
and functionality of a network, the fraglets execution model has
been thought for its strong connections to themes like resilience
and evolution. The underlying idea is indeed that nature has by
itself “mechanism both for continuous operations as well as evolu-
tion using the processing of macromolecules”, [14].

The main concepts underlying fraglets are active networking [13]
(a mechanism for handling mobile code), chemical pathways (the
way through which a cell metabolism is described), and automatic
protocol synthesis. In particular, this last field has produced first
results within information security. As an example, in [9, 12], the
authors present theory and tools for specifying a security protocol
that satisfies a given set of properties.

Motivation for working on fraglets within computer security is
twofold. On the one hand, the programming language defined for
fraglets can be encoded by the MultiSet Rewriting formal rules [3],
as shown in [10]. This serves as a first brick to give to fraglets
a formal semantics, the starting point for developing verification
tools.

On the other hand, the fraglets programming language has been
extended with basic cryptographic primitives [10], with the intent
to start modeling and verifying security properties of network pro-
tocols.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Bionetics ’07, December 10-13, 2007, Budapest, Hungary
Copyright 2007 ICST 978-963-9799-11-0.

Here, the goal is to refine that model and to extend it with access
control mechanisms and primitives dealing with trust management.

Such features are necessary to enable the use of these compu-
tation fragments also in a security-sensitive context, and, in par-
ticular, to tune the security levels of the computations according
to, e.g., the trust levels of the nodes. Similarly, this will allow a
fine-grained management of the fraglets model by making it closer
to a real execution framework. Such a model is exploited in the
BIONETS project [1] and the security and trust extensions are nec-
essary to make it a running framework.

The original contributions of the paper are the following:

• We define a threat model for a fraglet network, and we extend
Crypto-fraglets to be compliant with this model.

• We introduce also access control mechanisms to control how
fraglets can migrate between nodes and how trust relation-
ships may be created among them.

The paper is organized as follows. Section 2 recalls the work
by Tschudin [14], it gives some basic instructions for processing
fraglets, and it explains how a fraglet is processed within the net-
work. Section 3 defines the threat model and gives a refined ver-
sion of Crypto-fraglets. Section 4 discusses some access control
mechanisms that could enhance the security and robustness of such
framework. Finally, Section 5 gives some final remarks.

2. FRAGLETS
The theme underlying fraglets is that nature has developed a

mechanism for continuous operations as well as evolution by pro-
cessing macromolecules. Fraglets have been introduced as the equiv-
alent of such molecules, and they represent fragments of a dis-
tributed computation.

A fraglet is denoted as [s1 : s2 : . . . tail], where si is a symbol
and tail is a (possibly empty) sequence of symbols.

Nodes of a communication network may process fraglets as fol-
lows. Each node maintains a fraglet store to which incoming fra-
glets are added. Fraglets may be processed within a store, except
for the operation that transfers a fraglet from a source store to a
destination store.

Fraglets processing is through a simple prefix programming lan-
guage. Each operation may involve a single fraglet, or two fraglets.
Here, we recall the instructions that serve in this paper. The in-
terested reader can find the whole set of instructions in the tutorial
available online on the fraglets website [4].

Rule Send is responsible for transferring a fraglet from a context
(store) A to another context (store) B. The rule takes as input the
fraglet A[send : B : tail], located at store A, and returns the
fraglet B[tail], located at store B. The name of the second store

is given by the second symbol in the original fraglet. The Send

operation is unreliable, i.e., it is not certain the tail reaches the
destination store.

Rule Match concatenates two fraglets with matching tags. With
the following two fraglets, [match : s : . . . tail1] and [s : tail2],
the rule match returns the fraglet: [tail1 : tail2], and the matching
tag is s.

3. CRYPTO-FRAGLETS REVISED
Here, we revise Crypto-fraglets, with respect to [10], and accord-

ing to the threat model defined as follows:

• Stores: at deployment, stores are classified into two cate-
gories, trusted and untrusted. An untrusted store is a store
where fraglets may be maliciously processed.

• Adversary can:

– eavesdrop during transmission;

– process fraglets within an untrusted store, by means of
all usual fraglets instructions;

– maliciously deviate fraglets into untrusted stores, gov-
erned by the adversary itself.

• The adversary could not:

– guess private information, unless it eavesdrops this (e.g.,
private keys, secret keys);

– have capability of processing fraglets within trusted stores,
e.g., by not entering trusted stores.

Finally, due to the unreliability of the Send operation, a fraglet
can move to an untrusted store by chance.

