
Ana lys is o f human pe rfo rman e us ingphys io lo g i a l da ta s tre amsGaurav N. PradhanUniversity of Texas at DallasP.O. Box 75083Rihardson, Texas 75083gaurav�utdallas.edu Balakrishnan PrabhakaranUniversity of Texas at DallasP.O. Box 75083Rihardson, Texas 75083praba�utdallas.eduABSTRACTAdvanement in tehnology has led to measure the humanperformane using sophistiated multiple systems suh asmotion apture and physiologial data monitoring systems.These systems together, represent the human ativity in var-ious physiologi and motori streams that forms a multi-dimensional framework. The immediate requirement thatrises is, analyzing these data streams to quantify the humanperformane. In this paper, we have proposed an eÆient,multi-dimensional fator analysis tehnique that quanti�esthe multiple observations of data streams aross di�erentpartiipants. In our approah, we extrat harateristi pa-rameters from the streams and ondut a separate globalanalysis on the data sets of eah stream. The individualdata sets are then projeted onto the respetive global anal-ysis to analyze the di�erenes in the responses of the parti-ipants. Next, we integrate these global analysis spaes of allstreams, to get a ompromise struture that represents theaggregate e�et of all streams on the performane of eahpartiipant.Categories and Subjet DesriptorsH.2.8 [Database Management℄: Database Appliations;J.3 [Computer Appliations℄: Life and Medial SienesKeywordsMotion apture, eletromyogram, multi-dimensional, fatoranalysis, prinipal omponent analysis.1. INTRODUCTIONIn the �elds of medial, sports and training, human perfor-mane is a broad term that inludes physial/musular fun-tions, body joint movements, as well as pereptual and og-nitive abilities. Evidene from multiple systems involved inhuman performane may provide: 1) Cruial lues to guideidenti�ation, remediation, and ultimately prevention of avariety of medial onditions and behavioral de�its. 2) Theneessary information to diagnose the problems in sports

training that an improve the performane. With rapid ad-vanes in multiple �elds (suh as semiondutors, optis,and material sienes), the above �elds uses a plethora ofhuman performane measuring devies. Instruments suhas 3D motion apture systems, EKG/ECG, EMG are in-reasingly being used for a variety of linial studies andsports performane analysis. In this work, we fous on twosystems,� 3D Motion Capture : It gives the positional and ori-entational information of all human joints in 3D spaewith a speed of 120 readings per joint per seond.� Eletromyogram (EMG) : These are biomedial ele-trodes whih gives information on the eletrial ativ-ity generated during musle ontration while doingmotion.On synhronizing these systems, we get the detailed infor-mation regarding the internal musular ontration ativityorresponding to the external joint movements. Together,it forms a multi-dimensional time series framework. Themain hallenge is identifying and extrating the set of at-tributes or harateristis from eah multi-dimensional timeseries that an evaluate the performane aspet of eah in-dividual. Data streams oming from di�erent sensors havedi�erent resolution/harateristis, and hene the extratedattributes for eah data stream are di�erent in nature. Ourmain objetive is to analyze these heterogenous sets of at-tributes from multi-dimensional streams and to \model" theperformane measure between individuals. This analysiswill derive an integrated piture of the observations and re-lationships between the di�erent data streams.To ahieve our objetive, we explore two-stage multidimen-sional fator analysis approah. The �rst stage is intra-struture stage, wherein we analyze the struture of the in-dividual multi-dimensional streams based on orrespondingextrated attributes/parameters and derive a global analy-sis for eah stream. In this global analysis, the di�erenesbetween the partiipants' performane an be notied withrespet to eah stream. The seond stage is inter-struturestage, where we integrate the global analyses of all streamsto get the inter-global analysis struture known as ompro-mise struture that represents the aggregate e�et of all sen-sors. It is useful to quantify the overall performane of thepartiipants.

