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ABSTRACT
Correlated data gathering in body area networks calls for
systems that perform efficient compression and reliable trans-
mission of the measurements, while imposing a small com-
putational burden at the sensors. Highly-efficient compres-
sion mechanisms, e.g., adaptive arithmetic entropy encod-
ing, do not address the problem adequately, as they have
high computational demands. In this paper, we propose a
new distributed joint source-channel coding (DJSCC) solu-
tion for this problem. Following the principles of distributed
source coding, our design allows for efficient compression
and error-resilient transmission while exploiting the correla-
tion amongst sensors’ readings at energy-robust sink nodes.
In this way, the computational complexity and in turn, the
energy consumption at the sensor node is kept to a mini-
mum. Our DJSCC design is based on a new non-systematic
Slepian-Wolf Raptor code construction that achieves good
performance at short code lengths, which are appropriate
for low-rate data gathering within local or body area sensor
networks. Experimental results using a WSN deployment
for temperature monitoring reveal that, for lossless compres-
sion, the proposed system leads to a 30.08% rate reduction
against a baseline system that performs adaptive arithmetic
entropy encoding of the temperature readings. Moreover,
under AWGN and Rayleigh fading channel losses, the pro-
posed system leads to energy savings between 12.19% to
16.51% with respect to the baseline system.

∗Corresponding author.

Categories and Subject Descriptors
H.1.1 [Coding and Information Theory]: Data com-
paction and compression, Error control codes

General Terms
Design, Algorithms, Performance

Keywords
Wireless sensor networks (WSNs), Distributed joint source-
channel coding (DJSCC), Raptor Codes, Temperature mon-
itoring.

1. INTRODUCTION
Wireless local area and body area networks (WLANs/WBANs)
operate under austere constraints in terms of energy re-
sources, computational capabilities and available bandwidth
[10, 18, 32, 36]. WBAN applications, e.g., temperature mon-
itoring [18, 27], wearable visual sensors [9] or in-body sen-
sors [7], involve a number of sensors on/in or near the body,
thereby sensors’ readings are highly correlated. In order to
increase the throughput and lifetime of the network, this
correlation needs to be exploited by efficient data compres-
sion mechanisms that have low computational complexity
[18, 29]. In addition, as information is sent over error-prone
wireless channels, effective data protection schemes are re-
quired to provide for reliable communications.

Distributed source coding (DSC) is considered a key tech-
nology for wireless sensor networks (WSNs) [25, 34]. DSC
designs exploit the correlation between the sensors’ data at
the decoder, that is, the collection (sink) node, without re-
quiring inter-sensor communication. In this way, efficient
compression is obtained by shifting the complexity to robust
sink nodes, while keeping the sensor computational and en-
ergy demands to a minimum. Moreover, energy-consuming
data exchange between sensors is avoided. This is in con-
trast to predictive coding systems, e.g., [27], which apply
complex adaptive prediction and entropy coding at the en-
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Figure 1: The cluster-based network architecture.
The nodes measure environmental or body temper-
ature.

coder. In addition, in order to remove the correlation among
readings of neighboring sensors, predictive coding systems
require the sensors to communicate. This has a major im-
pact on the computational demands and transmission power
consumption of the sensors.

Temperature sensors, being wearable (on-body), or located
in the living environment of an individual, are key compo-
nents of WLAN/WBAN systems for assisted living or health
care monitoring [5,18]. Several works have investigated DSC
schemes for wireless sensors monitoring temperature, appli-
cable to WBANs or WLANs. A simple coset construction
realizing Slepian-Wolf (SW) coding for two sensors measur-
ing the temperature in a room was devised in [23]. The
scheme was extended to a cross-layer design by modeling
the interaction between DSC and the medium access con-
trol (MAC) layer in [22]. Concerning lossy distributed com-
pression, a code design comprising quantization followed by
binarization and low-density parity-check (LDPC) encoding
was proposed in [5]. Considering a multi-sensory scenario,
Cheng [6] introduced a multiterminal code design in which
SW coding was simply replaced by entropy coding, whereas
joint source reconstruction at the decoder was realized by
Gaussian process regression.

