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ABSTRACT

As the population ages and the risk of chronic disease in-
creases, the cost of healthcare will rise. Technology for mo-
bile telemetry could reduce cost and improve the efficiency
of treatment. In order to achieve these goals, we first need
to overcome several technical challenges, including sufficient
system lifetime, high signal fidelity, and adequate security.
In this paper we present the design, implementation, and
evaluation of a Mobile Biotelemetric System (MBS) that
addresses these remote medical monitoring challenges. MBS
comprises a custom low-power sensor node that accurately
collects and analyzes electrocardiogram (ECG) data, a client
service with a multifaceted policy engine that evaluates the
data, and a web portal interface for visualizing ECG data
streams. MBS differs from other remote monitoring systems
primarily in the policy engine’s ability to provide flexible,
robust, and precise system communication from end-to-end
and to enable tradeoffs in metrics such as power and trans-
mission frequency. We show that, given a representative set
of ECG signals, policies can be set to make the operation of
the hardware and software resilient against transient ECG
conditions. Further, we incorporate state-of-the-art security
practices to safeguard our data and foil common attacks.

1. INTRODUCTION
Chronic illness, particularly heart disease, is a problem

that has a dramatic impact on the productivity of affected
individuals and the cost of healthcare. As the risk of chronic
illness increases with age and with projections predicting an
increasingly elderly population, the costs of healthcare are
going to rise. The prevention and effective management of
chronic diseases may be the only lasting solution, and remote
medical monitoring will be an integral part of that approach.

In order to address the challenge of chronic illness, it is
natural to leverage technology. The confluence of small body
sensors and standardized service interfaces over the Internet
(e.g., Simple Object Access Protocol) provides a new plat-
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form for applications in a wide variety of domains, including
healthcare, the military, emergency response, and consumer
entertainment. The miniaturization and maturation of sen-
sor technology could very well lead to the instrumentation of
not only the world around us, but also our very selves. With
a multitude of sensors that can deliver data on demand, the
way we interact with technology will change dramatically—
and could lead to early detection and adaptive, responsive
control of diseases.

With personal information becoming more available, we
must find how best to leverage the usefulness of physio-
logical information while protecting it at the same time.
Since body sensors detect clinically significant—and poten-
tially personal—data, the applications to healthcare are es-
pecially compelling and challenging. The electrocardiogram,
in particular, has been well established as having diagnostic
relevance [3] and as a potential biometric [7]. The ECG,
as shown in Figure 1, reveals the electrical activity of the
chambers of the heart, reflecting the muscle’s life-sustaining
nature. Furthermore, other signals may be derived from
the ECG including respiration and blood pressure (the for-
mer through analysis of baseline drift and the latter through
the time between a heartbeat and a pulse at an extremity).
We propose our Mobile Biotelemetric System (MBS) archi-
tecture to respond to physiological (ECG) data adaptively
through a policy engine that contains several processing al-
gorithms for providing and arbitrating information through-
out the system.

Our thesis is that our hierarchical framework is an effec-
tive and flexible way to deliver and manage physiological
data for medical monitoring purposes to involved stakehold-
ers, including the wearer of the sensor and other concerned
entities such as doctors or loved ones. We show that the
system detects heartbeats with high accuracy and the pol-
icy engine, through appropriate policies, can be made robust
against noise. We posit that allowing decisions at higher
tiers (i.e., made by users or devices with more computa-
tional resources) to affect the operation of the sensors is
beneficial, in that the system supports both local goals (e.g.,
low power consumption) and adjustments for global eventu-
alities (e.g., emergency scenarios) that may override local
decision-making. The policy engine, which resides in the
mobile device software with interfaces to the sensor and to
the web portal, monitors the connection to the sensor and in-
terprets the data it receives to make decisions on whether—
and how—the overall system should react if an exceptional
event occurs.
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Figure 1. A typical ECG contains five common deflections
whose distances between one another can vary in time and
intensity based on many factors, including physiology and
activity level.

Our main contributions lie in the emergent properties of
the integration of diverse components for monitoring. We
list them as follows:

• A policy engine for monitoring sensor connections and
detecting and evaluating variations in heart rate

• A methodology for providing efficient tradeoffs based
on the use of physiological information as an input to
the policy engine

• A threat analysis of potential attacks and the tech-
nologies that MBS uses to cope with them

• An end-to-end system implementation and evaluation
using our custom ECG sensor, two mobile device in-
stances (PDA and laptop), and a web portal.