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copies arenot made or distributed for profit or commercial advantage and that copiesbear this notice and the full citation on the first page.  To copy otherwise, torepublish, to post on servers or to redistribute to lists, requires prior specificpermission and/or a fee.BodyNets 2008, March 13-15 Tempe, Arizona, USACopyright © 2008 ICST 978-963-9799-17-2DOI 10.4108/ICST.BODYNETS2008.2937



2. RELATED WORKMany multivariate analytial tehniques have been devel-oped to analyze several kinds of data. Some of the well-established tehniques are like prinipal omponent analysis(PCA), anonial orrelation analysis (CC), multiple fatoranalysis (MFA) [5℄, STATIS [6℄ et. Most of these teh-niques on multivariate analysis are disussed in [1℄. Thesetehniques are mainly used in areas like sensory pro�ling[9℄, hemistry [10℄, food quality researh [8℄, [7℄, [3℄ et.As the data sets go more omplex and multi-dimensional,these tehniques need to be extended. The multiple fatoranalysis was extended to hierarhial MFA in [4℄, to handlehierarhial struture of data set. In [11℄, two multi-blokstables were analyzed using STATIS and Tuker inter-batterymethod. In this paper, we are analyzing multi-dimensionaldata streams in the form of positional information of jointsand musular ativity from multiple partiipants aross mul-tiple trials.3. PARAMETER EXTRACTIONTo quantify the partiipant's performane for a motion, weneed to analyze the joints and musles that are ativelyinvolved in motion. We all them prominent joints andmusles for a motion. Example: For a motion \jump", thethree leg joints namely, 'tibia', 'foot', and 'toe' and two legmusles namely, 'tibialis anterior', and 'gastronemius' areprominent to onsider for analysis. Depending on needsand requirement, other joints and musles an be inludedin analysis.3.1 Motion Capture streams (joints)To analyze the behavior of the prominent joint movementsinvolved in the motion, we extrat the ruial positional in-formation at regular time intervals during the span of ation.In (Figure 1 (d)), we have hosen j = f0(=LON ),25, 50, 75,100(=LOFF )g. Figures 1 (a), (b), and () shows the orre-sponding disrete points of 3D trajetories for every joint in2D-spae.
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Lon LoffFigure 1: Extration of features for eah prominenthuman joints in motion (in this ase, it is \jump").3.2 EMG streams (musles)As EMG streams are non-stationary in nature, the previousdisretization approah on joint streams is not e�etive. Asa result, to analyze the prominent EMG streams, we needto extrat the parameters that indiate the harateristisand temporal relationships between the onseutive peaks.Figure 2 shows the general parameters that we extrat fromprominent EMG streams,� The mean of all peak amplitudes a1, a2, a3, and a4.
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Figure 3: Constrution of the global analysis spaefor the Sensor Si.To analyze the data-streams related to all s sensors, we forma multi-blok struture for eah sensor (as shown in left hand



side of Figure 3). It organizes the parameters P 1i , P 2i , � � � ,Pmii of the sensor stream Si (8i : 1 � i � s) for all n partii-pants in all k trials. Thus, in one multi-blok of Si sensor, wehave k tables/matries (n�mi) eah orresponding to onetrial. The advantageous reason for this organization is that,in the global analysis spae we an represent and evaluatethe di�erenes between the partiipants' responses/motionwith respet to sensor Si aross k trials.The following steps explain the approah for multidimen-sional fator analysis applied to multi-blok struture orre-sponding to sensors Si (8i : (1 � i � s)),1. Preproessing: The trial matries Ti1, � � � , Tik are en-tered, normalized and are denoted as Xi1, � � � , Xikrespetively.2. Salar Produts: Eah matrix Xik de�nes inherentlya struture for the performane of the partiipantswith respet to sensor Si, whih an be derived byomputing the salar produts between partiipants.Hene, the preproessed matries Xi1, � � � , Xik aretransformed into n�n salar produt matries denotedas Mi1, � � � , Mik respetively. Thus, 8z : 1 � z � k,Miz = Xiz �XTiz (1)3. Computing the Global Analysis Matrix: The globalanalysis matrix for sensor Si is given as follows,MiC = kXx=1 �x �Mix (2)where �t denotes the weight for the tth trial. Theweights are hosen so that the trial strutures agree-ing most with other trial strutures will have largerweights.4. Analyzing the Global Analysis Matrix: The prinipalomponent analysis of the global analysis matrix MiCexplores the overall performane of the partiipant withrespet to Sensor Si. Sine, global analysis matrix isalso a salar produt matrix, its PCA is given asMiC = Q ^QT (3)The fator sores (i.e. the projetion of the rows onthe prinipal omponents of the analysis of MiC) areobtained as, Fi = Q^ 12 (4)In this matrix Fi, eah row orresponds to the partii-pant and eah olumn orresponds to the omponent.Figure 3 shows the example where few partiipantsare represented in the global analysis spae of �rst twoprinipal omponents of the fator sore matrix thatarry total variane of 85� 90%.4.2 Inter-struture Stage: Inter-Global Anal-ysisIn this stage, our goal is to integrate these global analysisspaes of all sensors, to get a ompromise struture that rep-resents the aggregate e�et of all sensors on the performaneof eah partiipant. To make global analysis of all sensors

