
Constraint Optimization in Call Admission Control Domain 

with a NeuroEvolution Algorithm
Xu Yang 

MPI-QMUL Information Systems Research Centre 

Macao Polytechnic Institute 

Macao SAR, China 

xuy@mpi-qmul.org 

Dr. John Bigham  
School of Electronic Engineering and Computer Science 

Queen Mary University of London 

London, United Kingdom 

john.bigham@elec.qmul.ac.uk 

ABSTRACT 

The objective for Call admission control (CAC) is to accept or reject 

request calls so as to maximize the expected revenue over an infinite 

time period and maintain the predefined QoS constraints. This is a 

non-linear constraint optimization problem. This paper analyses the 

difficulties when handling QoS constraints in the CAC domain, and 

implements two constraint handling methods that cooperate with a 

NeuroEvolution algorithm called NEAT to learn CAC policies. The 

two methods are superiority of feasible points and static penalty 

functions. The simulation results are compared based on two 

evolution parameters: the ratio of feasible policies, and the ratio of 

‘all accept’ policies. Some researchers argue that superiority of 

feasible points may fail when the feasible region is quite small 

compared with the whole search space, however the speciation and 

complexification features of NEAT makes it a very competitive 

method even in such cases.  

Keywords 
Constraint Optimization, Call Admission Control, NeuroEvolution of 

Augmenting Topologies (NEAT)  

1. INTRODUCTION 
CAC schemes in wireless networks have been extensively studied 

during the last two decades due to the growing popularity of wireless 

communications and the central role that CAC plays in QoS 

provisioning. A CAC scheme aims at maintaining the delivered QoS 

to different calls (or users) at the target quality level by limiting the 

number of ongoing calls in the system. [1, 2] 

Connection-level QoS measures the service connectivity and 

continuity of a wireless networks, and provides the basis of packet-

level QoS. [2] It is often considered by the use of two parameters, the 

new call blocking rate (NBR) and handoff failure rate (HFR). The 

new call blocking probability is the probability of a new call request 

being rejected. The handoff failure probability is the probability of a 

handoff call being forced terminated. [2] 

 

 

Generally dropping the handoff of an ongoing connection is 

considered more objectionable than blocking a new connection. 

However, designing a system with zero HFR is practically 

impossible. Hence, most CAC policies attempt to provide an 

acceptable HFR, called target QoS for HFR. For example, in second-

generation cellular system, it is acceptable that the NBR is lower than 

5% while the HFR is lower than 1 or 2% for voice service.[3] 

To obtain optimal CAC policies a variety of artificial intelligence 

techniques have been proposed for the CAC domain, such as Genetic 

Algorithms (GAs). A genetic algorithm is used in [4] to find a near 

optimal CAC by minimizing a linear combination of NBR and HFR 

with a large weight given to HFR in the fitness function. It has been 

shown in [4] that the near-optimal CAC based on genetic algorithms 

has a very close performance to the optimal algorithm found by a 

MDP technique. However this research only considers one class of 

traffic, which is not suitable for a network with multiple classes of 

service. Additionally the fitness function uses a relative penalty factor 

to give high pressure to the handoff failure rate, which should be 

adjusted through extensive experiments to adapt to different traffic 

loads otherwise the QoS constraint may not be guaranteed. 

Similarly, a genetic algorithm is used in [5] to maximize the resource 

utilization of multimedia multiple-class resource allocation schemes 

while maintaining a hard constraint on Handoff failure rate. The 

authors prohibit those policies which can not satisfy all the 

constraints, thereby creating offspring to handle the HFR constraint. 

This kind of constraint handling method may fail when the feasible 

policies are too difficult to be generated in initial populations. 

Therefore it is not suitable for cases in which QoS constraints are 

very difficult to be satisfied.  Additionally the encoding method is 

quite complex. The authors code the call admission control decisions 

as a sequence of 2m bit− binary strings, where m denotes the 

number of classes of traffic. Each system state associates such a 

string. Therefore the size of the space encoding grows exponentially 

with m and the network capacity. 

Neither of these GA approaches gives details of the fitness function 

formula and how to address the QoS constraints. Additionally the GA 

solutions require experts to make lots of effort on the algorithm 

design including encoding, decoding, mutation, crossover operators, 

and many other parameter adjustments. 

