Analysis of human performance using

physiological data streams

Gaurav N. Pradhan
University of Texas at Dallas
P.O. Box 75083
Richardson, Texas 75083
gaurav@utdallas.edu

ABSTRACT

Advancement in technology has led to measure the human
performance using sophisticated multiple systems such as
motion capture and physiological data monitoring systems.
These systems together, represent the human activity in var-
ious physiologic and motoric streams that forms a multi-
dimensional framework. The immediate requirement that
rises is, analyzing these data streams to quantify the human
performance. In this paper, we have proposed an efficient,
multi-dimensional factor analysis technique that quantifies
the multiple observations of data streams across different
participants. In our approach, we extract characteristic pa-
rameters from the streams and conduct a separate global
analysis on the data sets of each stream. The individual
data sets are then projected onto the respective global anal-
ysis to analyze the differences in the responses of the partic-
ipants. Next, we integrate these global analysis spaces of all
streams, to get a compromise structure that represents the
aggregate effect of all streams on the performance of each
participant.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications;
J.3 [Computer Applications]: Life and Medical Sciences

Keywords
Motion capture, electromyogram, multi-dimensional, factor
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1. INTRODUCTION

In the fields of medical, sports and training, human perfor-
mance is a broad term that includes physical/muscular func-
tions, body joint movements, as well as perceptual and cog-
nitive abilities. Evidence from multiple systems involved in
human performance may provide: 1) Crucial clues to guide
identification, remediation, and ultimately prevention of a
variety of medical conditions and behavioral deficits. 2) The
necessary information to diagnose the problems in sports
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training that can improve the performance. With rapid ad-
vances in multiple fields (such as semiconductors, optics,
and material sciences), the above fields uses a plethora of
human performance measuring devices. Instruments such
as 3D motion capture systems, EKG/ECG, EMG are in-
creasingly being used for a variety of clinical studies and
sports performance analysis. In this work, we focus on two
systems,

o 3D Motion Capture : It gives the positional and ori-
entational information of all human joints in 3D space
with a speed of 120 readings per joint per second.

o Electromyogram (EMG) : These are biomedical elec-
trodes which gives information on the electrical activ-
ity generated during muscle contraction while doing
motion.

On synchronizing these systems, we get the detailed infor-
mation regarding the internal muscular contraction activity
corresponding to the external joint movements. Together,
it forms a multi-dimensional time series framework. The
main challenge is identifying and extracting the set of at-
tributes or characteristics from each multi-dimensional time
series that can evaluate the performance aspect of each in-
dividual. Data streams coming from different sensors have
different resolution/characteristics, and hence the extracted
attributes for each data stream are different in nature. Our
main objective is to analyze these heterogenous sets of at-
tributes from multi-dimensional streams and to “model” the
performance measure between individuals. This analysis
will derive an integrated picture of the observations and re-
lationships between the different data streams.

To achieve our objective, we explore two-stage multidimen-
sional factor analysis approach. The first stage is intra-
structure stage, wherein we analyze the structure of the in-
dividual multi-dimensional streams based on corresponding
extracted attributes/parameters and derive a global analy-
sis for each stream. In this global analysis, the differences
between the participants’ performance can be noticed with
respect to each stream. The second stage is inter-structure
stage, where we integrate the global analyses of all streams
to get the inter-global analysis structure known as compro-
muse structure that represents the aggregate effect of all sen-
sors. It is useful to quantify the overall performance of the
participants.
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2. RELATED WORK

Many multivariate analytical techniques have been devel-
oped to analyze several kinds of data. Some of the well-
established techniques are like principal component analysis
(PCA), canonical correlation analysis (CC), multiple factor
analysis (MFA) [5], STATIS [6] etc. Most of these tech-
niques on multivariate analysis are discussed in [1]. These
techniques are mainly used in areas like sensory profiling
[9], chemistry [10], food quality research [8], [7], [3] etc.
As the data sets go more complex and multi-dimensional,
these techniques need to be extended. The multiple factor
analysis was extended to hierarchical MFA in [4], to handle
hierarchical structure of data set. In [11], two multi-blocks
tables were analyzed using STATIS and Tucker inter-battery
method. In this paper, we are analyzing multi-dimensional
data streams in the form of positional information of joints
and muscular activity from multiple participants across mul-
tiple trials.

3. PARAMETER EXTRACTION

To quantify the participant’s performance for a motion, we
need to analyze the joints and muscles that are actively
involved in motion. We call them prominent joints and
muscles for a motion. Ezample: For a motion “jump”, the
three leg joints namely, ‘tibia’, ’foot’, and ’toe’ and two leg
muscles namely, ‘tibialis anterior’, and 'gastrocnemius’ are
promenent to consider for analysis. Depending on needs
and requirement, other joints and muscles can be included
i analyses.

