
Adaptive Lossless Compression

in Wireless Body Sensor Networks
Saad Arrabi, John Lach

Charles L. Brown Department of Electrical and Computer Engineering

University of Virginia, Charlottesville, VA 22904 USA

+1-434-924-6086

{arrabi, jlach}@virginia.edu

ABSTRACT

In most wireless body sensor network (BSN) applications, the vast

majority of the total energy is consumed by the wireless

transmission of sensed data. Transmitting one bit using a typical

wireless communication system can consume as much energy as

1000 cycles of an embedded processor. Reducing this

transmission energy – even at the expense of increasing another

component’s energy – is essential to meeting the battery life and

form factor (i.e. small battery) requirements of many BSN

applications. While improved wireless communication and

networking techniques can help do just that, simply compressing

the sensed data to reduce the number of transmitted bits can

provide significant savings. However, BSN platforms and

applications impose many constraints on compression techniques,

including fidelity (focus on lossless techniques, as required for

many medical BSN applications), programmability (enable ease

of code development and deployment), adaptability (achieve high

compression ratio regardless of location, subject, activity, etc.),

and implementability (require low processing and memory

resources). This paper analyzes variations of two known real-time

lossless compression algorithms, Huffman encoding and delta

encoding, within the context of these BSN constraints.

Experimental results on a multi-node accelerometer-based BSN

show the strengths and weaknesses of each algorithm and

ultimately reveal the superiority of dynamic delta encoding for

BSNs, including an average 35% energy savings across a range of

activities, sensor locations, and sensor axes.

1. INTRODUCTION

Wireless BSNs are emerging as a technology with tremendous

potential for a variety of applications, including healthcare,

clinical medicine (including telemedicine), biomedical research,

emergency medicine, first responder safety, homeland security,

athletics, etc. While significant efforts have been made to develop

and deploy BSNs, there are numerous technical challenges that

remain in order for BSNs to be practical for the applications for

which they are envisioned. In particular, BSN nodes must be

smaller to minimize invasiveness and maximize wearability and

must have longer battery lifetimes to enable significant data

collection. However, these are competing metrics, as the size (and

therefore capacity) of the battery is the primary factor in

determining the dimensions of a BSN node. While improved

energy harvesting and storage provide promise for the future [9],

the options immediately available to BSN developers involve

improving energy efficiency – especially the energy related to the

wireless transmission of sensed data, which is the largest energy

consumer in most BSN systems.

While work is being done to improve the energy efficiency of

wireless transceivers and to explore the energy vs. quality-of-

service tradeoffs in communication coding and wireless

networking protocols, the most direct way to reduce energy due to

wireless transmission is to simply reduce the number of bits that

need to be transmitted. On-node signal processing algorithms,

such as feature detection and pattern recognition, can be used to

convert some of the raw sensed data into application information

that can be coded using fewer bits, but most of these algorithms

are application-specific. It is desirable from a programmability

and deployment perspective for BSN devices to be general

enough that a single device executing the same code can be

efficient for a wide range of applications and even sensor

locations and activities within applications. Even within a

particular application, the critical data/information cannot always

be reliably determined/extracted, so any such pre-processing may

be problematic for fidelity-critical applications, such as the many

medical applications for which BSNs are envisioned. Therefore,

lossless compression techniques are the most general and reliable

tools for reducing wireless transmission energy in BSNs.

However, given the severe resource constraints of most BSN

nodes, any compression algorithm must have low processing and

memory requirements while still providing real-time throughput

(i.e. the processing must keep up with the data sampling rate) and

an overall energy savings (i.e. the additional energy consumed by

the processor running the compression algorithm cannot exceed

the wireless transmission energy saved). The embedded

processors on BSN nodes typically operate in the tens of

megahertz and have on-chip memories of only several kilobytes.

These restrictions can limit the implementability of many

dictionary-based compression techniques (e.g DEFLATE, RLE).