This paper proposes a novel distributed joint source-channel
coding (DJSCC) design for WSNs measuring temperature.
Contrary to contemporary schemes for temperature data en-
coding, e.g., [3–6,20,27], which focus only on data compres-
sion, our design jointly addresses compression and error-
resilient transmission of data. In this way, channel im-
pairments are mitigated without requiring packet retrans-
missions at the MAC layer, thereby leading to significant
energy savings for each sensor node. We devise a novel
scheme using asymmetric SW coding realized by Raptor
codes [28]. Contrary to other SW constructions that are
based on Turbo [1,12] or LDPC [17,30] codes, Raptor codes
offer a flexible adaptation of the code rate, which is an as-
set in hands-on applications where inter-sensor correlations
vary. Conversely to other designs (e.g., [11,35]) that consider
long codewords, our SW Raptor code design allows for good
performance at short code lengths, which are particularly
important for the temperature monitoring application. Ex-
perimental results using real data from a proprietary WSN
deployment show that the proposed system introduces sig-
nificant compression gains (up to 30.08% in rate reduction)

with respect to the baseline scheme that performs adaptive
arithmetic entropy coding of the data. These coding gains
lead to notable energy savings (up to 16.51%) at the sensor
nodes with respect to the baseline system.

The remainder of the paper is as follows: Section 2 discusses
the considered network model and the proposed architec-
ture. Section 3 presents our DJSCC Raptor code design
whereas, Section 4 elaborates on the statistical model for
the correlation amongst the sensors’ readings. Section 5
gives the experimental results and Section 6 concludes the
work.

2. NETWORK MODEL AND PROPOSED
SYSTEM

2.1 Network Model
We consider a WSN comprising sensor nodes monitoring
the temperature in the environment of an individual, as
well as wearable sensors that record the body temperature.
The WSN is organized into clusters, each comprising an
elected cluster head (CH) and peripheral nodes (see Fig-
ure 1). Peripheral nodes measure temperature data, apply
compression and error protection mechanisms and transmit
the resulting data packets to the base station via their cor-
responding CH. CHs are group coordinators that organize
data transfer, sleeping periods and data aggregation, as well
as transmit the processed data to the base station. In ad-
dition, each CH transmits its own temperature data. To
prevent CH battery depletion, the CH changes periodically
based on energy criteria [2, 26]. When the residual energy
of the CH turns low, another CH is elected among the pe-
ripheral nodes. In this way, energy consumption is balanced
within the cluster and the network lifetime increases [2,26].
The cluster formation abides by well-known cluster-tree so-
lutions for IEEE 802.15.4-based MAC protocols in WSNs,
e.g., the IEEE 802.15.4 GTS [16]. Transmission is performed
over the 16 channels of the IEEE 802.15.4 PHY and inter-
sensor interference is mitigated via the utilized MAC layer
cluster-tree coordination [16].

2.2 Proposed DJSCC Architecture
In the proposed architecture, shown in Figure 2, the tem-
perature data gathered by the sensors in each cluster is en-
coded by means of SW coding. Each sensor acquires discrete
temperature samples through an analog-to-digital converter
with b bit-depth accuracy. Under the memory capabilities of
the sensor, m samples are aggregated together for encoding.
Binarization is performed by means of gray encoding1 [13],
resulting in an array of k = m × b bits to be encoded.

The binarized information of the CH is intra-encoded us-
ing adaptive arithmetic entropy coding, achieving a source
coding rate of RXN ≥ kH(XN ) bits. The compressed bit-
stream is then channel encoded resulting in the total trans-

mitted information of R′
XN

≥ k H(XN )
C

bits, where C denotes
the channel capacity. Channel encoding is realized using
Raptor codes that adhere to the systematic code described
in the Raptor RFC5053 standard [19]. At the decoder, the

1Gray encoding is used to enhance the performance of SW
coding as in the former the binary representations of two
consecutive values differ in one bit position.