Against eavesdropping, misrouting and unreliability, it is correct
to cipher any sensitive data. By doing so, the adversary cannot
access the data, either when fraglets are in transit, or when fraglets
are deviating, intentionally or by chance, onto untrusted stores.

Thus, we slightly change the rules for encryption and decryption,
with respect to [10].

We consider symmetric cryptography, using the same key both
for encryption and decryption. Given the clear text tail, one can
apply a key K by obtaining the cyphertext tailK . The original
message is retrieved by means of the inverse operation, i.e., by ap-
plying key K to cyphertext tailK , the result is the clear text tail.

One can apply to a fraglet an encryption fraglet, with tag enc,
to produce a third fraglet that represents the cyphertext. The same
holds for decryption.

The rules are as follows:

Operation Input Output

Enc
A[enc : s : K]

A[s : tail] A[s : tailK]

Dec
B [dec : t : tailK]

B [t : K] B [t : tail]

An example program is the following:

A[enc : s : K]
ANY FRAGLET A[s : tail] IS PROCESSED THROUGH Enc;

A[match : s : send : B : dec : t]
ANY FRAGLET A[s : tailK] IS PROCESSED THROUGH match;

B [dec : t : tailK]
Dec APPLIED WITH OPPORTUNE FRAGLET B [t : K]

and its execution steps are:

A[enc : s : K] A[s : tail]

A[match : s : send : B : dec : t] A[s : tailK]

A[send : B : dec : t : tailK]

B [dec : t : tailK] B [t : K]

B [t : tail]

4. ACCESS CONTROL
One of our global assumption is that, at deployment, there exist

stores that are trusted by construction. These stores contain fraglets
representing right encryption and decryption keys K.

In order to avoid that, when executing a certain program, mali-
cious fraglets can enter trusted stores, we propose an access control
mechanism. This will allow to execute send instructions only if
guarded. Currently, A[send : B : tail] is executed with no guard,
i.e., apart from unreliability, tail may enter B with no control by
B itself.

We enrich each store with antechambers, defined as a sort of
check points, through which each fraglet must pass before really
entering the store. ACB stands for antechamber of B and notation
ACB

[.. : .. : tail] means that the corresponding fraglet is at the
antechamber of store B.

We assume that, at deployment, a set of session keys have been
given to trusted fraglets.

Let us suppose to be at the antechamber of store B. Also, let
us suppose to have a generic incoming fraglet A[send : ACB :
dec : s : tailKt] from store A, where Kt is the session key (to
be used only once). The access to B will be granted iff tailKt is
something encrypted with one among the session keys not already
used at store B.

All fraglets entering an antechamber must be encrypted (see tailKt

above). To do this, we must change the semantics of the Send op-
eration, with respect to the standard one recalled in Section 2, by
distinguishing between a Send∗ operation, that has an antecham-
ber as a destination, and the classical Send, that transfers a fraglet
from the antechamber to the actual store.

Op Input

Send∗ A[send∗ : ACB : dec : s : tailKt]
Send ACB

[send : B : tail]

Op Output

Send∗ ACB
[dec : s : tailKt] tail must be encrypted

Send B [tail] tail can be a cleartext

The execution steps for the access control mechanism are:

[....] any operation at store A
leading to:

A[send∗ : ACB : dec : s : tailKt]

ACB
[dec : s : tailKt] ACB

[s : Kt]

ACB
[s : tail] ACB

[match : s : send : B]

ACB
[send : B : tail]

B [tail]
...we are now at store B...

We give some informal considerations about the security analy-
sis of this construction.

The keys must be temporary. Indeed, suppose that the incoming
fraglet is a malicious one. The first time it tries to enter store B,
the access is denied, since it does not know a legitimate Kt, and
decryption will not succeed. On the other hand, it will have the

possibility to operate on part of the code devoted to control the
access, i.e., ACB

[s : Kt], and possibly discover the key. Thus, the
key must be used only once.

Also, the model expects all the fraglets entering an antechamber
to be encrypted. By requiring this, we avoid a very simple attack
according to which the adversary can inject in the antechamber both
a corrupted, encrypted fraglet ACB

[dec : s : tailxKx] and the fra-
glet ACB

[s : Kx], representing the corresponding corrupted key
Kx. Given the fraglets nature, these two will react, by passing the
access control test. On the contrary, we force the injection of en-
crypted fraglets. By doing so, the only way to introduce [s : Kx] at
the antechamber is to encrypt Kx with one of the legitimate session
keys.