One of our previous published research papers [6] provided a 

different approach performing the CAC scheme through a form of 

NeuroEvolution (NE) algorithm called NeuroEvolution of 

Augmenting Topologies (NEAT) [7]. The objective of the algorithm 

is to maximize network utility and satisfy predefined QoS constraints. 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

Bionetics’08, November 25-28, 2008, Hyogo, Japan. 

Copyright 2008 ICST 978-963-9799-35-6 



The fitness function is formulated as the average reward per request 

event obtained in an evaluating episodic. The penalty is controlled by 

a negative fitness score if a QoS constraint has been violated. The 

experiment results show the learned CAC policy can effectively 

guarantee the predefined QoS constraints. However the performance 

of the approach is very sensitive to the changes of value of penalty 

fitness, and there is no detailed analysis to address how to handle 

constraints in the CAC domain.  

There are many papers that use Evolutionary Algorithms (for 

example, Genetic Algorithms) as a direct search algorithm to handle 

constraint optimization problem. [8-10] However no papers have 

been published to handle constraints when using NEAT. 

This paper investigates the difficulties to handle QoS constraints in 

CAC domain and implements two constraint handling methods that 

can cooperate with NEAT to handle QoS constraints. 

In order to evaluate the performance of our CAC algorithms, we 

simulate a mobile communication system using a discrete event 

simulator. The simulation model has been widely used in many 

research papers [5, 11, 12], and is described in the following sections.  

In this paper only non-adaptive services are considered, i.e. the 

bandwidth of a connection is constant. We assume m  classes of 

services: {1,2, , }m⋯ . A service in class i  consumes ib  units of 

bandwidth or channels, and the network can obtain ir  rewards per 

logical second by carrying it. We also assume that service requests of 

each class arrive according to Poisson distribution. The holding time 

for each service class is exponentially distributed. All the arrival 

distributions and call holding distributions are independent of each 

other. The arrival events include new call arrival events and handoff 

arrival events. Since the call departures do not affect the CAC 

decisions, we only consider the arrival events in the CAC state space. 

Additionally, we only consider one cell with fixed capacity. The fixed 

total number of bandwidth (channels) is  C .  

Let ,i sλ  denote the arrival rate of new setup requests in class i  (that 

is the number of setup arrivals per unit of  time), and 
,i hλ as the 

arrival rate of new handover requests in class i , and 
1

,i sµ −
 as the 

average holding time of setup calls in class i , and 1
,i hµ − as the 

average holding time of handover requests in class i . 

The rest of this paper is organized as follows. Section 2 gives a brief 

introduction to NEAT, and how to apply the NEAT to the CAC 

application. Section 3 introduces the definition of constraint 

optimization problem and analyses the difficulties to solve QoS 

constraints in CAC domain. In section 4 two constraint handling 

methods are selected to cooperate with NEAT. Section 5 presents the 

experiment results. Section6 summarizes the paper. 

2. HOW TO APPLY NEAT IN CAC 1 
NEAT is a kind of NeuroEvolution (NE) method that has been shown 

to work very efficiently in complex reinforcement learning problems. 

NE is a combination of neural networks and genetic algorithms where 

neural networks are the phenotype being evaluated. The genotype is a 

                                                                 

1 Partially of this section is from our previous published paper[6] J. B. Xu 

Yang, "A Call Admission Control Scheme using NeuroEvolution Algorithm 

in Cellular Networks," in the 20th International Joint Conference on 

Artificial Intelligence (IJCAI07), Hyderabad, India, 2007. 

compact representation that can be translated into an artificial neural 

network [7]. 

The evolution of NEAT starts with a randomly generated small set of 

neural networks with simple topologies. Each of these neural 

networks is assigned a fitness value depending on how well it suits 

the solution. Once all the members of the population are assigned 

fitness values, a selection process is carried out where better 

individuals (high fitness value) stand a greater chance to be selected 

for the next operation. Selected individuals undergo recombination 

and mutation to result in new individuals. Low fitness individuals are 

discarded from the population and better ones are included. 