2. RELATED WORK
Our MBS solution draws from many fields of research,

including mobile computing, body area networks, wearable
computing, and computer security, and we explore some of
the efforts in these areas in this section. To put MBS into
some context, it is not the first remote medical monitoring
solution, nor is it the most comprehensive. Several compa-
nies offer proprietary systems, including CardioNet, Honey-
well, Medtronic, and Biotronik, that can accommodate more
sensors or have a larger monitoring network. Those systems,
however, generally come with specialized equipment from
end-to-end, whereas MBS is designed with open standards
and protocols where possible.

Several researchers have developed ECG monitoring de-
vices, primarily for healthcare and athletic-training reasons.
Park et al. [15] present an ECG monitoring system with
comparable power consumption to MBS but do not discuss
any signal processing or the implications of how their system
is meant to be used. Anliker et al. [1] create a wristwatch
system, AMON, with multiple sensors, including an ECG
sensor, that is meant to provide a multi-faceted sensor pro-
file. They acknowledge, however, that the ECG “provides
poor or no results” due to the signal’s derivation from the
wrist where the signal-to-noise ratio is low. Lucani et. al [10]
develop an ECG monitoring device for telemedicine appli-
cations but with different design goals from MBS (for ex-
ample, in their system, power and form factor are not large
concerns as two AA batteries are used on the sensor). The

authors additionally do not discuss the user interface of the
system. Lorincz et al. [9] establish a software framework,
CodeBlue, that operates as an information plane in a dis-
aster scenario, allowing devices to discover each other and
report events. The design of MBS does not focus on triage
situations, but rather on the utility of a particular mobile
device coupled with its sensor for long-term monitoring. Gy-
selinckx et al. [6] describe their Human++ research program
for health monitoring applications in body area networks.
They have developed a flexible substrate with a bandage-
sized form factor that has the potential to make the sensor
lighter and more comfortable to wear. Innovations in wear-
able computing and“smart” clothes [4,11,18] have increased
the usability and convenience of body sensors but usually
do so at the cost of accuracy.

Other researchers have used the ECG as an offline (i.e.,
post-data-collection) identification mechanism based on fea-
ture extraction. Since MBS’s ECG signal is derived from
chest leads due to our design goals of small size and high
signal fidelity on the sensor, feature extraction is likely not
a viable option at this stage. Signals from electrodes placed
close to the heart are subject to waveform changes when the
electrodes are displaced by even as little as 10 mm [3]. Biel
et al. [2] and Israel et al. [7] use the standard 12-lead ECG to
characterize the signals and identify individuals after data
collection (i.e., not in real time). Wübbeler et al. [19] found
that a three Einthoven (limb) lead system achieved an equal
error rate of 2.8% for verification and an accuracy of 98.1%
for identification. MBS’s goal is not identification of an indi-
vidual (authentication on the mobile device is done through
other means), but rather to gain knowledge about the ECG.

Kumar et al. [8] have researched the use of biometrics in
securing shell login sessions and Poon et al. [16] developed
a means to secure body area sensor networks based on R-R
(also called interbeat or peak-to-peak) intervals. Neither has
demonstrated the feasibility of the techniques in practice, as
the former requires a resource-rich Linux workstation with
continuous fingerprint and face detection technology and the
latter adopts R-R intervals as a biometric, which are not
unique and depend largely on transient factors such as ac-
tivity level. MBS implements security of mobile device data
largely through the policy engine, which can be customized
to address anomalous events by changing the mobile device
state.

3. POLICY ENGINE
The policy engine functions as the core of the functional-

ity mechanism on the mobile device. It enhances the robust-
ness of the system against pervasive problems such as noise,
radio irregularity, unstable electrode contacts, and motion
artifacts. The policies represent a mapping from events to
actions. We separate the policies into two subsets: those
based on the quality of the signal and those that pertain
directly to the physiological data received. For example, the
set of events in our implementation are {Disconnection, Sig-
nal timeout, Low heart rate, Sensor removed, Low battery
on sensor} and the set of actions include {Change Mobile De-
vice State, Send Message to Portal, Send Message to Sensor,
Ignore}.