3.1 Motion Capture streams (joints)

To analyze the behavior of the prominent joint movements
involved in the motion, we extract the crucial positional in-
formation at regular time intervals during the span of action.
In (Figure 1 (d)), we have chosen j = {0(=Lon ),25, 50, 75,
100(=Lorr)}. Figures 1 (a), (b), and (¢) shows the corre-
sponding discrete points of 3D trajectories for every joint in
2D-space.
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Figure 1: Extraction of features for each prominent
human joints in motion (in this case, it is “jump”).

3.2 EMG streams (muscles)

As EMG streams are non-stationary in nature, the previous
discretization approach on joint streams is not effective. As
a result, to analyze the prominent EMG streams, we need
to extract the parameters that indicate the characteristics
and temporal relationships between the consecutive peaks.
Figure 2 shows the general parameters that we extract from
prominent EMG streams,

o The mean of all peak amplitudes ay, az, as, and ay.
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Figure 2: Extraction of features from the post-
processed EMG signal.

o The average duration between the consecutive peaks,
i.e. mean Of t01, t12, t23 and t34.

o Average change in the consecutive peaks, i.e. mean of
Co1, C12, C23 and C34.

o Number of peaks and mazimum amplitude.

Symbol Explanation
n Total number of participants
91, 92, © 5 4n
k Total number of repetitive trials for
similar motion
s Total number of prominent joints and
muscles i.e. sensors
S1,---,8s Label for s sensors
m; Total number of parameters associated
with Sensor S;
Label for m; parameters
k trial tables for Sensor S;

1 m
Pl P
Tir, - Tix

Table 1: Notations

4. MULTIDIMENSIONAL FACTOR ANAL-
YSIS

First, we conduct separate global analysis on each stream
in which we can find differences in the responses of the par-
ticipants corresponding to each stream. The intra-structure
stage is necessary because the behavior of each sensor and
nature of its extracted parameters are different. In order
to integrate them, we need to make these parameters com-
parable to each other so that we can quantify the overall
performance of the individuals. The notations used further
in this section, are summarized in Table 1.

4.1 Intra-structure Stage: Global analysis on

individual stream
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Figure 3: Construction of the global analysis space
for the Sensor S;.

To analyze the data-streams related to all s sensors, we form
a multi-block structure for each sensor (as shown in left hand



side of Figure 3). It organizes the parameters pt op? ...
P™ of the sensor stream S; (Vi : 1 <1 < s) for all n partici-
pants in all &k trials. Thus, in one multi-block of S; sensor, we
have k tables/matrices (n x m;) each corresponding to one
trial. The advantageous reason for this organization is that,
in the global analysis space we can represent and evaluate
the differences between the participants’ responses/motion

with respect to sensor S; across k trials.

The following steps explain the approach for multidimen-
sional factor analysis applied to multi-block structure corre-
sponding to sensors S; (Vi: (1 <i< s)),

1. Preprocessing: The trial matrices T}1, - -+, Tix are cen-
tered, normalized and are denoted as X1, ---, Xk
respectively.

2. Scalar Products: Each matrix X,z defines inherently
a structure for the performance of the participants
with respect to sensor S;, which can be derived by
computing the scalar products between participants.
Hence, the preprocessed matrices X;1, ---, X5 are
transformed into n X n scalar product matrices denoted
as M, - -+, M;i respectively. Thus, Vz : 1 < z <k,

M. = Xi.- X2 (1)

3. Computing the Global Analysis Matriz: The global
analysis matrix for sensor S; is given as follows,

k
x=1

where a: denotes the weight for the £ trial. The
weights are chosen so that the trial structures agree-
ing most with other trial structures will have larger
weights.

4. Analyzing the Global Analysis Matriz: The principal
component analysis of the global analysis matrix M;¢
explores the overall performance of the participant with
respect to Sensor S;. Since, global analysis matrix is
also a scalar product matrix, its PCA is given as

Mic =QAQT (3)

The factor scores (i.e. the projection of the rows on
the principal components of the analysis of M;¢) are
obtained as,

Fi = QA? (4)

In this matrix F}, each row corresponds to the partici-
pant and each column corresponds to the component.
Figure 3 shows the example where few participants
are represented in the global analysis space of first two
principal components of the factor score matrix that
carry total variance of 85 — 90%.

4.2 Inter-structure Stage: Inter-Global Anal-
ysis

In this stage, our goal is to integrate these global analysis

spaces of all sensors, to get a compromise structure that rep-

resents the aggregate effect of all sensors on the performance

of each participant. To make global analysis of all sensors

comparable, we convert them into corresponding dimension-
invariant, n X n distance matrices. That 1s, for each global
analysis for sensor S;, we get the corresponding distance
matrix D; for n participants. But distance matrices D,
-+, D cannot be analyzed directly using eigen decomposi-
tion and need to be transformed into corresponding cross-
product matrices DY, --- , D¢ using metric multidimensional
scaling [2]. On comparing and analyzing these s cross prod-
uct matrices using steps 3 and 4 from Section 4.1, we find a
final compromise inter-structure that quantifies the overall
performance of the participants.