Structural mutations add new connections and nodes to networks in 

the population, leading to incremental growth. The whole process is 

repeated with this new population until some termination criteria is 

satisfied. The average fitness of the population is expected to increase 

over generations. [7] 

Additionally NEAT protects innovation through speciation so that for 

a time individuals compete primarily within their own niches instead 

of with the whole population. Throughout evolution, NEAT 

maintains a list of species numbered in the order they appeared. The 

distance δ between two network genomes can be measured as a 

linear combination of the number of excess and disjoint genes, as 

well as the average weight differences of matching genes. If a 

genome’s distance to a representative of any existing species is less 

than a compatibility threshold tδ  , it is placed into this species. 

Otherwise, a new species is created. [7] 

NEAT can be seen as a black box, which can provide a neural 

network for receiving the inputs and generating the outputs. Normally 

the inputs are the perceived state of the environment that is essential 

to make the action decision.  In the CAC domain, the inputs denote 

the type of new arriving request call and the consumed bandwidth by 

each kind of traffic. Generally the outputs are the possible actions 

that can be performed in the real application. In CAC, there are only 

two possible actions: Accept and Reject. The output is a real number, 

and its value is between 0 and 1, if it is larger than 0.5, then the 

action selected is Accept; otherwise, it is Reject. 

The fitness function gives the goal of the learning system. The 

objective of CAC is to maximize the network revenue; the objective 

function is formulated as the average reward obtained per request 

service, which is the total rewards divided by the number of request 

services. Let N  be the total number of service requests (includes 

setup and handoff calls) during the evaluation of each policy. The 

network obtains rewards by carrying accepted services and obtains 

nothing by rejecting all services. R is the reward that the network 

obtains by carrying each accepted service. 

n

objective

R
F

N
=
∑  (1) 

 

To simplify the above formula, define the service demand parameter 

α as 

( ) ( )

1 1
, , , ,

, ,

, , , ,

0 0

,
i s i s i h i h

i s i i h im m

i s i h i s i h

i i

r r
λ µ λ µ

α α

λ λ λ λ

− −

= =

= =

+ +∑ ∑
 



so, 
, , , ,

0

( )

m

objective i s i s i h i h

i

f p pα α
=

= +∑  (2) 

where 
,i sp  (

,i hp ) denotes the acceptance probability of a new setup 

(handover) request call in class i  per request. Since in the current 

model calls are never dropped once accepted unless at handoff time, 

, ,1i s i sNBR p= −  , and , ,1i h i hHFR p= − . 

  

3. THE DIFFICULTIES TO HANDLE QOS 
CONSTRAINTS IN CAC DOMAIN 
In general, a constrained numerical optimization problem is defined as 

[13]: 

Find x
�

 which optimize ( )1 2, ,...,
n

nz f x x x x= ∈ℜ  

 subject to:          
( )
( )

0, 1,... ,

0, 1,... ,

j

j

g x j J

h x k K

≤ =

= =
 

where x
�

is the vector of solutions 
1 2[ , ,..., ]Tnx x x x=

�

, m  is the 

number of inequality constraints and p is the number of equality 

constraints. Normally, equality constraints can be transformed into 

inequality constraints of the form: 

( ) 0jh x ε− ≤  

where ε is a very small value which is the tolerance allowed. Let the 

set nS ∈ℜ define the search space, and F S⊆ defines the feasible 

region of the search space, the infeasible part I is the set of remaining 

elements \I S F= . If no constraints are given then F equals S . 

Figure 1 shows one example of a search space S  and its feasible 

region F . 

 

Figure 1 The feasible and unfeasible search space [13] 

The main features which make a global constraint optimization 

problem difficult to be solved are described by Michalewicz & 

Schoenauer [13]: 

• The type of objective function (such as if a linear or non 

linear function). 

• The types of constraints (such as if linear or non linear 

constraints, equality or inequality). 

• The number of constraints: the difficulty in satisfying 

constraints will increase (generally more than linearly) with 

the number of constraints. 

• Connectivity of feasible region (disjoint or connected). 

• Size of feasible region with respect to the whole search 

space. Many constraint handling methods fail when the 

ratio of feasible to infeasible area in its rectangular search 

space is too small. 

The optimal CAC problem that considers the QoS constraints is a 

very difficult problem to solve. The main challenges are summarized 

as follows. 