These events and actions are not comprehensive, and a
single event can be mapped to multiple actions. While in
our implementation we do not specifically focus on sensors
other than ECG sensors, we can foresee the idea of policy-
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driven operation to other body sensors. Accelerometers,
for example, could trigger a policy action when acceleration
along a particular axis, modulo noise, exceeds some thresh-
old. A blood glucose meter may enact a policy action when
connected or disconnected. Sensors in general share many
overlapping characteristics that could be used as input to
a policy engine regardless of the particular sensor instance
invoked.

Policies are defined in a variety of ways. There is a user
interface that can modify policies at run-time with an ad-
ministrator account, otherwise policies are configured per
user such that they get compiled into the object file stati-
cally. This strategy allows sufficient flexibility without deal-
ing with the risk of lost or modified external policy files that
would be read in while the program is running.

In terms of implementation, each policy is inherited from
an abstract policy class, which contains fields for the user
interface form, an enabled flag, and a mobile device state.
A factory method makes the events, and a subroutine pro-
cesses the events to determine if an action is warranted (that
is, if a callback hasn’t already precipitated an asynchronous
action). For example, the Signal Timeout event relies on
a timer with a callback that performs an action if time ex-
pires. Adding or modifying a policy requires a new inherited
class with associated implementations of inherited methods,
a modification to the user interface, the factory method, and
the centralized processing subroutine.

3.1 Operational Modes
One key crosscutting concern is the management of re-

sources across the system to minimize latency and power
consumption while maximizing signal fidelity. In emergency
scenarios, sacrificing system resources in favor of saturating
bandwidth and providing full signal information is a reason-
able tradeoff. Although it may be possible for the sensor
to infer such scenarios, flexibility is gained and false posi-
tives are reduced in allowing the user to override the flow of
information dynamically.

In our ECG setting, both the sensor and the MBS client
service operate in one of two distinct modes: heartbeat or
waveform mode. They operate in tandem, such that mes-
sages are exchanged when transitioning between modes. The
heartbeat mode, which transmits the preceding peak-to-peak
time when a QRS complex is detected, has a higher compu-
tation cost but a lower communication cost. The ECG signal
is applied to a variation of the Pan-Tompkins algorithm [13]
in order to detect heartbeats. The waveform mode, how-
ever, sends the sampled waveform directly to the mobile
device without any substantive processing. This mode re-
duces computation, but increases the required amount of
communication.

3.2 Policy Events
Policy events intend to capture situations that could affect

the interpretation of the sensor data. The Disconnection

event occurs when the connection is forcibly closed, which
may be caused by the sensor being turned off or the mobile
device going out of range of the sensor. The Signal timeout

event occurs when a connection is still established, but a
data packet has not been sent within a configurable timeout
period. This umbrella event is used to guard against failure
of the radio (or any component on the sensor before the data
gets sent from the microcontroller to the radio).

The Low heart rate and Sensor removed events are de-
tected based on the contents of the data packets. The Low

heart rate event, in particular, is derived directly from the
QRS complex detection algorithm. Within the source code,
the Low heart rate event is parameterized by a window of R-
R intervals such that transient results and long-term trends
may be traded off. We analyze the effects of this window
in Section 5.3. For example, if the QRS detector misses a
beat or the Bluetooth connection is weak, a larger window
may obfuscate the effect. This approach has the disadvan-
tage that the policy engine is less responsive. The Sensor

removed event is detected when the signal flatlines high or
low for a period of time as a result of noise. The Low bat-

tery on sensor event is detected when the voltage monitor
in the processor detects a voltage below 2.65 V, a 12% drop
from the normal supply voltage of 3.0 V. While more events
can be recognized, we restricted them to this subset as they
have proved the most useful in practice. The design of the
software is such that instances of events inherit from an ab-
stract base class and a centralized routine polls event func-
tions each time a sample is received. Alternatively, events
may have callback functions that occur based on timers.

The events are periodically monitored based on their oc-
currence rate. For example, Signal timeout has a running
timer that gets reset every time data is received. The Dis-

connect event is incorporated into (and dependent upon)
the wireless protocol. The Low heart rate event and Sen-

sor removed event analysis is triggered every time the signal
is delivered to the MBS service. The Low battery event is
communicated in the form of a message sent from the sensor
(which has a voltage detector on-chip).

3.3 Policy Actions
Policy actions explicitly permit the tradeoffs between goals.

While many policy actions may be implemented, we believe
the most useful are changing the device state and sending
messages to other tiers of the system. These actions work-
ing in concert enable bidirectional communication and allow
remote control of sensor-level metrics and different data to
appear on the mobile device’s and web portal’s user inter-
faces.