Peripheral Node 1

X1

A/D Gray 
Encoding

DJSCC 
Encoding

Peripheral Node 2

X2

A/D Gray 
Encoding

DJSCC 
Encoding

Peripheral Node 3

X3

A/D Gray 
Encoding

DJSCC 
Encoding

Cluster Head (CH)

A/D Gray 
Encoding

Entropy 
Encoding

Channel 
Encoding

Base Station

DJSCC 
Decoding

Gray 
Decoding

Channel 
Decoding

Entropy 
Decoding

Gray 
Decoding

DJSCC 
Decoding

Gray 
Decoding

DJSCC 
Decoding

Gray 
Decoding

X1ˆ

X2
ˆ

X3
ˆ

X4

X4
ˆ

Figure 2: The proposed system architecture.

encoding operations are reversed resulting in the decoded
CH data. The decoded CH data acts as side information to
SW decode the data from the peripheral nodes.

Each of the peripheral nodes in the cluster encodes its data
(denoted as X1, ..., XN−1) using asymmetric SW coding as
explained in the subsequent section.

3. DISTRIBUTED JOINT SOURCE-
CHANNEL CODE DESIGN

Let xn = [xn(1), ..., xn(k)] be the k information bits of
source Xn from a peripheral node n = 1, 2, ..., N−1. DJSCC
encoding is applied to xn, realized by a SW Raptor encoder.
Based on the Raptor RFC5053 standard [19], which defines
a systematic channel code, we design a non-systematic code
construction for SW coding.

The Tanner graph of the designed non-systematic Raptor
SW code in depicted in Figure 3. At the encoder, the LDPC
codeword is first formed as yT = GLDPCw×k × xT , where
w = k + s and GLDPCw×k is the generator matrix of the
LDPC precode. Then, the Raptor codeword is given by
cT = GLTp×w × yT , where GLTp×w is the generator matrix
of the Luby Transform (LT) code. The RXn = p bits from
the output of the non-systematic encoder are transmitted.
When noiseless transmission is considered then, for decod-
ing with low error probability, we need that RXn = p ≥
kH(Xn|XN ) bits. The conditional entropy H(Xn|XN ) de-
pends on the correlation between the sources, as shown in
Section 4. For transmission over a noisy channel, the trans-
mission rate needs to be increased according to the channel

capacity as RXn = p ≥ kH(Xn|XN )
C

.

At the decoder, the information is obtained by applying soft-
decoding by means of belief propagation [24] on the Raptor
Tanner graph (see Figure 3). To initiate decoding, the de-
coder is given the following soft-information in the form of
log-likelihood ratios (LLRs): In the noiseless transmission
case, the LLRs L[x∗

n(i)], which correspond to the parity
symbols for the encoded source Xn, are set to a very large
positive or negative value (depending on the received sym-
bol).

When transmission is performed over a AWGN channel and
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Figure 3: Tanner graph of our non-systematic SW
Raptor code.

binary phase-shift keying (BPSK) modulation is used, the
LLR of each parity symbol is initialized as [15]

L[x∗
n(i)] =

2

σ2
n

yn(i), i = 1, 2, ..., p, (1)

where yn(i) is the value received when x∗
n(i) is sent, and σ2

n

is the variance of the Gaussian noise. For transmission over
a channel experiencing Rayleigh fading (with known CSI)
the LLRs are given by [14]

L[x∗
n(i)] =

2

σ2
n

yn(i) × r, (2)

where r is the fading gain. These channel models are known
to characterize the behavior of narrow-band transmission
within personal area networks [21]. The LLRs for the infor-
mation symbols, xn(i), i = 1, 2, ..., k, are initialized as

L[xn(i)] = log
Pr[xn(i) = 0|xN ]

Pr[xn(i) = 1|xN ]
= log

∫
xn=0

f(xn|xN )dxn
∫

xn=1
f(xn|xN )dxn

,

(3)



where the numerator of (3) is the integral of the conditional
pdf of the correlation model (see Section 4) on the intervals
where xn(i) = 0, and the denominator is the integral of the
pdf on the intervals where xn(i) = 1.