omparable, we onvert them into orresponding dimension-invariant, n� n distane matries. That is, for eah globalanalysis for sensor Si, we get the orresponding distanematrix Di for n partiipants. But distane matries D1,� � � , Ds annot be analyzed diretly using eigen deomposi-tion and need to be transformed into orresponding ross-produt matries D1; � � � ;Ds using metri multidimensionalsaling [2℄. On omparing and analyzing these s ross prod-ut matries using steps 3 and 4 from Setion 4.1, we �nd a�nal ompromise inter-struture that quanti�es the overallperformane of the partiipants.5. RESULTS5.1 Test Environment and Data-setsThe experiments were onduted in 3D motion apture labo-ratory equipped with 16 high-resolution Vion ameras ap-turing at the rate of 120 frames/seond. EMG Ag-Cl sur-fae eletrodes provided by Delsys were synhronized with3D motion ameras to pik the orresponding musle ativ-ity of limbs while performing motions. The similar set ofations were aptured from 24 partiipants (i.e. n = 24),and eah partiipant performed 10 trials (i.e. k = 10) foreah ation.In Setions 5.2 and 5.3, we will disuss the results of our ap-proah by analyzing the leg segments for the \jump" ation.The prominent joints and musles for the \jump" ativityare three leg segments, `tibia', `foot', and `toe' and two legmusles namely, `tibialis anterior', and `gastronemius'.5.2 Global AnalysisThe multi-variate struture to analyze the data-streams for\jump" response onsists of 5 multi-bloks, eah for promi-nent sensors. Figure 4(a) and () shows the projetions offator sores for all partiipants on the �rst two dimensionsof global analysis spaes of tibialis anterior, and gastrone-mius respetively. For `Tibialis Anterior', �rst two dimen-sions explains 89:4% of high variane, whih is suÆient tointerpret the results. The orresponding loadings i.e. or-relations between the original parameters and the prinipalomponents (Figure 4(b)) shows that the �rst dimension hashigh orrelation with `mean of peaks', and 'maximum ampli-tude of peaks'. The �rst prinipal omponent, having 71:4%variane, di�erentiates the partiipants having high and lowmusular ativity. Similarly, with all other parameters re-lated to `Tibialis Anterior', we an interpret the behaviorwithin the partiipants on same response. In global anal-ysis for `Gastronemius', �rst dimension explains 84:2% ofvariane. The orresponding loadings (Figure 4(d)) are al-most similar to the previous musle. Similarly we an alsoshow the fator sores for joints projeted on the �rst fewdimensions of the orresponding global analysis.5.3 Inter-Global AnalysisThe PCA of the ompromise matrix reveals the inter-strutureof the partiipants by ombining the e�et of all prominentsensors. The projetions of the partiipants on the �rst fourdimensions are shown in Figure 5. Together, these four di-mensions explain 83% of the variane of the ompromisematrix.In order to failitate the interpretation of the Figure 5, we
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(a)Figure 4: (a),(): Global Anal-ysis of tibialis anterior, and gas-tronemius; (b),(d): Respe-tive loadings i.e. orrelationsbetween parameters and om-ponents. −0.5 0 0.5
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(a) (b)Figure 5: Analysis of ompro-mise: Plot of the partiipantsin the ompromise spae de-�ned by dimensions 1-2(a) and3-4(b) of the ompromise ma-trix. −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
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