Efforts to increase total memory by including off-chip memories

have been proposed [12], but off-chip access time can be quite

high and the additional resources (particularly area and power)

may not make this approach worthwhile, especially in resource

scarce BSNs. Finally, the characteristics and requirements of

many BSN applications are significantly different from most

WSN applications, including both static parameters (e.g. higher

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

BodyNets’09, April 1–3, 2009, Los Angeles, CA, USA.
Copyright 2008 ICST 978-963-9799-41-7.

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6017
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6017

data rates and fidelity requirements) and dynamic variables (e.g.

rapidly varying data properties and channel conditions).

This paper provides an analysis of resource-aware lossless

compression techniques specifically targeting BSN characteristics

and requirements. The following metrics are considered in the

analysis:

• Compression ratio: Number of bits before compression divided

by the number of bits after compression.

• Processor cycles: Number of cycles the processor needs to run

the compression algorithm for each sample, which is

proportional to the processing energy consumption of the

algorithm.

• Average energy savings: Combination of the previous two

metrics that is estimated from the data sheets of common BSN

transceivers and embedded processors.

• Memory requirement: Approximate amount of memory

required to implement the algorithm.

• Adaptability: Ability of the compression algorithm to adapt to

static parameters (application, wearer, sensor type, sensor

location) and dynamic variables (activities, time), continuing to

provide high performance without negatively affecting the

other metrics of interest.

• Programmability/deployment: Related to the previous metric,

the ability to adapt to static parameters enables the developer to

program and deploy all nodes the same way, regardless of the

application, wearer, sensor type, and sensor location.

Background work considered a number of lossless compression

techniques, but this paper focuses on two of the most promising

with respect to the metrics of interest – delta encoding and

Huffman encoding. Delta encoding transmits the difference

between each reading rather than the full reading. If the number of

bits required to encode the delta (referred to as delta bits) is

regularly less than what is required to encode the full reading,

significant compression ratios can be achieved. The compression

can be made lossless by including a special code after a reading

that exceeds the representable delta range. The number of delta

bits can be determined statically or dynamically, and both

approaches are considered here. Huffman encoding depends on

some readings occurring more than others, so by assigning

frequent readings codes with fewer bits, the total number of

transmitted bits will decrease. This paper compares both

algorithms and some of their derivatives within the context of

BSNs and with respect to the above metrics.

The rest of this paper is organized as follows. Section 2 describes

some related work done in the field. Section 3 provides additional

detail on the BSN domain specific metrics by which the

compression techniques are evaluated, and Section 4 presents

some background information about the compared compression

techniques. Section 5 specifies the experimental setup, including

the accelerometer-based BSN that provided the sample

experimental platform for this study, and Section 6 details the

experimental results and provides analysis on the compression

techniques with respect to the metrics.

2. Related Work

While many previous results evaluate compression techniques,

few evaluate them from sensors network perspective. For BSNs,

the focus must be on energy and other resource requirements

rather than solely the compression ratio.

Some compression techniques have been modified to suit general

sensor network applications. One group focused on exploiting the

spatial correlation in sensor data [4][6], but those techniques are

directed towards specific applications. Other researchers tried to

exploit the spatio-temporal correlation by focusing on data-centric

routing and aggregation [1][17].

Some researchers tried to modify existing techniques to suit

sensor networks, such as Saddler and Martonosi’s work focusing

on LZW compression [19] and some of its derivatives aimed at

embedded systems [4]. In their research, they show that such

techniques, while suitable for embedded systems, are still not

suited for sensor systems in general [16]. They looked into several

compression techniques like LZO, ZLib, bzip2 and PPMd, and

they concluded those techniques will not be suitable for sensor

networks because they need more than 10 kB of RAM, which is

the typical RAM size in many sensor nodes. As a result, they

proposed a technique derived from LZW, called S-LZW.

In this paper, we selected off the shelf techniques that showed

potential to be suitable for BSNs. In the same time the techniques

are general enough to be application independent.