The LLRs L[xn(i)], i = k + 1, ..., k + s, which correspond to
the parity symbols of the LDPC code, are initialized to zero
as these symbols are not known a priori at the decoder.

Finally, after Raptor decoding is finished, the soft-information
is converted to binary symbols via thresholding, and gray
decoding is performed to obtain the decoded information.

4. CORRELATION MODELING
We express the correlation amongst the sensors’ temperature
measurements through the multivariate Gaussian distribu-
tion. Under this model, the joint probability density (pdf)
function of the N random variables is

f(x1, x2, ..., xN ) =
1

(2π)
N
2 |Σ|

1
2

× exp

(

−
1

2
(x − μ)T Σ−1(x − μ)

)

, (4)

where X = {X1, X2, ..., XN} is an N -dimensional vector
consisting of the correlated random variables, μ = {E[X1],
E[X2], ..., E[XN ]} is the vector containing the mean values
and Σ is the covariance matrix of size N × N . The statis-
tical dependencies of the measured data from the N nodes
within a cluster are incorporated in the covariance matrix.
The elements outside the main diagonal can be expressed
using the Pearson correlation coefficient

ρij =
Cov(Xi, Xj)√

(Var(Xi)Var(Xj))
, (5)

where the terms Var(Xi) and Var(Xj) represent the vari-
ances of the random variables Xi and Xj , respectively. The
parameters of the model are estimated based on offline train-
ing as explained in Section 5.

In order to derive the LLRs and the encoding rate for each
peripheral node, we first derive the univariate distribution,
f(xN ), for the marginal statistics of the CH node, that is,

fN (xN ) =

∫

X1

...

∫

XN−1

f(x1, ..., xN )dx1...dxN−1, (6)

and the bivariate distribution.

f(xn, xN ) =

∫

Xi 6={n,N}

...

∫

Xj 6={n,N}

f(xi, ..., xj)

× dxi 6={n,N}...dxj 6={n,N}, (7)

∀n ∈ {1, 2, ..., N − 1}. Then, the conditional pdf, required
for the calculation of the LLRs in (3), is derived as

f(xn|xN ) =
f(xn, xN )

fN (xN )
. (8)

To calculate the encoding rate per peripheral sensor we de-
rive the marginal and bivariate probability mass functions
(pmfs) for each n = 1, 2, . . . , N . To this end, the range of
each continuous random variable Xn is divided into intervals
of length Δ, specified by the sensor resolution. As the sensor
resolution is high (16 bits), we can derive the marginal and

bivariate pmfs by applying the mean-value theorem on the
marginal and bivariate pdfs, given in (6) and (7), respec-
tively. Using the marginal and joint pmfs we calculate the
entropy H(XN ) and the joint entropy H(Xn, XN ). Then,
the conditional entropy for each source Xn given XN is com-
puted as H(Xn|XN ) = H(Xn, XN ) − H(XN ).

5. EXPERIMENTS
Our experimental evaluations are organized in two cate-
gories. Firstly, we evaluate the performance of our non-
systematic SW Raptor code design against the state-of-the-
art [11] using synthetic data. Secondly, we explore the per-
formance of the proposed DJSCC system using a real WSN
deployment.