However, our model is not robust enough against the following
event. Suppose that a fraglet knows the right session key. It can
correctly behave by encrypting tail with that key, but it can also
behave maliciously, since tail can be of whatever nature, even a
malicious tailx.

Also, the model assumes to store at the antechamber as many
session keys, as the number of the Send∗ operations required in
the life-cycle of the antechamber. Finally, an exhaustive search on
the valid session key is required at the antechamber.

4.1 An alternative model
The previous access control mechanism maintains the same na-

ture of asynchronous communication that is inherent to the fraglets
approach. Indeed, given an encrypted tail, any incoming fraglet
enters the antechamber with no control. Here, we present an alter-
native that makes the communication mechanism synchronous.

It is worth noticing that fraglets have something in common with
formal languages for mobility such as Mobile Ambients, [5], pro-
posed by Cardelli and Gordon for reasoning about properties of
mobile processes. In mobile ambients, processes run inside an am-
bient, and processes within the same ambient may exchange mes-
sages. There are three primitives for movement: in, through which
an ambient enters another ambient; out, through which an ambi-
ent exits another ambient; open, that dissolves an ambient bound-
ary. From a security point of view, when processes are executed
in parallel, there could be an interference leading to a sort of non
determinism. As an example, during a parallel execution, the same
ambient may be opened, but may also jump into another ambient.
This resembles the unguarded nature of the Send operation in fra-
glets.

To avoid these interferences, Levi and Sangiorgi introduce Mo-
bile Safe Ambients, [6]. In particular, they introduce so called co-
capabilities, according to which in, out and open are executed only
if both the source and the destination agree.

The introduction of co-capabilities also for fraglets represents an
interesting alternative for implementing the access control mecha-
nism.

The idea is to let trusted stores allow a fraglet to enter if and only
if a guarded synchronization occurs.

Broadly speaking, a synchronization occurs when two comple-
mentary instructions are executed, e.g., send/ receive instructions.
Then, a guarded synchronization occurs when two complementary
actions are executed, depending on the outcome of some operation.

Within the fraglets world, one may think to allow the reception
of tail from A iff tail satisfies some kind of policy P , for some
fraglet populating store B. At conceptual level:

A[send : B : tail]

B [receive : A : P (tail)] B [tail]

An example policy is the following: access may be granted iff,

on receiving from A something encrypted, B has the right decryp-
tion key K, e.g., :

A[send : B : dec : t : tailK]

B [receive : A : K] B [dec : t : tailK]

Outcome B [dec : t : tailK] is subject to an implicit capability
of performing decryption with a certain key.

4.2 Trust management
The presented model can be further extended by allowing more

complex reasoning. We could consider to enrich the model by al-
lowing a credential-based access control, by encoding rules defin-
ing and combining credentials as instructions of the fraglet pro-
gramming language.

Here, we consider the Role-based Trust Management Language
(RTML) [7], as a model for trust management. In this language,
credentials carry information on policies to define attributes of prin-
cipals by starting from assertions of other principals. RTML inher-
its concepts of Role-based Access Control (RBAC) [11], by inher-
iting the notion of role, interposed in the assignment of permissions
to users, and of trust management [2], by inheriting principles for
managing distributed authority through credentials.

Thus, a central concept is the notion of role. A role is formed by
a principal and a role term. If principals are denoted as A, B, C...

(usually the corresponding public key is used to identify such prin-
cipals) and role terms are denoted as r, r1, r2..., then A.r is role
term r defined by principal A. A role may define a set of principals
who are members of this role, and each principal A defines who are
the members of each role of the form A.r. Also, roles can be seen
as attributes, i.e., a principal is a member of a role if and only if it
has the attribute identified by the role, [7].

The basic statements in RTML are:

• A.r ← D (simple member)
A and D are (possibly the same) principals. Through this
statement A says that D has role A.r or, equivalently, at-
tribute r.

• A.r ← A.r1.r2 (linking containment)
This statement defines a linked role. If B has role A.r1 and
D has role B.r2, then D has role A.r.

• A.r ← A1.r1 ∩A2.r2 (intersection containment)
This statement defines that if D has both roles A1.r1 and
A2.r2, then D has role A.r.

These three credentials are encoded in a fraglets style as follows.

SIMPLE A[creds : (A, r, D) : tail]
LINKING A[credl : (A, r, A, r1, r2) : tail]
INTERSECTION A[credi : (A, r, A1, r1, A2, r2) : tail]

The rule for the linking operation is as follows. It takes as premises
three credentials fraglets and it returns as output the fraglet consist-
ing of the inferred credential.