3. METRICS

Normally to evaluate a compression technique, only the

compression ratio is taken into consideration. However, like in

WSNs, compression in BSN devices must consider several other

metrics [15]. In this section, we detail a mix of metrics that

provides an overall performance evaluation for compression

techniques within the context of BSNs.

3.1 Energy Savings

Since the main point of implementing a compression algorithm

directly on BSN sensor nodes is to reduce energy consumption, a

formal energy savings equation must be introduced. Given that the

embedded microprocessor on the sensor node may be in a sleep

mode if it were not being used for compression, the energy

equation must include both the reduction in transmission energy

due to the reduced number of transmitted bits and the increase in

processing energy. Given that compression does not affect other

sources of energy consumption (e.g. the energy drawn from the

sensors), only those two sources are considered here.

The average energy savings per sample is simply the difference

between the energy before and after compression:

 IdleBitBefore ECYCERESE ** += (1)

 ActiveBitAfter ECYCE
CR

RES
E ** += (2)

where EBefore and EAfter are the energy consumption per sample per

sensor before and after the compression, respectively, RES is the

number of bits for each reading (i.e. bits per sample per sensor),

CR is the compression ratio, EBit is the energy required to transmit

one bit wirelessly, CYC is the number of active processor cycles

the compression algorithm needs to compress one reading, and

EIdle and EActive are the energy per idle and active processor cycle,

respectively. RES, EBit, EIdle, and EActive are specific to the BSN

platform – specifically the transceiver and the embedded

microprocessor. CYC is a function of both the compression

algorithm and the microprocessor, and CR is as function of the

compression algorithm and the actual data. As discussed in

Section 6, this paper uses a custom accelerometer-based BSN

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6017
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6017

platform in a motion capture application to obtain all of these

values.

Even within a given BSN platform, EBit may vary based on a

number of factors. Wireless devices typically stay connected all

the time, consuming energy constantly, and the energy

consumption surges during transmission. In Equations 1 and 2,

EBit represents the difference between the “stay connected” energy

and the “transmit” energy. In order to break down this energy on a

per bit basis, one must also consider the transmit rate and packet

size. This paper assumes a transmit rate of 115.2kbps and the

maximum packet length, which minimizes the per bit transmission

energy. This maximum packet length will be maintained

regardless of the compression ratio, so EBit is reduced due to the

lower packet rate.

Many embedded microprocessors are programmed to go into a

sleep mode (i.e. a very low power mode) when no processing is

required, so the additional active cycles required – and processing

energy consumed – by the compression algorithms are considered

in the energy savings, as EActive>>EIdle. However in many systems,

the overhead of going to sleep and waking up does not justify the

often short amount of time spent in the sleep mode. In such cases,

the processor will perform NOPs until functional processing is

again required. NOPs often consume almost as much energy as a

functional cycle, so EIdle almost equals EActive. In such systems, the

additional processing energy consumed by the compression

algorithm is negligible.

In most BSN systems, EBit>>EActive, often by several orders of

magnitude. However, if the processing load imposed by a

compression algorithm is significant, the additional processing

energy can be significant. For example, Algorithm A may provide

a higher compression ratio than Algorithm B, but if the

complexity of Algorithm A is significantly higher, Algorithm B

may actually provide greater total energy savings. An example of

this is demonstrated in Section 6.2.

3.2 Resource Requirements

Since any compression algorithm will be implemented on the

embedded processor, the algorithm will be constrained by the

processor’s limited resources. The processors used on BSN

platforms are typically significantly smaller and less capable than

those used in WSNs, making algorithm implementability a

significant constraint.

The processor’s memory imposes one of the key constraints, as

many embedded processors that are appropriate for BSNs have

only a few kilobytes of memory. Algorithms that use tables, trees,

or dictionaries could easily exceed this memory restriction and

therefore be excluded from use in BSNs.

