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ement in te
hnology has led to measure the humanperforman
e using sophisti
ated multiple systems su
h asmotion 
apture and physiologi
al data monitoring systems.These systems together, represent the human a
tivity in var-ious physiologi
 and motori
 streams that forms a multi-dimensional framework. The immediate requirement thatrises is, analyzing these data streams to quantify the humanperforman
e. In this paper, we have proposed an eÆ
ient,multi-dimensional fa
tor analysis te
hnique that quanti�esthe multiple observations of data streams a
ross di�erentparti
ipants. In our approa
h, we extra
t 
hara
teristi
 pa-rameters from the streams and 
ondu
t a separate globalanalysis on the data sets of ea
h stream. The individualdata sets are then proje
ted onto the respe
tive global anal-ysis to analyze the di�eren
es in the responses of the parti
-ipants. Next, we integrate these global analysis spa
es of allstreams, to get a 
ompromise stru
ture that represents theaggregate e�e
t of all streams on the performan
e of ea
hparti
ipant.Categories and Subje
t Des
riptorsH.2.8 [Database Management℄: Database Appli
ations;J.3 [Computer Appli
ations℄: Life and Medi
al S
ien
esKeywordsMotion 
apture, ele
tromyogram, multi-dimensional, fa
toranalysis, prin
ipal 
omponent analysis.1. INTRODUCTIONIn the �elds of medi
al, sports and training, human perfor-man
e is a broad term that in
ludes physi
al/mus
ular fun
-tions, body joint movements, as well as per
eptual and 
og-nitive abilities. Eviden
e from multiple systems involved inhuman performan
e may provide: 1) Cru
ial 
lues to guideidenti�
ation, remediation, and ultimately prevention of avariety of medi
al 
onditions and behavioral de�
its. 2) Thene
essary information to diagnose the problems in sports

training that 
an improve the performan
e. With rapid ad-van
es in multiple �elds (su
h as semi
ondu
tors, opti
s,and material s
ien
es), the above �elds uses a plethora ofhuman performan
e measuring devi
es. Instruments su
has 3D motion 
apture systems, EKG/ECG, EMG are in-
reasingly being used for a variety of 
lini
al studies andsports performan
e analysis. In this work, we fo
us on twosystems,� 3D Motion Capture : It gives the positional and ori-entational information of all human joints in 3D spa
ewith a speed of 120 readings per joint per se
ond.� Ele
tromyogram (EMG) : These are biomedi
al ele
-trodes whi
h gives information on the ele
tri
al a
tiv-ity generated during mus
le 
ontra
tion while doingmotion.On syn
hronizing these systems, we get the detailed infor-mation regarding the internal mus
ular 
ontra
tion a
tivity
orresponding to the external joint movements. Together,it forms a multi-dimensional time series framework. Themain 
hallenge is identifying and extra
ting the set of at-tributes or 
hara
teristi
s from ea
h multi-dimensional timeseries that 
an evaluate the performan
e aspe
t of ea
h in-dividual. Data streams 
oming from di�erent sensors havedi�erent resolution/
hara
teristi
s, and hen
e the extra
tedattributes for ea
h data stream are di�erent in nature. Ourmain obje
tive is to analyze these heterogenous sets of at-tributes from multi-dimensional streams and to \model" theperforman
e measure between individuals. This analysiswill derive an integrated pi
ture of the observations and re-lationships between the di�erent data streams.To a
hieve our obje
tive, we explore two-stage multidimen-sional fa
tor analysis approa
h. The �rst stage is intra-stru
ture stage, wherein we analyze the stru
ture of the in-dividual multi-dimensional streams based on 
orrespondingextra
ted attributes/parameters and derive a global analy-sis for ea
h stream. In this global analysis, the di�eren
esbetween the parti
ipants' performan
e 
an be noti
ed withrespe
t to ea
h stream. The se
ond stage is inter-stru
turestage, where we integrate the global analyses of all streamsto get the inter-global analysis stru
ture known as 
ompro-mise stru
ture that represents the aggregate e�e
t of all sen-sors. It is useful to quantify the overall performan
e of theparti
ipants.
