
Using Virtualization to Simulate Biological Cells
Ahmad Bazzi

Gunma University
151 Tenjincho,

Kiryu, Gunma 3768515
+81277301837

abazzi@acm.org

Yoshikuni Onozato
Gunma University
151 Tenjincho,

Kiryu, Gunma 3768515
+81277301835

onozato@nztl.cs.gunmau.ac.jp

Rihito Saito
Gunma University
151 Tenjincho,

Kiryu, Gunma 3768515
+81277301837

saito@nztl.cs.gunmau.ac.jp

ABSTRACT
In this paper, we discuss the virtualization technologies and the
characteristics of biological cells. We notice that both virtual
machines and cells are usually “self contained,” “logically
independent” and relatively “mobile.” We work to show the
analogy between the two. With this level of common
characteristics we conclude that it would be very beneficial for us
to use virtual machines to simulate biological cells in general and
suggest using “teams” of virtual machines to simulate biological
organ functionality. In our opinion, this makes it easier to put our
knowledge of biological systems into use.

Keywords
biology, cell, biologically-inspired, virtualization, simulation.

1. INTRODUCTION
Biological systems have evolved across ages to survive the
challenges imposed by their harsh environments. During the
course of time, a diversity of species could not survive till the
present day. Hence we believe that there is a lot to learn from
natural systems in general and biological systems in particular to
further develop information systems.

With the advance in the processing power of modern computers,
complex biologically inspired systems are now being not only
researched and simulated but also realized. This varies from self-
healing systems to biologically inspired networking [4].

A cell can be defined as the “smallest living biological functional
and structural unit of an organism that displays the properties of
growth, metabolism, energy cycles, and reproduction.”[5] While a
virtual machine is a software imitation of a computer that can
provide the functionality of a real machine. In this paper we work
to establish the analogy that exists between biological cells on one
side and virtual machines on the other side.

The objective is to provide a new valid ground that can aid in
creating computer simulation of biological systems; this in turn
would allow an easier realization of biologically inspired systems.
We believe that the suggested analogy can be a promising field for
further research and simulation

We start in section 2 by defining virtualization in general and
continue in section 3 to explain the common virtualization
approaches and technologies that are in use nowadays. Section 4
provides a brief description of a biological cell and defines the
two cell types recounting the main four “specializations” of cells.
In section 5, the core of this paper, we discuss the different points
that allow us to build an analogy between biological cells and
virtual machines. Section 6 provides a short comparison between
our analogy with biological cells and previous similar ideas. We
end with the conclusion in section 7.

2. DEFINING VIRTUALIZATION
Computer virtualization is a technique where a software layer lies
directly or indirectly on top of the hardware to allow multiple
guest operating systems to run in virtual machines. A virtual
machine (VM) will appear like a real computer to the guest
operating system, but it is in fact an abstraction of the underlying
resources.

Figure 1 shows the different components of a virtual system. We
will go through them from bottom to top. At the base level, we
have the physical hardware that is the real computer hardware.
On top of the physical hardware, we can either have an operating
system with the virtualization software installed on it as an
application, or alternatively the virtualization software can be
installed directly on top of the physical hardware thus replacing
the operating system on the physical machine.

Virtualization software, as the name indicates, provides us with
the ability to create virtual machines. The virtual machine, in turn,
appears and functions as a real computer for the guest operating
system (OS), which can be installed and run on top of it the same
way it can be installed and run on ordinary hardware.

Hence, as shown in Figure 1, virtualization allows us to run more
than one operating system on the same hardware where each guest
OS can have its private independent virtual hardware.

Figure 1. Layout of Virtualization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Bionetics ’08, November 25-28, 2008, Hyogo, Japan
Copyright 2008 ICST 978-963-9799-35-6.

3. VIRTUALIZATION TECHNIQUES
There are different approaches used to achieve virtualization of
computer hardware. Below, we discuss four common techniques
that are in use nowadays with their advantages and disadvantages.

3.1 Hardware Emulation
As the name indicates, this technique allows the emulation of a
complete set of hardware; in particular, it allows the emulation of
a different processor. The virtualization software, emulator in this
case, translates the issued machine instructions by the guest
operating system to virtual hardware and executes them on the
physical hardware in real time. Due to the translation of every
instruction, this will inevitably lead to a relatively slower
performance; however, this can also provide new potentials.
Emulation allows us to execute binary instructions on a non-
existent processor. In other words, both an obsolete out-of-
production processor and a future processor - that has not been
manufactured yet - can be emulated.