Changing the mobile device’s state may be as simple as
displaying a notification to the user of a particular event or
as complex as locking out the mobile device. The policy
engine can be customized to offer file protection in a mobile
device. In a military application, for example, if the pres-
ence of ECG data is used to verify proximity to a mobile
device and suddenly data is no longer being received, an ap-
propriate action may be to lock the mobile device for further
reauthentication. The ability to change events, actions, and
the mapping between events and actions makes our system
flexible. The policy engine is the invariant link between an
array of applications in multiple domains.

3.4 Sources of Noise
Compensating for the inconsistencies in the ECG signal

presents perhaps the greatest single challenge to interpret-
ing the MBS policies correctly. Sources of noise are encoun-
tered at every stage of data acquisition until the data is dig-
itized. Power line (60-Hz) interference, muscular contrac-
tions, electrode movement, and analog-to-digital converter
noise all perturb the ECG signal. If an electrode is removed
(intentionally or unintentionally) the ECG signal becomes
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Figure 2. The sensor produces data that flows to the mobile
device and external network while control commands flow
back to the sensor.

indecipherable.
We approach this problem through several different tac-

tics. First, including an additional reference electrode signif-
icantly attenuates power line noise. Second, the QRS detec-
tion algorithm uses cascaded low-pass and high-pass filters
to preserve the frequency content of the ECG while reducing
noise. Third, when an electrode is removed, the signal flat-
lines high or low (depending on which electrode) and when
the policy engine encounters this situation, it can perform
the action that the policy engine specifies.

4. SYSTEM DESIGN AND IMPLEMENTA-

TION
MBS adopts a classical three-tier architecture in which

the sensors, mobile devices, and the outlying network co-
operate to adjust the flow of information throughout the
system as shown in Figure 2. Tier one consists of a phys-
iological sensor (initially an electrocardiograph), microcon-
troller, and radio (initially Bluetooth) with the form factor
of a bandage. The sensor prototype collects and processes
ECG data and transmits the processed information over the
wireless channel either continuously or periodically. Tier two
is the mobile device (e.g., PDA or laptop), which supports a
number of programmable policies through the policy engine
that can map events to actions. Tier three is a web portal
that, together with associated web services and a database,
allows authorized viewers to view the sensor information re-
motely either in real-time or post-collection. In this section
we describe our approach and an overview of the system.

4.1 Sensor Design

The sensor prototype with discrete components has the
form factor of a bandage and is attached to the user (pa-
tient) via three disposable electrodes that connect to the
sensor via snaps. Two of the electrodes are used to make a
differential measurement of the cardiac signal, and a third is
used to hold the user at a fixed potential relative to the pro-
totype ground. This provides a large input impedance and
high common-mode rejection, which reduces many forms of
interference. The electrodes can be placed anywhere on the
chest, preferably in positions similar to the standard precor-
dial leads.

A two-stage amplifier topology was chosen, the first stage
consisting of an AD623 instrumentation amplifier with ad-
justable DC offset, and the second stage consisting of a
single-ended amplifier with adjustable gain. A Texas In-
struments MSP430 microcontroller with an integrated 12-
bit analog-to-digital converter (ADC) is used to digitize the
signal. Feedback from the MSP430 is used to adjust the DC
offset and gain, so that the cardiac signal occupies the max-
imum dynamic range of the ADC. The prototype is powered
from a 430-mAh polymer lithium-ion battery, which is regu-
lated with an LTC4080 integrated charger and DC-DC buck
converter.

4.2 MBS Client Service
We organize the MBS client service on the mobile device

into three main operational blocks: the wireless radio, the
policy engine, and the external network interface. We as-
sume that the mobile device is normally powered up and
able to receive data from the sensor, which is generally a
fair assumption for mobile devices with small form factors.
The MBS client service can operate in the foreground (with
a user interface displaying pertinent information) or in the
background. Figure 3 depicts the sensor and mobile device
working together to show the ECG.

The wireless radio interface exports a stream of data such
that the rest of the client service does not need to account
for the details of the wireless radio used. We implement
the client service to accommodate Bluetooth radios and the
TCP/IP suite of protocols commonly associated with the
IEEE 802.11 standard. Certain events may stem from the
properties of the radio, including whether the radio is con-
nected and whether the radio has received data within a
specified amount of time. The policy engine incorporates
these properties as events.