5.1 Experiments on Synthetic data
To evaluate the SW performance of our Raptor code, we
consider a uniform binary source X (where, Pr[X = 1] =
Pr[X = 0] = 1

2
) and generate data of different lengths,

varying from k = 16 bits to k = 5 × 103 bits. We as-
sume that the correlation between the source and the side
information is modeled with a binary symmetric channel
(BSC) with crossover probability pe. Thus, the side infor-
mation data is given by Y = X ⊕ Z, where Z ∼ B(pe) is a
Bernouli correlation noise and ⊕ denotes modulo-2 addition.
We compare the average2 bit-error-rate (BER) performance
of our non-systematic SW Raptor code against the system-
atic SW Raptor code of [11] with respect to the source word
length. The crossover probability of the binary symmetric
correlation channel was set to pe = 0.05, and the compres-
sion ratio was 1

H(X|Y )
= 2. The results, depicted in Fig 4,

show that the systematic Raptor code is effective for very
long codewords, while our non-systematic code is efficient
for short codeword lengths. Hence, our non-systematic SW
Raptor code is suitable for body area networks monitoring
physical parameters, such as temperature, humidity, etc.,
where the data rate is low. On the contrary, the system-
atic SW Raptor code of [11] is more appropriate for body
area network applications that involve a high data volume,
for example, wireless visual sensors for elderly care moni-
toring [9,31], genome sequence compression [33], or wireless
capsule endoscopy [7, 8].

5.2 Experiments with WSN Deployment
To evaluate the practical performance of our system, we de-
ployed a proprietary WSN comprising 32 nodes (organized
in 8 clusters of 4 nodes) gathering temperature data in an
indoor office environment. The sink node was connected
to a desktop computer. The hardware for the sensors and
the sink node was an Atmel ATmega 1281 microcontroller
and the sensors operated with an MCP9700AT Temperature
Transducer and a Li-Polymer Battery–3.7V. Transmissions
within each cluster occurred via the AT86RF230 transceiver.
The payload packet size was set to 60 bytes. The sensors
operated at a sampling rate of 4Hz. We aggregated m = 40
consecutive measurements to construct a sourceword of size
k = m × b = 640 bits, where b = 16 bits is the bit-depth
of the A/D converter within each sensor. During the train-
ing stage, data collected over a three-day operation of the
WSN were used to derive the parameters of the correlation

2Results over 200 independent trials are presented.
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model. To evaluate the compression performance and the
error-resilience capability of the proposed system we col-
lected additional data over a thirty-day operation period of
the system.

5.2.1 Compression Performance Evaluation
Initially, we assess the compression capacity of the proposed
Raptor-based SW code design. In particular, we evaluate
the BER of the decoded data from each peripheral sensor in
a cluster, Xn, n = 1, 2, 3, with respect to the compression ra-
tio 1

H(Xn|X4)
. Average results over 200 trials3 are presented.

The results, together with the theoretical SW limits, are pre-
sented in Fig. 5. With respect to the reconstruction quality
of the decoded temperature data, BER values below 10−6

corresponded to near-lossless recovery. On the other end,
values around 10−2 lead to maximum root mean squared-
error of 128, which corresponded to a temperature error of
up to 0.38◦, which is below the A/D accuracy of the utilized
temperature transducer.

Next, we compare the compression performance of the pro-

3Per trial, a four-day period (out of the full thirty-day pe-
riod) was selected at random and the corresponding temper-
ature data was compressed.

Table 1: Comparison of source encoding rates (in
bits/sourceword) for entropy coding, and the pro-
posed Slepian-Wolf coding scheme (X4 denotes the
CH data that is always entropy encoded).

X1 X2 X3 X4

Entropy Coding: RXi 452 496 512 471

Proposed with MG: RXi 319 356 358 —

Gain (%) 29.43 28.23 30.08 —

Table 2: Percentile energy consumption reduc-
tion versus channel SNR, offered by the pro-
posed DJSCC system in comparison to the base-
line system. Transmission over the AWGN and the
Rayleigh fading channel is considered.