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2. RELATED WORKMany multivariate analyti
al te
hniques have been devel-oped to analyze several kinds of data. Some of the well-established te
hniques are like prin
ipal 
omponent analysis(PCA), 
anoni
al 
orrelation analysis (CC), multiple fa
toranalysis (MFA) [5℄, STATIS [6℄ et
. Most of these te
h-niques on multivariate analysis are dis
ussed in [1℄. Thesete
hniques are mainly used in areas like sensory pro�ling[9℄, 
hemistry [10℄, food quality resear
h [8℄, [7℄, [3℄ et
.As the data sets go more 
omplex and multi-dimensional,these te
hniques need to be extended. The multiple fa
toranalysis was extended to hierar
hi
al MFA in [4℄, to handlehierar
hi
al stru
ture of data set. In [11℄, two multi-blo
kstables were analyzed using STATIS and Tu
ker inter-batterymethod. In this paper, we are analyzing multi-dimensionaldata streams in the form of positional information of jointsand mus
ular a
tivity from multiple parti
ipants a
ross mul-tiple trials.3. PARAMETER EXTRACTIONTo quantify the parti
ipant's performan
e for a motion, weneed to analyze the joints and mus
les that are a
tivelyinvolved in motion. We 
all them prominent joints andmus
les for a motion. Example: For a motion \jump", thethree leg joints namely, 'tibia', 'foot', and 'toe' and two legmus
les namely, 'tibialis anterior', and 'gastro
nemius' areprominent to 
onsider for analysis. Depending on needsand requirement, other joints and mus
les 
an be in
ludedin analysis.3.1 Motion Capture streams (joints)To analyze the behavior of the prominent joint movementsinvolved in the motion, we extra
t the 
ru
ial positional in-formation at regular time intervals during the span of a
tion.In (Figure 1 (d)), we have 
hosen j = f0(=LON ),25, 50, 75,100(=LOFF )g. Figures 1 (a), (b), and (
) shows the 
orre-sponding dis
rete points of 3D traje
tories for every joint in2D-spa
e.
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tion of features for ea
h prominenthuman joints in motion (in this 
ase, it is \jump").3.2 EMG streams (mus
les)As EMG streams are non-stationary in nature, the previousdis
retization approa
h on joint streams is not e�e
tive. Asa result, to analyze the prominent EMG streams, we needto extra
t the parameters that indi
ate the 
hara
teristi
sand temporal relationships between the 
onse
utive peaks.Figure 2 shows the general parameters that we extra
t fromprominent EMG streams,� The mean of all peak amplitudes a1, a2, a3, and a4.
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tion of features from the post-pro
essed EMG signal.� The average duration between the 
onse
utive peaks,i.e. mean of t01, t12, t23 and t34.� Average 
hange in the 
onse
utive peaks, i.e. mean of
01, 
12, 
23 and 
34.� Number of peaks and maximum amplitude.Symbol Explanationn Total number of parti
ipantsq1, q2, � � � , qnk Total number of repetitive trials forsimilar motions Total number of prominent joints andmus
les i.e. sensorsS1; � � � ; Ss Label for s sensorsmi Total number of parameters asso
iatedwith Sensor SiP1i ; � � � ; Pmii Label for mi parametersTi1; � � � ; Tik k trial tables for Sensor SiTable 1: Notations4. MULTIDIMENSIONAL FACTOR ANAL-YSISFirst, we 
ondu
t separate global analysis on ea
h streamin whi
h we 
an �nd di�eren
es in the responses of the par-ti
ipants 
orresponding to ea
h stream. The intra-stru
turestage is ne
essary be
ause the behavior of ea
h sensor andnature of its extra
ted parameters are di�erent. In orderto integrate them, we need to make these parameters 
om-parable to ea
h other so that we 
an quantify the overallperforman
e of the individuals. The notations used furtherin this se
tion, are summarized in Table 1.4.1 Intra-stru
ture Stage: Global analysis onindividual stream
Figure 3: Constru
tion of the global analysis spa
efor the Sensor Si.To analyze the data-streams related to all s sensors, we forma multi-blo
k stru
ture for ea
h sensor (as shown in left hand



side of Figure 3). It organizes the parameters P 1i , P 2i , � � � ,Pmii of the sensor stream Si (8i : 1 � i � s) for all n parti
i-pants in all k trials. Thus, in one multi-blo