Examples of virtualization software that provide emulation
capabilities are QEMU and BOCHS.

3.2 Full Virtualization
The second type is full virtualization which allows creating
complete virtual machines. When properly implemented, this type
of virtualization can provide near native speed.

Unlike “hardware emulation” virtualization, this technique
imposes a limitation; the virtualized processor must be the same
type as the physical machine. The reason for this limitation is that
the virtualization software tries to avoid instruction translation in
order to provide a higher execution speed. Hence, it favors
passing the instructions issued to the virtual machine directly to
the physical processor if possible – this is also known as direct
execution. However, when this is not feasible, the virtualization
software will resort to binary translation. Now, the benefit would
be clear, as most binary instructions issued to the virtual processor
are passed directly to the physical CPU, instead of being
translated, we can achieve a near-native speed. [7] This technique
is currently implemented using two different approaches:

3.2.1 Hosted Architecture
In this case, the virtualization software will install and run as a
privileged application on the host operating system as shown in
figure 2. The virtualization software allows creating one or more
virtual machines each with its own set of hardware on which guest
operating system(s) can be installed. As shown in figure 2, the
virtualization software can run alongside other applications
installed on the host operating system. Using full virtualization, it
allows most instructions to pass directly to the physical CPU. An
examples of this approach is VMware Workstation.

Figure 2. Hosted Architecture – Full Virtualization;
Virtualization Software running as an application.

3.2.2 Hypervisor (Bare-Metal) Architecture
To provide further stability when using virtualization in more
critical environments, different types of virtualization software
have been engineered that can run directly on top of the physical
hardware. Thus this approach eliminates the need for another host
operating system. As shown in figure 3, the virtualization software
will function as the host operating dedicated for the purpose of
hosting virtual machines and monitoring them. As the
virtualization software has now full control of the physical
hardware, this approach can provide greater scalability, robustness
and performance compared to the hosted architecture. Hence, it is
more suitable for business applications. [7] An example of
business solutions utilizing this approach is VMware ESXi.

Figure 3. Hypervisor Architecture – Full Virtualization;
Virtualization Software replaces the Host Operating System.

3.3 Paravirtualization (OS Assisted
Virtualization)
In this technique, the guest OS will be constantly communicating
with the hypervisor to improve both performance and efficiency.
Unfortunately, for this technique to work with the current
operating systems, the guest OS has to be modified in order to be
made “aware” of the hypervisor's existence and consequently to
be able to communicate and “coordinate” with it. [7]

In the case of full virtualization, the guest OS is not modified and
hence it is totally unaware of the underlying virtualization
software. By modifying the operating system to achieve a
paravirtualization implementation, there is a relative gain in
performance; yet, this comes at a maintenance cost where the
guest OS has to be modified and this limits portability.

Figure 4. Paravirtualization – OS Assisted Virtualization;
Guest OS can communicate with the virtualization software

3.4 Hardware Assisted Virtualization
With the further increase in the popularity of virtualization
applications, leading CPU manufacturers are working vividly to
provide better support for virtualization technologies in newer
generation processors. Eventually CPUs that support
virtualization were released in the market as of 2006; however,
this could not outperform the classical virtualization approaches

such as the full virtualization and the paravirtualization.[1] This
promising technique has yet to bear fruits in the future.

4. BIOLOGICAL CELLS
The cell (biology) is the “basic unit of life” first observed by
Robert Hooke in the 17th century and later it was studied further
with the advance of microscopy.[3]

Despite the diversity in shapes and sizes of cells, there are only
two types of cells: Prokaryotic cells and Eukaryotic cells.

Prokaryotic is the Greek for “before nucleus” as this type of cells
does not have a nucleus and has very little visible internal
organization. These cells are relatively small with the majority
between 1-2 µm in length. The most common example of
prokaryotic cells is bacterial cells.[3]

Eukaryotic is the Greek for “with a nucleus” as it is structurally
more complex. This type is generally larger with 5-100 µm in
length. This is the kind of cells that we find in most organisms
from mammals to plants and fungi.[3]

The cells of plants and animals are organized into different
tissues. Tissues are groups of cells that are specialized to carry out
a common function. In animals, for example, there are four major
tissue types: epithelium, connective tissue, nervous tissue and
muscle [3].

5. CELLS AND VIRTUAL MACHINES
There are different aspects of resemblance between the biological
cells and virtual machines; we start listing them below then we
summarize these points in Table 1.