In the CAC domain, the objective function and constraints are non 

linear and not differentiable. The feasible area is very small compared 

with the whole search domain. For example, even if the HFR 

constraint is 1%, the possible HFR can be from 0 to 100%. So when 

there are total m classes of traffic, the feasible area is only 210 m−  of 

the search space, which makes the search for feasible policies very 

difficult. 

Moreover, (a) the objective function to maximize the network 

revenue conflicts with the hard QoS constraints and (b)  HFRs and 

NBRs constraints are conflicting requirements. Decreasing one of 

them may cause an increase of the other parameters. Furthermore, the 

environment is dynamic, a CAC action will affect not only the 

immediate reward but also the next situation and, through that, all 

subsequent rewards. Additionally, to make an optimal decision, the 

network should not only consider the current state, but also the future 

coming traffic, which cannot be known in advance. Therefore a long 

run time is required for evaluating the performance of a selected CAC 

policy. However, for the CAC domain the state space is huge. Each 

policy can only be evaluated by a limited amount of events, and it is 

not possible to go through the whole state space in short time period. 

Therefore the fitness evaluation is noisy due to measurement 

limitations or incomplete training. 

4. CONSTRAINT HANDLING METHODS 
AND NEAT 
There are several approaches proposed in GAs to handle constrained 

optimization problems. These approaches can be grouped into four 

major categories [9]: 

1. Methods based on penalty functions which penalize 

infeasible individuals; 

2. Separation of objectives and constraints; 

3. Methods using special representations and operators to 

preserve feasibility of solutions; 

4. Hybrid methods. 

Methods based on penalty functions and superiority of feasible 

policies, which belong to category 1 and 2, penalize policies which 

can not satisfy the constraints. These methods do not require the 

modification of evolution process and can cooperate with NEAT very 

well. Most methods falling into category 3 and 4 require modification 

of the genetic operators and evolution process, therefore can not 

exploit NEAT’s advantages. 



4.1 Penalty functions 
The most common approach to handling constraints (particularly, 

inequality constraints) in the Evolution Algorithm community is to 

use penalties. In general, a penalty function approach can be defined 

as [14]: 

( )
( )
( ) ( )

f x x feasible region
F x

f x penalty x x infeasible region

 ∈
= 

+ ∈

    (3) 

( ) ( )
2

1

m

j j

j

penalty x R g x
=

=∑  

Where ( )f x is the objective function to evaluate a feasible 

individual, ( )jg x is the constraint violation that measure the distance 

between a search point and the feasible region, and  denotes that 

if the operand is negative a value zero is returned, otherwise the value 

returned is that of the operand.  The parameter jR is the penalty 

parameter of the j-th inequality constraint. The purpose of a penalty 

parameter 
jR is to make the constraint violation ( )jg x of the same 

order of magnitude as the objective function value ( )f x  [14]. 

The results of many experiments indicate that the quality of the 

solutions using penalty functions are very sensitive to changes in 

values of penalty parameters, and that the parameters must be set 

right to obtain a feasible solution. [13]  

There are many different penalty function methods, such as death 

penalty[12], in which all infeasible individuals are either rejected or 

get a zero fitness regardless of their amount of constraint violation; 

static penalty [15], in which penalties are functions of the degree of 

violation of constraints, and the penalty parameters never change 

during evolution; dynamic penalty [16], in which penalties are 

functions of the degree of violation of constraints as well as the 

generation number t ; annealing penalties [10], a method based on 

the idea of simulated annealing: the penalty coefficients are only 

changed after the algorithm has been trapped in a local optima; 

adaptive penalties [17], the value of the penalty factors are updated 

based on information of the evolutionary process instead of a 

predefined variation function as in the case of dynamic penalties. 

However Michalewicz and Schoenauer [18] concluded that the static 

penalty function method (without any sophistication) is a more robust 

approach than the sophisticated methods after comparing several 

variations of a simple penalty function techniques to more 

sophisticated mathematical techniques.  

In the CAC domain, two kinds of penalties are chosen to punish the 

infeasible solutions: 

• Penalties which are the functions of the distance between 

the learned CAC policies and the predefined constraints 

(the boundary of feasible region).  

• Penalties which are functions of the number of violated 

constraints.    