AWGN Rayleigh Fading

SNR (dB) Energy Gain (%) Energy Gain (%)

0.5 15.67 15.98
1 15.24 16.51

1.5 14.96 16.14
2 14.94 15.28

2.5 13.38 14.15
3 13.34 15.77

3.5 12.19 16.41
4 13.57 16.07

4.5 12.82 16.34
5 12.31 15.14

posed system against the performance obtained with the
baseline system, which performs adaptive arithmetic entropy
coding of each sensor’s readings. In both cases, lossless en-
coding is achieved. The encoding rates (in bits per code-
word) achieved with the baseline system and the proposed
system are reported in Table 1. The results show that the
proposed system reduces the required rate for compression
by up to 30.08% compared to the baseline system. These
gains highlight the importance of properly leveraging the
correlation between the data gathered by the sensors in the
WSN.

5.2.2 Energy Savings
We now evaluate the energy consumption of a sensor running
the proposed versus the baseline system for varying trans-
mission channel conditions. Interference and packet losses
cannot be controlled in our practical deployment, as such
conditions vary during the operational lifetime of our sys-
tem due to various external factors. For this reason, we have
carried out our evaluation using the AWGN and Rayleigh
fading channel models under varying signal-to-noise-ratios
(SNR) values. Packet retransmissions are not required by
the proposed DJSCC system, as channel impairments are
mitigated with the Raptor code present in the proposed de-
sign. For our system, we derive the required information
rate to achieve a decoding BER close to zero (BER < 10−6)
for different channel SNRs. For the baseline system, we cal-
culate the packet retransmission limit that guarantees an
equivalent BER.

To conduct our energy measurements, each sensor in our
WSN deployment runs executable programs implementing
the proposed DJSCC scheme and the baseline system. The



information rates for our system and the packet retransmis-
sion limit for the baseline system are preset via the afore-
mentioned channel-model-based measurements. Full pack-
ets (80 bytes payload and 12 bytes header) are transmitted
by aggregating encoded information from consecutive code-
words when required. The Atmel ATmega 1281 microcon-
troller of each sensor is set to report its battery level during
the execution. By gathering the battery level measurements
from all sensors at the end of the experiment and converting
them to available energy levels, we determine the percentile
energy consumption difference between the proposed and the
baseline system4. Average results over multiple executions
and all sensors within a cluster are reported in Table 2. Re-
sults for both channel models and different SNR conditions
are provided.

We observe that the proposed DJSCC system yields a no-
table reduction in energy consumption with respect to the
baseline system. When transmission faces AWGN, energy
consumption savings between 12.19% to 15.67% are reported
while, in the case of Rayleigh fading savings between 14.15%
to 16.51% are observed. These savings are attributed to
the following reasons: First, the proposed DJSCC scheme
eliminates packet retransmissions due to the inherent error
correcting capability of the code design. On the contrary,
retransmissions are used to deal with channel impairments
when the baseline system is used. Second, as shown in Sec-
tion 5.2.1, the proposed system achieves higher compression
rates than the baseline system as it exploits the correlation
between the readings from different sensors.

6. CONCLUSIONS
A novel DJSCC design for correlated data gathering in local-
area or body-area wireless sensor networks has been pre-
sented. Our scheme is based on a new non-systematic SW
Raptor code design, which, unlike existing schemes (i.e.,
[11]), achieves good performance at short code lengths. This
is particularly important for temperature monitoring appli-
cations, where sensors measure low-rate data. Experimen-
tation using a WSN deployment shows that the proposed
DJSCC system achieves compression rate savings of up to
30.08% compared to the baseline system that performs adap-
tive arithmetic entropy encoding of the data. Moreover, our
system provides for inherent error resilience against channel
impairments without requiring packet retransmissions. As
a consequence, the proposed system notably reduces the en-
ergy consumption (by up to 16.51%) at a sensor node with
respect to the baseline system.
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