k of Si sensor, wehave k tables/matri
es (n�mi) ea
h 
orresponding to onetrial. The advantageous reason for this organization is that,in the global analysis spa
e we 
an represent and evaluatethe di�eren
es between the parti
ipants' responses/motionwith respe
t to sensor Si a
ross k trials.The following steps explain the approa
h for multidimen-sional fa
tor analysis applied to multi-blo
k stru
ture 
orre-sponding to sensors Si (8i : (1 � i � s)),1. Prepro
essing: The trial matri
es Ti1, � � � , Tik are 
en-tered, normalized and are denoted as Xi1, � � � , Xikrespe
tively.2. S
alar Produ
ts: Ea
h matrix Xik de�nes inherentlya stru
ture for the performan
e of the parti
ipantswith respe
t to sensor Si, whi
h 
an be derived by
omputing the s
alar produ
ts between parti
ipants.Hen
e, the prepro
essed matri
es Xi1, � � � , Xik aretransformed into n�n s
alar produ
t matri
es denotedas Mi1, � � � , Mik respe
tively. Thus, 8z : 1 � z � k,Miz = Xiz �XTiz (1)3. Computing the Global Analysis Matrix: The globalanalysis matrix for sensor Si is given as follows,MiC = kXx=1 �x �Mix (2)where �t denotes the weight for the tth trial. Theweights are 
hosen so that the trial stru
tures agree-ing most with other trial stru
tures will have largerweights.4. Analyzing the Global Analysis Matrix: The prin
ipal
omponent analysis of the global analysis matrix MiCexplores the overall performan
e of the parti
ipant withrespe
t to Sensor Si. Sin
e, global analysis matrix isalso a s
alar produ
t matrix, its PCA is given asMiC = Q ^QT (3)The fa
tor s
ores (i.e. the proje
tion of the rows onthe prin
ipal 
omponents of the analysis of MiC) areobtained as, Fi = Q^ 12 (4)In this matrix Fi, ea
h row 
orresponds to the parti
i-pant and ea
h 
olumn 
orresponds to the 
omponent.Figure 3 shows the example where few parti
ipantsare represented in the global analysis spa
e of �rst twoprin
ipal 
omponents of the fa
tor s
ore matrix that
arry total varian
e of 85� 90%.4.2 Inter-stru
ture Stage: Inter-Global Anal-ysisIn this stage, our goal is to integrate these global analysisspa
es of all sensors, to get a 
ompromise stru
ture that rep-resents the aggregate e�e
t of all sensors on the performan
eof ea
h parti
ipant. To make global analysis of all sensors


omparable, we 
onvert them into 
orresponding dimension-invariant, n� n distan
e matri
es. That is, for ea
h globalanalysis for sensor Si, we get the 
orresponding distan
ematrix Di for n parti
ipants. But distan
e matri
es D1,� � � , Ds 
annot be analyzed dire
tly using eigen de
omposi-tion and need to be transformed into 
orresponding 
ross-produ
t matri
es D
1; � � � ;D
s using metri
 multidimensionals
aling [2℄. On 
omparing and analyzing these s 
ross prod-u
t matri
es using steps 3 and 4 from Se
tion 4.1, we �nd a�nal 
ompromise inter-stru
ture that quanti�es the overallperforman
e of the parti
ipants.5. RESULTS5.1 Test Environment and Data-setsThe experiments were 
ondu
ted in 3D motion 
apture labo-ratory equipped with 16 high-resolution Vi
on 
ameras 
ap-turing at the rate of 120 frames/se
ond. EMG Ag-Cl sur-fa
e ele
trodes provided by Delsys were syn
hronized with3D motion 
ameras to pi
k the 
orresponding mus
le a
tiv-ity of limbs while performing motions. The similar set ofa
tions were 
aptured from 24 parti
ipants (i.e. n = 24),and ea
h parti
ipant performed 10 trials (i.e. k = 10) forea
h a
tion.In Se
tions 5.2 and 5.3, we will dis
uss the results of our ap-proa
h by analyzing the leg segments for the \jump" a
tion.The prominent joints and mus
les for the \jump" a
tivityare three leg segments, `tibia', `foot', and `toe' and two legmus
les namely, `tibialis anterior', and `gastro
nemius'.5.2 Global AnalysisThe multi-variate stru
ture to analyze the data-streams for\jump" response 
onsists of 5 multi-blo
ks, ea
h for promi-nent sensors. Figure 4(a) and (
) shows the proje
tions offa
tor s
ores for all parti
ipants on the �rst two dimensionsof global analysis spa
es of tibialis anterior, and gastro
ne-mius respe
tively. For `Tibialis Anterior', �rst two dimen-sions explains 89:4% of high varian
e, whi
h is suÆ
ient tointerpret the results. The 
orresponding loadings i.e. 