It is important to note that the policy engine’s placement
on the mobile device is a key aspect of the hierarchical frame-
work. The mobile device has more computational resources
than the sensor and is in proximity to the user so decisions
can be incorporated quickly into the policy engine. The
centralized location of the policy engine simplifies the archi-
tecture by being the mediator between the tiers.

The external network interface in the client service allows
data to be exported as either an ECG signal or a heart rate
signal. In order to prevent re-implementation of a heart-
beat detection algorithm at the web portal and to leverage
computation that has already occurred, the client service au-
tomatically piggybacks the heart rate value onto the ECG
signal when unicasting data. The ECG signal is sent in 2076-
byte blocks to minimize the number of transmissions over
the wireless channel. The security of the wireless channels
between the MBS client and the other tiers is addressed by
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Figure 3. The sensor sends a wireless signal to the mobile
device.

enabling encryption and authentication, preventing unau-
thenticated users from gaining access to the service. If wire-
less Internet access is unavailable, a logging option enables
data to be stored on the mobile device for subsequent upload
to the web server when wireless access returns.

4.3 External Network and Web Portal
The communication between the MBS client and an ex-

ternal database is structured around a service-oriented ar-
chitecture. We created two principal web services. The first
pushes the data from the mobile device to a remote MySQL
database and the second pulls the data from the database
to the web portal. While we do not claim that our web
portal is “secure,” we take significant measures in adopting
security best practices (e.g., requiring SSL, authenticating
and authorizing web portal accounts, validating user input,
encrypting the database connection string in a web.config

file, using a limited-access database account to access and
update the data, etc.).

The heart rate and ECG signals and any actions of the
policy engine (via messages) are the primary sources of infor-
mation for the web services. Heart rate can be determined
regardless of the particular mode of operation that the mo-
bile device has requested and therefore is available regardless
of the mode of operation. The actions of the policy engine,
while directly impacting the operation of the mobile device
and sensor, also serve to inform a remote monitoring center
by highlighting alarms or events of particular interest.

The web portal interface design, shown in Figure 4, is
guided by the visual information seeking mantra, “overview
first, zoom and filter, then details-on-demand” [17]. The
heart rate of multiple users can be displayed at one time,
providing the overview. A user’s name can then be clicked
to obtain more information. In order to dynamically view
ECG data we leverage the Highslide JS library for point-and-
click ease of viewing the ECG and the XML/SWF Charts
library to produce dynamic chart content.

While viewing data in real-time for at least ten users is
an important feature of the system, it also complicates the
viewing of archival data for specific users. To reconcile this
we developed another user interface that allows more fine-
grained control of metadata specification. For example, the
user, type of signal, connection time, and a signal window
length may be provided for the web portal to render a chart.

The implementation of the web portal’s sensor stream vi-
sualization was originally stateful in that the web server
retained information for each connection and each sensor
stream. As the number of connections and number of users

Figure 4. The user interface permits an overview of heart
rates and a view of the full ECG signal on demand.

scaled, however, the complexity of managing the information
became overbearing. As a result we transitioned to stateless
web services and made several optimizations. For example,
since the chart is defined by an XML document we embed
the specification for the chart in client-side code and return
only the data portion of the chart from the server.

5. EVALUATION
In this section we evaluate MBS in terms of power, per-

formance, and accuracy of QRS detection. The three afore-
mentioned metrics were chosen because the effectiveness of
the policies follows largely from them.

The usability of MBS, and wearable computers in gen-
eral, while critical to technology acceptance, is more difficult
to quantify. The placement of the electrodes takes a few
minutes and the connection setup takes approximately one
minute. Together those steps represent the minimal amount
of required user intervention.