Algorithms must also operate under the limited throughput

capabilities of the processor, which typically has a relatively

simple datapath and runs at tens of megahertz. Depending on the

sampling rate of the BSN platform (the accelerometer-based node

used in this study samples three sensor axes at 120 Hz, resulting

in 360 readings per second), it may be difficult for a compression

algorithm to be executed in real-time, which is a hard

requirement.

3.3 Adaptability

It is highly desirable to have a compression algorithm for a BSN

platform that will perform well for any application, wearer, sensor

location, activity, etc. While different compression algorithms can

be programmed onto each BSN node based on these factors, this

requires significant additional programming and deployment

effort; not to mention the challenge of profiling that would be

required to determine the appropriate compression algorithm for

each scenario. In addition, the data being collected by a BSN is

rarely static, as the wearer is often performing different activities

that change the compression capabilities of the implemented

algorithms.

Instead of using such static techniques, BSN compression

algorithms should have the ability to adapt and perform well

across different

• applications,

• test subjects (wearers),

• sensor locations and orientations,

• axes of the same sensor, and

• activities over time.

As shown in Section 6, the performance of compression

algorithms across these static and dynamic variables can vary

greatly. While traditional WSNs also suffer from this problem due

to node location and dynamic data, the effects are typically more

extreme in BSNs. The overall energy efficiency of a BSN

therefore depends on identifying the algorithm that performs the

best on average across an entire data collection.

4. TECHNIQUES BACKGROUND

The work detailed in this paper included the consideration of a

number of lossless compression algorithms. The two families that

were identified as the most promising given the BSN metrics

detailed above are Huffman encoding and delta encoding. Several

variations of each are evaluated in Section 6.

4.1 Huffman Encoding

Huffman encoding leverages the uneven distribution of readings

in datasets, using fewer bits to encode more common readings to

achieve an overall compression. An imbalanced tree structure is

generated based on the presumed frequencies of each reading,

with high frequency readings at shallower leaf nodes than those

occurring less often. Each reading’s code is determined by

traversing the tree from root to leaf, with each branch node

providing one bit to the code. The length of each code is therefore

determined by the depth of its leaf.

A number of practical issues make the use of Huffman encoding a

challenge for BSNs. First, Section 6 reveals that many of the

reading frequency distributions (using the accelerometer-based

BSN platform and multiple sensor locations and activities) are

relatively flat, thus limiting the compression capabilities of

Huffman encoding. Second, while the computational complexity

of the Huffman algorithm as it is running with an existing tree is

small, the tree itself can be quite large and potentially exceed the

memory constraints of many BSN embedded processors. This is

especially problematic in lossless compression when every

possible reading must be encoded and must therefore have a leaf

in the tree, even if that reading is extremely rare. Finally,

traditional static Huffman encoding depends on the existence of a

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6017
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6017

reading frequency distribution to generate the tree, and the

compression performance achieved depends on how well the

dynamic data conforms to that frequency distribution. It is

therefore essential that a BSN developer wanting to use Huffman

encoding perform extensive data collections to profile the reading

frequency distribution. As discussed in Section 3.3, this can be

extremely difficult given the numerous static and dynamic

variables. Therefore, this static technique’s ability to perform well

across many applications, wearers, sensor locations, sensor axes,

and activities is limited.

It is therefore desirable to also consider an adaptive Huffman

encoding technique that dynamically generates and alters its tree

based on the actual reading frequency distribution as it occurs and

changes. This does not require a previously constructed tree or

any reading profiling. In the tree, each reading will carry its value

along with the frequency of its use. This way, the tree can update

itself, keeping the most frequent readings on the shallower levels

to minimize their code lengths [8]. This adaptability can

potentially provide higher compression performance across all of

the static and dynamic variables without additional programming

and deployment effort. However, as discussed in Section 6, the

performance of adaptive Huffman encoding in a sample BSN

application is limited due to a number of factors.