To follow these rules, the penalty function can be formulated as a 

linear function:   

( ) ( )( )
1

m

i

i

p x w T x if x Tη
=

= + − >∑  

w and η  are constant penalty factors to push NEAT to search in the 

feasible area, and they are same for all QoS parameters to treat them 

fairly. The total penalties are the sum of the QoS constraints 

violation.  

4.2 Superiority of feasible points  
This method differentiates between feasible solutions and infeasible 

solutions, the feasible solutions have superiority over unfeasible 

ones, and infeasible solutions are penalized to provide a search 

direction towards the feasible region [8]. This approach has 

promising success in many GA applications.  

The basic principle is: 

• Any feasible solution is preferred to any infeasible solution; 

• Among two feasible solutions, the one having better 

objective function value is preferred; 

• Among two infeasible solutions, the one having smaller 

constraint violation is preferred. 

One example of the fitness functions to follow these rules is defined 

as [8]: 

( )
( )

( )worst

f x x feasible region
F x

f penalty x x infeasible region

 ∈
= 

+ ∈

(4) 

Where 
worstf is the objective function value of the worst feasible 

solution in the last population. Thus the fitness of an infeasible 

solution not only depends on the amount of constraint violation, but 

also on the feasible solutions in the population. 

The feasible solutions are compared by objective function, and two 

infeasible solutions are compared by the degree of constraint 

violation. Among two infeasible solutions, the one having smaller 

constraint violation is preferred. Careful comparisons among feasible 

and infeasible solutions are made so as to provide a search direction 

towards the feasible region. 

However, Coello mentioned this approach may fail when the feasible 

region is too small [9]. Additionally a niching (speciation) method 

along with a controlled mutation operator (high mutation rate) is 

required to maintain diversity among feasible solutions. [13] 

However, two features of NEAT can help to use this method to 

handle constraints: a) NEAT speciates the population so that 

individuals compete primarily within their own niches [7]. This 

feature can help to keep the diversity of population so as to avoid 

trapping into local optima. b) NEAT begins with a uniform 

population of simple networks with no hidden nodes and inputs 

connected directly to outputs, and new structure is introduced 

incrementally by adding new genes. In this way, NEAT tends to 

search through a minimal number of weight dimensions and find an 

appropriate complexity level for the problem, which can significantly 

reducing the search dimension and the number of generations 

necessary to find a feasible solution. 

To apply this method in CAC domain, the penalty function only need 

to measure the distance of penalty violation.  

( ) ( )
1

m

i i

i

p x w T x if x T
=

= − >∑  



5. RESULTS OF EXPERIMENT 
There are in total three different constraint handling methods that are 

compared: two methods use static penalty functions with different 

penalty factors, another uses superiority of feasible points [8].  

1) NEAT_penalty_soft. The penalty function only measures the 

distance between the infeasible policies to the boundary of feasibility. 

( )
1

10.0 )
m

i

i

p x T x if x T
=

= × − >∑ （            (5) 

2) NEAT_penalty_hard. The penalty function not only measures the 

distance between the infeasible policies to the boundary of the 

feasible region, but also is proportional to how many constraints are 

violated. CHECK I HAVE NOT GOT IT WRONG 

 ( )
1

( 5 10.0 ))
m

i

i

p x T x if x T
=

= − + × − >∑ （  (6) 

3) NEAT_Superiority. The penalty function only needs to measure the 

distance between the infeasible policies to the boundary of feasible 

region, which is same as NEAT_penalty_soft.  

Two evolution parameters are compared: ratio of feasible solutions, 

ratio of all-accept solutions.. Ratio of feasible is the percentage of 

feasible solutions in the solutions in one generation. Ratio of All-

Accept policies is the percentage of All-Accept policies in one 

generation. 

All-Accept policies are the policies that always accept arriving calls 

no matter how busy the network cell is. Since it does not reject any 

new setup calls to reserve bandwidth capacity for future handoff 

calls, the NBRs satisfy predefined NBR constraints and only HFR 

constraints are violated,  the penalties may not big enough to out-

weigh the value of the objective function. Additionally the All-

Accept policies are randomly generated very easily. Therefore the 

All-Accept policies are quite competitive infeasible policies. 

In the simulation, only two applications are considered: 

1 2c and c , 1c requires 1 bandwidth unit, and 2c requires 2 bandwidth 

units. The reward rates are the same for these two kinds of traffic. 