5.1 Power and Performance
Low power consumption is most critical for the sensor’s

operation but is also relevant for the mobile device. With
the 430-mAh battery on the sensor, our implementation can
operate for up to twelve hours when heart rate information
alone is sent. When a continuous waveform is sent, the sen-
sor consumes 94 mW of power on average, with 87 mW used
to power the Bluetooth radio. The transmit power of the ra-
dio has a direct effect upon the distance—that is, between
the sensor and the mobile device—at which the policy engine
will detect a disconnection. Class 1 Bluetooth devices, such
as the RN-41 Bluetooth module that we adopt, have a range
of approximately 100 m. As a result, the lifetime reduces to
approximately two hours. This problem further motivates
the need for a policy engine, and we recommend that the
ECG waveform be sent for short, bounded periods of time
and not indefinitely to maximize system lifetime. Future
work to develop MBS as an extremely low power integrated
circuit together with low-power radio options is expected to
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extend its operational runtime.
The MBS client service has approximately 4,100 source

lines of C# code and has a memory footprint of 103 KB.
The mobile device used in our implementation is an HP
iPAQ hx2490b with 64 MB of RAM. The sensor software is
435 source lines of C and 4,308 bytes once compiled. When
both receiving heart rate data and unicasting via 802.11,
the mobile device’s lifetime is approximately four and a half
hours with an average CPU utilization of 32.1%. Thus the
mobile device represents a system-wide power bottleneck.
These metrics may be improved by more closely managing
the 802.11 radio such that information gets buffered for sev-
eral seconds rather than sent whenever a heartbeat is de-
tected or every 2076 bytes in the case of an ECG signal
being sent. When running in waveform mode, the mobile
device CPU is almost completely dedicated to the task. Af-
ter profiling the application in waveform mode, we deter-
mined that drawing the waveform on the screen requires
42% of the time (1663 seconds of the 3920-seconds of run-
ning time). The utilization could be significantly lowered by
reducing the amount of graphical user interface feedback.

5.2 QRS Detection
In order to detect QRS complexes, we analyzed all 48

recordings in the annotated MIT-BIH (Massachusetts In-
stitute of Technology – Beth Israel Hospital) Arrhythmia
database [5]. These half-hour ECG signal recordings con-
tain cardiologist annotations that indicate when beats occur
and their type (normal, premature ventricular contraction,
etc.). While we recognize that the MBS front-end appa-
ratus does not produce these signals, we submit that the
database’s ECG signals are noisier than those produced by
our system, and thus represent a challenging data set, for
two reasons. First, several of the signals from the database
contain arrhythmias and other cardiac conditions that make
QRS detection a more difficult problem. Second, the ECG
signals produced by the MBS sensor are dynamically cor-
rected for baseline wander before the QRS processing be-
gins and the common mode signals in both electrodes are
removed. Therefore we contend that the results of the QRS
detection on the MIT-BIH signals are comparable or worse
than if performed on signals obtained from a population
tested with the MBS apparatus (which would not have the
annotations associated with them to allow comparison with
a known standard).

In order to prepare the MIT-BIH signals for input to the
MBS client, they were upsampled from 360 samples per sec-
ond to 1000 samples per second and shifted to unsigned 16-
bit values. As the signals pass through the MBS client a log
is produced that lists the R-R intervals in units of samples
between QRS complexes. We executed the bxb program [5]
with default parameters (including a 150-ms match window)
to compare the cardiologist annotations with the R-R inter-
val lists produced by the MBS client.

Our QRS detection algorithm operates on data sampled
at 1000 samples per second. First each data point is filtered
through a low-pass filter, high-pass filter, and first differ-
ence filter. Then the absolute value of the filtered data is
included in a moving window integrator filter with a window
length of 80 milliseconds. Once the data is filtered, peaks
are determined and scrutinized with respect to an adaptive
threshold based on recent QRS peak values and the values
of noise peaks (including smaller deflections in the ECG,

Figure 5. The average QRS sensitivity and QRS posi-
tive predictivity are over 99.5% for a total data set of over
109,000 beats. The signal recordings are not numbered con-
secutively in the MIT-BIH database.

P-waves and T-waves).
Figure 5 illustrates the results of QRS detection for the

48 recordings. The sensitivity and positive predictivity were
computed as given by