or-relations between the original parameters and the prin
ipal
omponents (Figure 4(b)) shows that the �rst dimension hashigh 
orrelation with `mean of peaks', and 'maximum ampli-tude of peaks'. The �rst prin
ipal 
omponent, having 71:4%varian
e, di�erentiates the parti
ipants having high and lowmus
ular a
tivity. Similarly, with all other parameters re-lated to `Tibialis Anterior', we 
an interpret the behaviorwithin the parti
ipants on same response. In global anal-ysis for `Gastro
nemius', �rst dimension explains 84:2% ofvarian
e. The 
orresponding loadings (Figure 4(d)) are al-most similar to the previous mus
le. Similarly we 
an alsoshow the fa
tor s
ores for joints proje
ted on the �rst fewdimensions of the 
orresponding global analysis.5.3 Inter-Global AnalysisThe PCA of the 
ompromise matrix reveals the inter-stru
tureof the parti
ipants by 
ombining the e�e
t of all prominentsensors. The proje
tions of the parti
ipants on the �rst fourdimensions are shown in Figure 5. Together, these four di-mensions explain 83% of the varian
e of the 
ompromisematrix.In order to fa
ilitate the interpretation of the Figure 5, we
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(a)Figure 4: (a),(
): Global Anal-ysis of tibialis anterior, and gas-tro
nemius; (b),(d): Respe
-tive loadings i.e. 
orrelationsbetween parameters and 
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(a) (b)Figure 5: Analysis of 
ompro-mise: Plot of the parti
ipantsin the 
ompromise spa
e de-�ned by dimensions 1-2(a) and3-4(b) of the 
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)Figure 6: Compromise map ofthe parti
ipants with the per-forman
e of the sensors.(1) Height of the jump.(Re
ognized from the toe segment)(2) Time duration between onset and peak of the jump.(3) Total duration of jump.(4) Onset time di�eren
e between toe segment and EMGmus
le `tibialis anterior'.(5) Onset time di�eren
e between toe segment and EMGmus
le `gastro
nemius'.(6) Onset time di�eren
e between two EMG mus
les`tibialis anterior' and `gastro
nemius'.Table 2: Supplementary variables spe
i�
 to the a
-tion \jump"proje
ted the supplementary variables (dis
ussed in Table2) spe
i�
 to the \jump" a
tion in 
ompromise spa
e. Thiswas done by 
omputing the loadings (i.e. 
orrelations be-tween these variables and fa
tor s
ores) and then re-s
alingthese loadings by multiplying them by the square root ofthe eigenvalue asso
iated with the dimension. The �rst di-mension, whi
h explains 36% of varian
e is highly 
orrelatedwith variable 1 and 4. Similarly, variables 2 and 3 are highly
orrelated with dimension 3, and variables 6 and 5 are highly
orrelated with dimensions 4.Figure 6 shows the �rst two prin
ipal 
omponents of the
ompromise spa
e with the proje
tions of some parti
ipantsfor ea
h sensor. The position of the parti
ipant is the 
en-troid for the 
orresponding prominent sensors. In order tofa
ilitate the interpretation, we have drawn the 
onvex hullfor the proje
tions of the sensors. The partial overlappingbetween 
onvex hulls of parti
ipants 2 and 18 indi
ates thatsome sensors of the 
orresponding parti
ipants are in 
on-sensus. If there is no overlap with other parti
ipants for e.g.17, then the performan
e of the sensors is 
learly di�erentfrom other parti
ipants. In this way, we 
an quantify theperforman
e of ea
h parti
ipant with others.6. CONCLUSIONSIn this paper, we have proposed an eÆ
ient multidimen-sional fa
tor analysis te
hnique that quanti�es the humanperforman
e. We have represented the human a
tivity / re-sponses using two advan
ed systems: 3D Motion 
aptureto get positional information of joints and ele
tromyogra-

phy sensors to get information on mus
le 
ontra
tions. Weextra
ted important parameters from the streams and 
on-du
ted global analysis on ea
h stream to �nd the di�eren
esin the responses of the parti
ipants with respe
t to thatstream. We integrated these global analysis spa
es of allstreams, to get a 
ompromise stru
ture that represented theaggregate e�e
t of all streams on the performan
e of ea
hparti
ipant. The advantage of our approa
h was to pro-vide the 
ompromise spa
e that gives valuable informationon the prominent sensors and on the 
onsensus between thesensors when proje
ted in the 
ompromise spa
e. Hen
e,our work builds a robust platform for integrating, evaluat-ing, and quantifying the eviden
es from the multiple systemsinvolved to measure human performan
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