While this adaptive technique is significantly more

computationally complex than static Huffman encoding, it can

potentially be implemented in real-time on BSN embedded

processors, although the number of processor cycles (CYC in

Equation 2) required per reading may be relatively high. While

adaptive Huffman encoding includes the storage of reading

frequencies in addition to the coding tree, its total memory

requirements are often smaller than those of the static technique.

The static tree remains a fixed size in memory throughout

execution regardless of the occurrence (or lack thereof) of certain

readings. The adaptive technique can choose to discard certain

readings that have not occurred for some time, keeping the tree

size to some maximum memory requirement and reinserting a

discarded reading should it reoccur in the future [16].

4.2 Delta Encoding

Delta encoding achieves compression by sending the difference

between a reading and its predecessor rather than sending the full

reading. This technique has been used effectively for a variety of

applications, from images to web pages [10]. The compression

rate is determined by the difference between the number of bits

designated for conveying the difference (delta bits) and the

number of bits required for the full reading. This technique is

often used in lossy compression, as differences may occur that

exceed the range that can represented by the number of delta bits.

However, delta encoding can be made lossless by including a

special overflow code in place of the difference, followed by the

full reading. This lossless algorithm has been employed here for

BSNs.

One of the challenges for both the lossy and lossless versions is

the selection of the number of delta bits to be used. If too few bits

are used, the lossy delta encoding will become extremely lossy

(too many readings will be beyond the encoding range) and the

lossless encoding may actually have a compression ratio that is

less than one (many readings will both be transmitted in full and

include the special overflow code). If too many are used, the

compression ratio will be lower than what is possible. Like as is

required to determine frequency distributions for the static

Huffman tree, the BSN application must be profiled, and the

collected data must be analyzed to determine the optimal number

of delta bits. This again adds significantly to programming and

deployment effort and is still limited by dynamic variables, such

as different activities over time.

Delta encoding can also be made capable of adapting to static and

dynamic variables, much in the same way as adaptive Huffman

encoding but with significantly lower complexity. For a given

interval of time (or number of samples), dynamic delta encoding

determines whether it would have been better to use a different

number of delta bits, and it sets the number of delta bits for the

next interval accordingly, including a special code to indicate to

the receiver that the number of delta bits has been changed.

Equation 3 calculates the number of bits needed for encoding an

interval of samples:

 FROFDBIBits ** += (3)

where I is the number of samples in each interval, DB is the

candidate number of delta bits, OF is the number of samples that

results in overflow given DB, and FR is the number of bits in a

full reading. Using this equation, the processor reevaluates DB

every interval, always adjusting to maximize the compression

ratio.

The computational and memory requirements of this technique are

slightly higher than static delta encoding but are significantly

lower than both static and adaptive Huffman encoding. The

complexity depends on the range considered for delta bit

alteration. As discussed in Section 6, this study determined that ±1

delta was sufficient to provide high performance.

5. EXPERIMENTAL SETUP

To compare between the identified compression techniques, we

used the TEMPO BSN, shown in Figure 1, that measures linear

acceleration in three axes [14]. The sampling frequency is 120 Hz,

and the resolution of each sample is 12 bits per channel. Without

any on-node compression, each node sends its 4320 bits per

second over a Bluetooth wireless channel. The node has

approximately 10kB of RAM for data. The compression

algorithms were implemented on the resident MSP430F1611

embedded microprocessor. (The code is available online at

http://www.ece.virginia.edu/inertia/embedded.php)

Figure 1. TEMPO BSN node

TEMPO nodes were attached at multiple points on the body

(including the wrists, ankles, hip, and forehead) of a healthy 22

year old male. The results in Section 6 are for both a 45 minute

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6017
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6017

recording of various movements and activities and shorter

recordings of specific activities. The compression techniques

described in Section 4 were implemented and evaluated with

respect to the metrics described in Section 3. To measure the

number of cycles each algorithm required, an implementation of

the algorithm was mapped to the MSP430F1611. Then by

switching an output pin at the beginning and at the end of the

algorithm, we were able to calculate the number of cycles.