Sensitivity =
TP

TP + FN

Positive Predictivity =
TP

TP + FP

where TP represents true positives, FN represents false
negatives (missed beats), and FP represents false positives
(beats that should not have been classified as beats). We
achieve an average of 99.54% QRS sensitivity (the propor-
tion of QRS complexes correctly identified as such) and
99.79% QRS positive predictivity (the probability that a
QRS detection is correct) over all recordings. The aver-
age root-mean-square error of the RR intervals is 60.54 mil-
liseconds, well below the tolerance window of 150 millisec-
onds. There are certain problematic recordings, including
recording 108 and recording 208, that possess unusual ECG
characteristics. For example, in recording 208 around the
23-minute mark, a great deal of noise is encountered in the
first lead (but not in the second) preventing any discernible
QRS complex when using the first lead alone. After the
noise subsides the algorithm takes time to adapt the thresh-
olds, causing several false negatives and, hence, a lower QRS
sensitivity. In recording 108, the QRS complexes are partic-
ularly small relative to the P-waves and T-waves that occur
at 0:20 and 28:30 into the recording. This results in incor-
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Table 1. Varying Moving Average Window. More than
99.97% of the R-R intervals are between 273 ms and 2000
ms (220 bpm and 30 bpm, respectively) for up to 5 seconds
when varying the number of beats over which to calculate
the heart rate.

Window Grace Period (seconds)
Length 1 5 10 15
1 beat 0.9982535 0.9997869 0.9999649 1
2 beats 0.9998409 0.9999649 1 1
4 beats 0.9999265 0.9999883 1 1
8 beats 0.9999712 1 1 1

rect double-detection, resulting in several false positives and
a lower positive predictivity.

5.3 Policy Robustness
For each recording, we took the results of our QRS detec-

tion algorithm at a sampling rate of 1000 Hz and calculated
the instantaneous heart rates based on the estimated R-R
intervals. We found that the instantaneous heart rates for
the ECGs with arrhythmia display great variety (from less
than 10 bpm to more than 305 bpm). These large variations
are primarily due to arrhythmia, but noise can also produce
the same effect. Based on this information, we seek to de-
termine acceptable threshold levels for the policy engine to
guard against being affected by arrhythmia or noise.

There are several ways to adapt the policy engine’s func-
tionality to be less sensitive to noise. The first is to use a
low-pass (averaging) or median filter on the heart rate sig-
nal to reduce the effect of large swings and transient noise.
The second solution is to adjust the threshold levels and
the threshold times. A third solution is combining both
techniques, which enables a large amount of flexibility in
determining policies.

In order to gauge the dynamic operation of our policy en-
gine, we examined the length of time that heart rates were
reported for each of the recordings and derived a histogram
of the number of seconds outside given thresholds. We found
that on the MIT-BIH database with the cardiologist anno-
tations, a lower threshold of 10 bpm and an upper threshold
of 187 bpm was a sufficient window for all R-R intervals to
be detected within one second. Note that although the dis-
tribution of heart rates goes above 200 bpm, because the
R-R interval time and heart rates are inversely related, we
observe that the higher the heart rate the less time it takes
for the algorithm to “correct” itself (usually less than 0.5
seconds).

Tables 1 and 2 show four different moving average window
lengths and sampling rates, respectively, and the percentage
of R-R intervals that fall within set thresholds of one, five,
ten, and fifteen seconds. We set the lower threshold at 30
bpm and the upper threshold to 220 bpm to be indicative of
rates beyond which a heart rate would be considered anoma-
lous. As the threshold window becomes smaller, fewer R-R
intervals fall within the thresholds in a given grace period.
Raising the lower threshold to 40 bpm and lowering the up-
per threshold to 100 bpm still resulted in 98.02% of R-R in-
tervals falling within the threshold window within a 1 second
grace period. We note that sampling rate does not have a
large effect upon the operation of the policy engine. Regard-
less of sampling rate, the number of intervals that fall within
the threshold are about the same for each of the sampling

Table 2. Varying Sampling Rate. More than 99.97% of the
R-R intervals are between 273 ms and 2000 ms (220 bpm
and 30 bpm, respectively) for up to 5 seconds when varying
the sampling rate of the ECG signal.

Sampling Grace Period (seconds)
Rate 1 5 10 15

100 Hz 0.9981245 0.9997557 0.9999650 1
250 Hz 0.9981967 0.999777 0.9999649 1
500 Hz 0.9982272 0.9997329 0.9999650 1
1000 Hz 0.9982535 0.9997869 0.9999649 1

rates. The length of the moving average window, however,
has a more significant effect. While the vast majority of R-R
intervals falls outside the thresholds for less than 1 second,
the larger the window the more quickly the R-R intervals
converge. This is because the larger window smooths out
heart rate signals, tending to cancel out the effects of ex-
treme values. We conclude that the policy engine mitigates
the potential deleterious effects of rapidly changing ECGs
on the operation of the system.