5.1 Specialization
As mentioned in section 4.2, there are different types of tissue
cells each specialized in a certain function; an analogy holds when
it comes to computer systems and virtual machines. For example,
a virtual machine can practically have any function; this ranges
from web servers, database servers to security systems and
firewalls. For available example applications, the reader is
referred to VMware Virtual Appliance Marketplace [8].

5.2 Inter-communication
It is a necessity for life that the millions of cells that compose a
multi-cellular organism to exchange chemical messages
(transmitters); this is called inter-cellular communication. [3] The
same holds true for computer systems where the communication
between the diverse information systems is achieved through the
implemented network protocols.

To further elaborate on this idea, let's take a small sized network
as shown in Figure 5. This network has four servers: User
directory server, DNS (domain name system) server, mail server
and a firewall. We also assume that the administrators have opted
to host all these servers on virtual machines.

Figure 5. Inter-Communication between Virtual Machines;
Like biological cells, VMs communicate with each other.

During the course of normal utilization of this network, the mail
server will constantly need to query the DNS server to be able to
deliver emails, the mail server also needs to constantly

communicate with the directory server in order to authenticate
users before granting them access to their email inboxes.

5.3 Intra-signaling
In intracellular signaling, cells use internal signaling mechanisms
that allow them to alter their behavior in response to internal
changes or to external events. Biologically speaking, this is
achieved through intracellular messengers which is an
intracellular solute whose concentration changes in response to
cell stimulation [3]. On the other hand information systems uses
similar techniques such as interrupts and signals. For example,
when the user presses a key on the keyboard or clicks the mouse
button, the system should respond accordingly.

5.4 Self-Containment
According to [6], a cell is “the fundamental unit of living
organisms; a structure that is capable of independent reproduction
and that consists of cytoplasm and a nucleus, or a nuclear zone,
surrounded by a cell membrane.” Hence, we can say that a cell is
self contained. A virtual machine has its operating system running
on its own virtual CPU with its virtual memory on a virtual hard
disk, etc. Like a cell, a virtual machine can carry out its basic
operations without the need of the external system and hence it
can be said to be self-contained as well.

Figure 6. Cells and Virtual Machines are Self-Contained.

5.5 Self-Maintaining
A cell can take in nutrients, convert them into energy and carry
out its normal function, the function that was encoded in its DNA
[2]. Every information system, on the other hand has a certain task
to execute depending on how it was configured by the system
administrator. With the progress in information technology, the
system is becoming more self-maintaining. For example, an
operating system (installed on a VM in this case) running
GNU/Linux or MS Windows can be easily configured to check
for security patches and other system updates on a regular basis.
The system can further be configured to install the updates at
specified times to avoid or minimize user interruption,
occasionally it can even restart and resume operation without any
user interference. For an example update configuration, the reader
is referred to [9] which details the case of Windows XP. This can
go even further to "self-healing."

5.6 Logical Disconnection
A cell can be logically disconnected from and totally unaware of
the host as it carries out its own basic operations. Similarly, a
virtual machine "lives" without the need to be aware of the host
existence.

The cell is logically disconnected from the host organism and
practically unaware of the host being. For example, a bacteria can
invade a certain host, carry out its function that it is

"programmed" to do without being really aware of the host
organism.

The same goes for the virtual machine. It just carries out its
function using its set of allocated virtual hardware without being
aware of the real details of the host system. For example, the host
server can be a personal computer with average hardware
specifications or it can be a multi-processor server with a fail-
proof RAID configuration; either case, the guest virtual OS is
unaware of the underlying host.

Table 1. Analogy between Cells and Virtual Machines

Property Cells Virtual Machines

Specialization Every cell has a certain
role to carry out.

Every virtual machine
functions as a particular
server.

Inter-
Communication

Cells uses chemical
signals to communicate
between each other.

VMs use network protocols
to communicate between
each other.

Intra-Signaling Through intracellular
messengers, cells alter
their behavior.

Through interrupts and
internal signals, a VM OS
alters its behavior.

Self-
Containment

A cell has its own
nucleus or nuclear zone,
cytoplasm, etc.

A VM has its own OS,
applications, etc.

Self-
Maintaining

A cell takes its nutrients
converts them into
energy and carries out
its function encoded by
its DNA.

A VM OS can handle a
variety of tasks from
running certain services to
downloading and installing
updates automatically.

Logical
Disconnection

The cell carries out its
function without being
really aware of the host
organism.

A VM does not need to be
aware of the host machine
existence.

Mobility A cell can move or be
moved from one host
organism to another.

A VM can be moved or
even copied from one host
machine to another.

Physical
Dependence

A cell usually needs to
be inside a host
organism.