Many factors can affect the outcome of the compression, such as

the processor, wireless device, packet size, transmission rate and

memory. The results obtained in this paper are specific for this

platform and the type of the data taken. The trend, however,

should be similar on other platforms and other types of data.

6. RESULTS

Figure 2 shows the average compression ratios for each axis of

selected sensor locations across the entire 45 minute dataset for

adaptive Huffman, static Huffman, and dynamic delta encoding.

The tree for the static Huffman was generated based on the

probability distribution of the readings over the entire 45 minute

dataset. Figure 3 shows the compression ratios for selected sensor

locations for a 15 second window of healthy symmetric gait. The

static Huffman tree was generated from the probability

distribution over this specific 15 second window.

0%

50%

100%

150%

200%

250%

X Y Z X Y Z X Y Z

Right wrist Left ankle Head

C
o
m
p
re
s
si
o
n
 r
a
ti
o

Sensor location

Adaptive Huffman

Static Huffman

Dyanmic Delta
encoding

Figure 2. Compression ratios for entire 45 minute recording

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

X Y Z X Y Z X Y Z

Right ankle Left ankle Hip

Sensor location

C
o
m
p
re
s
s
io
n

ra
ti
o

Adaptive Huffman

Static Huffman

Dyanmic Delta
encoding

Figure 3. Compression ratios for 15 seconds of normal gait

6.1 Huffman Encoding

6.1.1 Static Huffman

As shown in Figure 2, across the entire collected dataset, sensor

locations, and axes, static Huffman encoding was able to achieve

an average compression ratio of approximately 135%. Even

though the Huffman tree was constructed based on the actual

dataset, it was not tailored to each of the individual activities and

movements over the 45 minute period. Therefore, the frequency

distributions of readings may have matched well during certain

periods with the probability distribution used to generate the static

tree (as was the case in Figure 3, when an average compression

ratio of almost 160% is achieved), but that is not always the case,

and the overall compression ratio suffers from this lack of

adaptability. As expected, it was difficult to identify a single static

probability distribution that was appropriate across a wide range

of activities, axes, and locations, so the overall frequency

distribution was used. It is possible to generate a number of

Huffman trees from profiled probability distributions and invoke

them at the appropriate time and for the appropriate sensor

location and axis, but this is problematic with respect to

programmability and deployment.

It is interesting to note in Figure 3 that Huffman encoding did

better than dynamic delta encoding for the ankle sensors but not

for the hip sensor. The hip acceleration is much less than the

ankles and therefore requires few delta bits for encoding.

Another major issue regarding static Huffman is that it requires a

relatively large amount of memory. For lossless compression,

each reading value must have its own dictionary index, so a 12 bit

resolution system like TEMPO has 4096 indexes. However, some

applications may assume that only a subset of the reading values

actually occur and simply assign one more index for all other

values. The data collected during this study revealed that less than

1024 of the possible readings occurred, but that still requires that a

large number of leaves and the accompanying tree structure be

stored in memory. Some techniques can be used to minimize the

memory requirements for such structures, but this is still likely to

be problematic for most BSN platforms. In addition, the

complexity of the tree search is high, which increases the number

of active processor cycles (CYC in Equation 2) and can cause the

throughput constraints of the system to be violated.

6.1.2 Adaptive Huffman

As described in Section 4.1, the adaptive Huffman technique is

designed to address the static technique’s lack of adaptability with

the goal of dynamically tailoring the Huffman tree to the current

reading frequency distribution. However, the compression ratios

provided by adaptive Huffman encoding were mixed based on 1)

the amount of time it took for a tree to be adapted vs. the amount

of time the new tree provided good performance, and 2) the

distribution of the readings to be encoded, with more even

distributions providing lower compression ratios.