5.4 Threat Analysis
Fundamentally our system intends to bring convenience

and service rather than invading privacy. We acknowledge
that no system can be made perfectly secure. To justify our
system design we now discuss (1) the security mechanisms
we leverage in our implementation and (2) a threat model
of the system. In our threat analysis, we proceed by first
characterizing the system, then identifying assets and access
points, and finally enumerating potential threats [12].

There are three main challenges in achieving the proper
balance between usability and security within MBS. First,
the entire system must have a reasonable lifetime. The sen-
sor nodes are severely resource-constrained and energy use
is at a premium. Second, the performance of the mobile de-
vice must not be dramatically affected by the presence of the
MBS service. A process that dominates the CPU’s cycles or
drains the mobile device’s battery is not tolerable. Third,
the potential faults and transient errors must be well un-
derstood and mitigated such that the number of false event
triggers is kept at an acceptably low level.

An adversary may have several objectives in attacking a
sensor-based telemedicine system comparable to ours. First,
obtaining ECG data could be a primary goal, either to re-
play it later to simulate a user’s presence or to obtain a
perspective on the wearer’s state of being. Second, because
the telemedical data is transported over the Internet, there is
an incentive to eavesdrop or make copies of the data (e.g., a
man-in-the-middle attack) or break into the data repository
to view medical information through a brute force password
attack, spoofing, or SQL injection. The benefit of a heavily
networked architecture is that it permits a great deal of flex-
ibility and intercommunication, but also calls for stiff mea-
sures to repel against an increased number of attack vectors.
The web service and web portal interfaces provide an access
point to a potential attacker. Furthermore, denial of service
attacks through, for example, jamming the communication
links or sending spurious requests to the sensor or mobile
device to drain their batteries, represents a significant class
of potential threats. In our system, denial of service will
simply cause a Disconnection or Timeout event and sleep
deprivation torture is difficult because once the Bluetooth
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radio is connected, it does not respond to service inquiries.
We note that in an emergency scenario, a denial of service
could be life threatening.

The foremost challenge for establishing the authenticity
of the ECG waveform is establishing the origin of the sig-
nal. Since the validation process on the mobile device is not
tightly coupled with the sensor, we must be able to have
some amount of confidence that the signal is authentic. In
other words, we must guard against an adversary replaying
a previously recorded reading with an attack tool. The first
aspect of an attack must be proximity—the attacker must be
within range of the radio. The requirement of proximity can
also limit more subtle attacks based on traffic analysis and
surveillance. The second aspect of an attack is the strength
of the bond between sensor and mobile device. MBS uses
encryption and a PIN code to assist in protecting against re-
plays through mutual authentication. In this case readings
that are played from untrusted components are ignored.

6. SYSTEM EVOLUTION AND DISCUSSION
The prospects of MBS, and particularly the policy engine,

go much further than just remote monitoring, as applica-
tions to healthcare and security will be more fully explored
in several directions. With respect to hardware innovation,
we seek ultra-low-power operation of the sensor by lever-
aging sub-threshold logic circuit design techniques. Eventu-
ally we intend to generate power through energy scavenging,
which has been shown to be a promising approach to make
sensor operation less dependent on other power sources [14].

While the ECG signal provides useful information for an-
alyzing an individual’s state of health, a richer view can be
gained with multiple sensors, including sensors for the body
and sensors for the environment. We envision a hardware
platform in which sensors may be dynamically switched in
and out with accompanying software that keeps everything
in order. With multiple signals, sophisticated algorithms
for processing should allow correlations to be made, with
adverse events being validated by other signals before being
reported to reduce errors. The presence of multiple signals
would make the overall system more reliable and robust.

Although we do not currently implement a protocol for
the web portal to issue directives directly to a particular
sensor, the ramifications of such a protocol raise several is-
sues related to security and federated trust. We leave these
issues to future work.

7. CONCLUSIONS
We have presented MBS, a novel approach to managing

the operation of remote medical monitoring. Our policy en-
gine can accommodate an array of systems and applications
with minimal changes. We have shown that our QRS de-
tection algorithm has sufficient predictivity to be used as a
security policy. The use of averaging windows (both for R-R
intervals and within the QRS detection algorithm) is criti-
cal to ensure continuity in spite of local anomalous events
and noise. While flexibility and configurability are impor-
tant attributes of the system, intelligent defaults lead to a
convenient off-the-shelf implementation. Ease of use will be
the intangible factor that bridges technology to the patients
that could make good use of it.
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