In Out

A[creds : (A, r1, B) : tail]

A[creds : (B, r2, D) : tail]

A[credl : (A, r, A, r1, r2) : tail]
A[creds : (A, r, D) : tail]

Similarly, the rule for the intersection operation is:

In

A[creds : (A1, r1, D) : tail]

A[creds : (A2, r2, D) : tail]

A[credi : (A, r, A1, r1, A2, r2) : tail]

Out

A[creds : (A, r, D) : tail]

These rules may be used to infer attributes. In particular, one
could use them to pilot the receive action. The following sequence
of rules allows the stores to receive fraglets from any source, pro-
vided that the source is trusted, denoted by the fact that the en-
cryption key is trusted. Here, we make the over simplification that
both the encryption key and the decryption one are the same. In a
real implementation, we should use public key cryptography. This
can be easily modeled within Crypto-fraglets. The generic store is
denoted as !.

B [creds : (B, receive, K) : tail]
B trusts incoming fraglets encrypted by K.
This pilots a receive action:
![send : B : dec : t : tailK]

B [receive :! : K]
leading to:
B [dec : t : tailK]

Then this fraglet may be decrypted as usual to get cleartext tail.
The model can be also extended with weights, as we did in [8]

by obtaining quantitative notions of trust and reputation. We do not
further develop this concept, due to the short nature of this paper.

5. CONCLUSIONS
In this paper, we have reasoned about fraglets and security. We

have considered a threat model that leads us to reformulate Crypto-
fraglets, with respect to the original model proposed in [10]. Also,
we have added access control mechanisms to fraglets, by signifi-
cantly enhancing their practical usage in a real context.

We plan to implement this framework within the BIONETS project,
by also adding public key cryptography capabilities.

Acknowledgments
This work is partly supported by the FP6-027748 EU project BIONETS
(BIOlogically-inspired autonomic NETworks and Services).

6. REFERENCES
[1] BIONETS website. http://www.bionets.eu/.
[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust

management. In IEEE Symposium on Security and Privacy,
pages 164–173, 1996.

[3] I. Cervesato, N. Durgin, P. D. L. J. C. Mitchell, and
A. Scedrov. A meta-notation for protocol analysis. In
Proc. CSFW-12, pages 55–69. IEEE, 1999.

[4] FRAGLETS website. http://www.fraglets.net.
[5] L.Cardelli and A.D.Gordon. Mobile ambients. In

Proc. FOSSACS, pages 140–155, 1998.
[6] F. Levi and D. Sangiorgi. Mobile safe ambients. ACM Trans.

Program. Lang. Syst., 25(1):1–69, 2003.
[7] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed

credential chain discovery in trust management. Journal of
Computer Security, 1(11):35–86, 2003.

[8] F. Martinelli and M. Petrocchi. On relating and integrating
two trust management frameworks. In Proc. VODCA’06,
ENTCS 168, pages 191–205. Elsevier, 2007.

[9] A. Perrig and D. Song. Looking for diamonds in the desert -
Extending automatic protocol generation to three-party
authentication and key agreement protocols. In Proc.
CSFW’00, pages 64–76. IEEE, 2000.

[10] M. Petrocchi. Crypto-fraglets. In BIONETICS. IEEE, 2006.
[11] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.

Youman. Role-based access control models. IEEE Computer,
pages 38–47, 1996.

[12] D. Song, A. Perrig, and D. Phan. AGVI - automatic
generation, verification, and implementation of security
protocols. In Proc. CAV’01, LNCS 2102, pages 241–245.
Springer, 2001.

[13] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A survey of active network
research. IEEE Communications Magazine, 35(1):80–86,
1997.

[14] C. Tschudin. Fraglets - a metabolistic execution model for
communication protocols. In Proc. AINS’03, 2003.

[15] C. Tschudin and L. Yamamoto. A metabolic approach to
protocol resilience. In Proc. WAC’04, LNCS 3457, pages
191–206. Springer, 2004.

[16] L. Yamamoto and C. Tschudin. Experiments on the
automatic evolution of protocols using genetic programming.
In Proc. WAC’05, LNCS 3854, pages 13–28. Springer, 2005.

[17] L. Yamamoto and C. Tschudin. Genetic evolution of protocol
implementations and configurations. In Proc. SelfMan’05,
2005.