5. RESULTS
5.1 Test Environment and Data-sets

The experiments were conducted in 3D motion capture labo-
ratory equipped with 16 high-resolution Vicon cameras cap-
turing at the rate of 120 frames/second. EMG Ag-Cl sur-
face electrodes provided by Delsys were synchronized with
3D motion cameras to pick the corresponding muscle activ-
ity of limbs while performing motions. The similar set of
actions were captured from 24 participants (i.e. n = 24),
and each participant performed 10 trials (i.e. k& = 10) for
each action.

In Sections 5.2 and 5.3, we will discuss the results of our ap-
proach by analyzing the leg segments for the “jump” action.
The prominent joints and muscles for the “jump” activity
are three leg segments, ‘tibia’, ‘foot’, and ‘toe’ and two leg
muscles namely, ‘tibialis anterior’, and ‘gastrocnemius’.

5.2 Global Analysis

The multi-variate structure to analyze the data-streams for
“jump” response consists of 5 multi-blocks, each for promi-
nent sensors. Figure 4(a) and (c) shows the projections of
factor scores for all participants on the first two dimensions
of global analysis spaces of tibialis anterior, and gastrocne-
mius respectively. For ‘Tibialis Anterior’, first two dimen-
sions explains 89.4% of high variance, which is sufficient to
interpret the results. The corresponding loadings i.e. cor-
relations between the original parameters and the principal
components (Figure 4(b)) shows that the first dimension has
high correlation with ‘mean of peaks’, and 'maximum ampli-
tude of peaks’. The first principal component, having 71.4%
variance, differentiates the participants having high and low
muscular activity. Similarly, with all other parameters re-
lated to ‘Tibialis Anterior’, we can interpret the behavior
within the participants on same response. In global anal-
ysis for ‘Gastrocnemius’, first dimension explains 84.2% of
variance. The corresponding loadings (Figure 4(d)) are al-
most similar to the previous muscle. Similarly we can also
show the factor scores for joints projected on the first few
dimensions of the corresponding global analysis.

5.3 Inter-Global Analysis

The PCA of the compromise matrix reveals the inter-structure
of the participants by combining the effect of all prominent
sensors. The projections of the participants on the first four
dimensions are shown in Figure 5. Together, these four di-
mensions explain 83% of the variance of the compromise
matrix.

In order to facilitate the interpretation of the Figure 5, we
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Figure 4: (a),(c): Global Anal-
ysis of tibialis anterior, and gas-
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ponents. trix.
(1) | Height of the jump.(Recognized from the toe segment)
(2) | Time duration between onset and peak of the jump.
(3) | Total duration of jump.
(4) | Onset time difference between toe segment and EMG

muscle ‘tibialis anterior’.
(5) | Onset time difference between toe segment and EMG
muscle ‘gastrocnemius’.

(6) | Onset time difference between two EMG muscles

‘tibialis anterior’ and ‘gastrocnemius’.

Table 2: Supplementary variables specific to the ac-
tion “jump”

projected the supplementary variables (discussed in Table
2) specific to the “jump” action in compromise space. This
was done by computing the loadings (i.e. correlations be-
tween these variables and factor scores) and then re-scaling
these loadings by multiplying them by the square root of
the eigenvalue associated with the dimension. The first di-
mension, which explains 36% of variance is highly correlated
with variable 1 and 4. Similarly, variables 2 and 3 are highly
correlated with dimension 3, and variables 6 and 5 are highly
correlated with dimensions 4.

Figure 6 shows the first two principal components of the
compromise space with the projections of some participants
for each sensor. The position of the participant is the cen-
troid for the corresponding prominent sensors. In order to
facilitate the interpretation, we have drawn the convex hull
for the projections of the sensors. The partial overlapping
between convex hulls of participants 2 and 18 indicates that
some sensors of the corresponding participants are in con-
sensus. If there is no overlap with other participants for e.g.
17, then the performance of the sensors is clearly different
from other participants. In this way, we can quantify the
performance of each participant with others.

6. CONCLUSIONS

In this paper, we have proposed an efficient multidimen-
sional factor analysis technique that quantifies the human
performance. We have represented the human activity / re-
sponses using two advanced systems: 3D Motion capture
to get positional information of joints and electromyogra-
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Figure 5: Analysis of compro-
mise: Plot of the participants
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fined by dimensions 1-2(a) and
3-4(b) of the compromise ma-
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Figure 6: Compromise map of
the participants with the per-
formance of the sensors.

phy sensors to get information on muscle contractions. We
extracted important parameters from the streams and con-
ducted global analysis on each stream to find the differences
in the responses of the participants with respect to that
stream. We integrated these global analysis spaces of all
streams, to get a compromise structure that represented the
aggregate effect of all streams on the performance of each
participant. The advantage of our approach was to pro-
vide the compromise space that gives valuable information
on the prominent sensors and on the consensus between the
sensors when projected in the compromise space. Hence,
our work builds a robust platform for integrating, evaluat-
ing, and quantifying the evidences from the multiple systems
involved to measure human performance.
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