The traffic parameters are shown in Table 1. 

Table 1.Traffic parameters 

Parameter

s 
1c  2c  

Setu

p 

Handove

r 
Setup Handover 

1λ −
 0.2 0.1 0.1 0.05 

1µ −

 
30 20 20 15 

 

There are four QoS constraints. The setup and handoff constraints for 

each kind of traffic are 20% and 1%. The feasible region only takes 
64 10−× of the whole search region, which is quite small. 

The simulation runs 300000000 logic seconds. The population size is 

200, and each member of the population was evaluated by 40000 

arriving setup or handoff events. To maintain the species of the 

population, the target of species size is 5 by using dynamic 

speciation.  A policy with highest fitness score is selected as learning 

result among five simulation runs. 

The experiment results are shown in figure 2 and 3. It can be seen 

that the ratio of feasible policies using the penalty_soft method is 

always around 0, there are almost no feasible policies generated 

during evolution. On the other hand its ratio of all_accept grows 

rapidly from the beginning of evolution, and reach 90% at the end of 

evolution. The evolution becomes trapped into the all-accept policies, 

and can not evolve good feasible policies. The evolution fails if the 

penalty only measures the distance between infeasible solutions to the 

feasible region. 

The feasible ratio of the Superiority method grows faster than 

Penalty_hard method. After 20 generations it reached 25%. in 40 

generations, 35% by the final generation. However, Penalty_hard 

reaches 20% at the 170th generation, and jump to 25% at final 5 

generations. The Superiority method can generate more feasible 

policies in each generation. 

Additionally the all_accept policies ratio of the Superiority method 

decreases dramatically after 30 generations from 60% to 5%, 

however Penalty_hard method decrease slowly: at the start 30 

generations, the ratio of all_accept policies is around 70%, at the end 

of generations, it still maintain around 20%. The Penalty_hard 

method is more attracted by the all_accept policy, and spent lots of 

time on it. 

0 20 40 60 80 100 120 140 160 180

0.0

0.1

0.2

0.3

0.4

0.5

R
a
ti
o
 O

f 
F
e
a
s
ib
le
 

Generation

 Superority

 PenaltyHard

 PenaltySoft

Ratio Of Feasible Comparison

 
Figure 2 The comparison of ratio of feasible policies 

0 20 40 60 80 100 120 140 160 180

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
a
ti
o
 o
f 
A
ll 
A
c
c
e
p
t 
P
o
lic
ie
s

Generation

 Superority

 PenaltyHard

 PenaltySoft

Ratio of All Accept Policies Comparison

 
Figure 3 the comparison of ratio of all-accept policies 

Table 2 shows the evaluated QoS parameters for each method. The 

Greedy method is a traditional CAC scheme that always accepts a 



request call if there is available bandwidth capacity to carry it, 

otherwise it rejects the call.  This method does not consider 

maintaining any QoS parameters, and is used as a standard method to 

evaluate other CAC schemes.  

It can be seen that learned policy for Superiority and Penalty_hard 

methods all satisfied the predefined constraints. 

Table 2 The QoS parameter comparsion 

The highest fitness policy C1-NBRC2-NBRC1-HFRC1-HFR

Superiority 4.95 17.24 0.21 0.97 

Penalty-Hard 5.37 14.57 0.23 0.98 

Penalty-Soft 1.95 5.40 2.15 5.41 

Greedy 1.94 5.38 2.13 5.38 

 

In conclusion, the Superiority method works best among the three 

constraint handling methods evaluated for the CAC domain. 

6. CONCLUSION 
To handle QoS constraints in the CAC domain is quite difficult, as 

the feasible region is very small compared with the whole search 

space, the environment is dynamic, and the QoS constraints are 

relative and conflict with each other. This paper investigates two 

constraint handling methods that cooperate with NEAT to handle 

constraint optimization in CAC domain. The experiment results show 

that using the superiority of feasible points to cooperate with NEAT 

works better than static penalty functions. The feasible ratio grows 

faster and many feasible policies can be generated. Using NEAT can 

fill a gap allowing the application of the superiority of feasible points 

even when the feasible region is very small; making it a very 

competitive constraint handling method. 