A VM has to be in a host in
order to run.

5.7 Mobility
Being logically disconnected from the host system gives rise to an
interesting feature, mobility. This useful characteristic offers great
utility in both biology and virtualization. In biology, this leads to
the possibility of blood transfusion, organ transplant and a variety
of other medically beneficial operations.

In virtual machines (VMs), this provides one interesting benefit.
A VM that “lived” on one set of hardware (host system) can be
easily moved (or copied) to another host system. Practically once
a hardware becomes obsolete or possibly defective, the system
administrator can easily move the VM to another more recent and
robust host. Interestingly enough, this resembles organ donation;
only in this case, cloning (copy) is as simple as moving (cut).

5.8 Physical Dependence
Most kinds of cells cannot live by themselves, they are often
found inside an organism. For example, blood cells, nerve cells,
etc. On the other hand, it is possible to store blood, for example,
in controlled environments. However, during the storage period
the blood won't be accomplishing its main tasks, such as
providing oxygen to the cells, instead, it will be in a stagnant
state.

The same holds true for virtual machines. Although we can back
up a VM to a storage media, it won't be operational by that. For a
VM to be on, it has to be run on a computer.

6. COMPARISON
The idea of simulating a biological cell might not be new; similar
ideas were proposed in grid computing and agent systems.
However, the VM approach can offer several subtle advantages
that makes it more versatile for simulating biological cells.

From grid computing approach, a computer, for example, can be
used to represent a biological cell. The main limitation in this
approach is the lack of mobility. While a VM can be moved from
one system to the other using basic software instructions, any
relocation a computer generally requires human interference.
Another convenience would be the ability to copy a VM;
something which cannot be done to a grid's computer-cell.

Compared to agent systems, the VM has the advantage of being
self-contained. It can save inside itself any configuration or
customization issued by the user as well any data saved. The
physical representation of the VM will continue to be a set of
previously defined files that can be conveniently copied or backed
up. On the other hand, an agent, being a program or a script, it
needs to save data in separate files or on an external database.

7. CONCLUSION
Virtualization technology has armed us with another tool to create
a digital form of “life” that mimics biological systems in general
and cells in particular. In our opinion, the strong analogy that
holds between the cells and virtual machines provides a valid
basis for further research. This in turn can offer potentials for
creating a digital form that can further mimic the way that
biological systems work in.

8. REFERENCES
[1] Adams, K. and Agesen, O., “A Comparison of Software and

Hardware Techniques for the x86 Virtualization”,
Proceedings of the 12th international conference on
Architectural support for programming languages and
operating systems, October 21-25, 2006, San Jose,
California, USA.

[2] Alberts, B., et al., “Molecular Biology of the Cell”, Fifth
Edition, Garland, December 2007.

[3] Bolsover, S. R., et al., “Cell Biology: A Short Course”,
Wiley-Liss 2004.

[4] Leibnitz, K., et al., “Biologically Inspired Networking”,
Cognitive Networks: Towards Self-Aware Networks,
Chapter 1, pp. 1-21, John Wiley & Sons, September 2007.

[5] Mai, L. L., et al., The Cambridge Dictionary of Human
Biology and Evolution, Cambridge University Press, 2005.

[6] Stenesh, J., Dictionary of Biochemistry and Molecular
Biology, John Wiley & Sons, 1989.

[7] “VMware, Understanding Full Virtualization,
Paravirtualization, and Hardware Assist.”
http://www.vmware.com/solutions/whitepapers/virtualization
.html

[8] VMware Virtual Appliance Marketplace,
http://www.vmware.com/vmtn/appliances/directory/

[9] Windows XP, How to Configure and Use Automatic
Updates, http://support.microsoft.com/kb/306525

	1. INTRODUCTION
	2. DEFINING VIRTUALIZATION
	3. VIRTUALIZATION TECHNIQUES
	3.1 Hardware Emulation
	3.2 Full Virtualization
	3.2.1 Hosted Architecture
	3.2.2 Hypervisor (Bare-Metal) Architecture

	3.3 Paravirtualization (OS Assisted Virtualization)
	3.4 Hardware Assisted Virtualization

	4. BIOLOGICAL CELLS
	5. CELLS AND VIRTUAL MACHINES
	5.1 Specialization
	5.2 Inter-communication
	5.3 Intra-signaling
	5.4 Self-Containment
	5.5 Self-Maintaining
	5.6 Logical Disconnection
	5.7 Mobility
	5.8 Physical Dependence

	6. COMPARISON
	7. CONCLUSION
	8. REFERENCES