7. ACKNOWLEDGMENTS 
Thanks Kenneth O. Stanley very much for providing free software of 

NEAT in the website http://www.cs.utexas.edu/~nn/index.php. 

8. REFERENCES 
[1] E. S. Oliver Yu, Anfei Li, "Integrated connection-level and 

packet-level QoS controls over wireless mesh networks " 

Journal of Parallel and Distributed Computing, vol. 68, pp. 

336-347, March 2008. 

[2] L. H. Huan Chen, Sunil Kumar, C.-C.Jay Kuo, Radio Resource 

Management For multimedia QoS Support in Wireless 

Networks, Kluwer Academic Publishers ed.: Kluwer 

Academic Publishers, 2003. 

[3] G. C. Sunho Lim , Chita R. Das "A unified bandwidth 

reservation and admission control mechanism for QoS 

provisioning in cellular networks," Performance 

Evaluation of Wireless Networks, vol. 4, pp. 3-18, 2004. 

[4] A. R. Yener, C., "Genetic algorithms applied to cellular call 

admission: localpolicies," Vehicular Technology, IEEE 

Transactions on, vol. 46, pp. 72 - 79, Feb 1997. 

[5] C. L. P. Y. W. Yang Xiao; Chen, "A near optimal call admission 

control with genetic algorithm formultimedia services in 

wireless/mobile networks," in National Aerospace and 

Electronics Conference, 2000, pp. 787 - 792. 

[6] J. B. Xu Yang, "A Call Admission Control Scheme using 

NeuroEvolution Algorithm in Cellular Networks," in the 

20th International Joint Conference on Artificial 

Intelligence (IJCAI07), Hyderabad, India, 2007. 

[7] K. O. Stanley, "Efficient Evolution of Neural Networks through 

Complexification," in the Faculty of the Graduate School 

of. vol. Doctor of Philosophy: The University of Texas at 

Austin, 2004. 

[8] K. Deb, "An efficient constraint handling method for genetic 

algorithms," Computer Methods in Applied Mechanics and 

Engineering, vol. 186:22, pp. 311-338, 2000. 

[9] C. A. C. Coello, "Theoretical and Numerical Constraint-

Handling Techniques used with Evolutionary Algorithms: 

A Survey of the State of the Art," Computer Methods in 

Applied Mechanics and Engineering,, vol. 191, pp. 1245-

1287(43), 4 January 2002. 

[10] a. N. A. Z. Michalewicz, "Evolutionary optimization of 

constrained problems," in 3rd Annual Conference of 

Evolutionary Programming, 1994, pp. 84-97. 

[11] R. Ramachandran, T. Don, and N. Ramesh, "On optimal call 

admission control in cellular networks," Wirel. Netw., vol. 

3, pp. 29-41, 1997. 

[12] S. Sidi-Mohammed, Andr, B. Luc, and P. Guy, "Call admission 

control in cellular networks: a reinforcement learning 

solution," Int. J. Netw. Manag., vol. 14, pp. 89-103, 2004. 

[13] Z. Michalewicz, "A Survey of Constraint Handling Techniques 

in Evolutionary Computation Methods," in 4th Annual 

Conference on Evolutionary Programming, 1995. 

[14] Z.Michalewicz, "Genetic ALgorithm, Numerical Optimization, 

and Constraints. ," 1995. 

[15] S. H. Y. L. A.Homaifar, and X.Qi, "Constrained Optimization 

via Genetic Algorithms," SIMULATION, vol. 62, pp. 242-

253, 1994. 

[16] C. H. J.Joines, "On the use of non-stationary penalty functions 

to solve nonlinear constrained optimained," in problem 

with GAs, in: Proceedings of the First IEEE International 

Conference on Evolutionary Comutionary IEEE Press, 

New York, 1994, pp. 579--584. 

[17] A. E. E. a. Z. Ruttkay., "Self adaptivity for Constraint 

Satisfaction: Learning Penalty Functions. ," in Artificial 

Evolution'97, Berlin, 1998, pp. 95-106. 

[18] D. D. Zbigniew Michalewicz, Rodolphe G. Le Riche, Marc 

Schoenauer, "Evolutionary Algorithms for Constrained 

Engineering Problems (1996)," nternational Syposium on 

Methodologies for Intelligent Systems, 1996. 

 

 

 