Both of these factors come into play when examining the

performance of adaptive Huffman in Figure 2. Given the

adaptability of this technique and the various activities that were

performed over the 45 minute data collection (and the resulting

various reading frequency distributions), one might expect that

adaptive Huffman would perform significantly better than the

static version. However, it is clear that the activities and resulting

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6017
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6017

distributions were not held constant long enough to enable the

Huffman tree to adapt to them and provide an extended

compression ratio benefit. This is revealed in Figure 3, as the 15

seconds of walking does not provide enough time for the adaptive

technique to settle on the appropriate tree and ultimately benefit

from it. In fact, the compression ratio is < 1 for some sensor axes.

It is likely that longer-term activities would result in better

adaptive Huffman performance. In addition, some of the activities

had relatively even reading frequency distributions on some axes

and locations, resulting in lower compression rations regardless of

adaptability. Finally, the memory and processing requirements of

adaptive Huffman encoding also pose challenges, as described in

Section 4.1.

6.2 Delta Encoding

It is clear from Figure 2 that dynamic delta encoding provides by

far the best compression ratio for every sensor and axis over a

long data collection that includes a variety of activities. Figure 4

shows how the number of delta bits changes for different activities

over the 45 minute data collection (data from the right wrist),

demonstrating the algorithm’s ability to adapt to the current

activity and achieve the highest compression ratio without having

to change the algorithm. Figure 3 shows that it also does well over

short periods of a single activity, even performing better than the

optimized static Huffman for the hip sensor for the reason

mentioned above.

In addition to providing the best compression ratio, it also requires

little memory and the fewest processor cycles, further adding to

its energy savings capabilities relative to static and dynamic

Huffman. Finally, it uses the same simple algorithm regardless of

the application, test subject (i.e. BSN wearer), sensor location,

sensor axis, or activity, making it extremely flexible and adaptable

and easing the programming and deployment. It is therefore the

conclusion of this paper that delta encoding is the best algorithm

for lossless compression in BSNs. The question therefore

becomes one of optimizing dynamic delta encoding for the

metrics detailed in Section 3.

Figure 4. Number of delta bits across different activities

As mentioned in Section 4.2, the algorithm changes the number of

delta bits every predetermined interval and does so by inserting a

special code, which incurs an overhead. Therefore, changing the

number of delta bits too often may reduce the compression ratio

or cause rapid oscillations between settings. However, not

changing often enough may reduce the algorithm’s ability to

adjust to rapid changes in the data characteristics. Figure 5 shows

the compression ratio for the three axes on the right wrist over the

45 minute data collection period as a function of the delta bit

update interval. It is clear that the optimal interval for all three

axes lies between 0.25 and 1 second, and 0.5 seconds was selected

for the rest of the results in this paper, including those in Figures 2

and 3. However, this optimal interval is data- (and therefore BSN

system-, application-, wearer-, sensor-, and axis-) dependent, and

the proper selection of the update interval is essential to

compression performance.

175%

180%

185%

190%

195%

200%

205%

210%

215%

220%

0.1 1 10

C
o
m
p
re
s
s
io
n
 r
a
ti
o

Update interval (seconds)

X-Axis

Y-Axis

Z-Axis

Figure 5. Compression ratio across different update intervals

Another interval-related issue is how large changes in optimal

delta bits are handled. Consider, for example, the situation when

the current number of delta bits is set to four and the data

suddenly changes to include large deltas that require six or more

delta bits for representation. Using Equation 3 and the ±1 delta bit

options, it may be determined that the number of delta bits should

be reduced by one rather than increased by one because the new

deltas will overflow any of the available choices – three, four, or

five delta bits. Given that every reading will result in overflow,

the highest compression ratio will be provided by the fewest

number of delta bits. Three approaches were considered to address

this issue. First, the maximum change in the number of delta bits

could be increased to ±2 or ±3, but that dramatically increases the

computational complexity of the algorithm and is unlikely to

provide a significant benefit for real BSN data streams. Second,

the update interval could be increased in the hope that any

dramatic change in delta sizes are not long lasting, but this cannot

be guaranteed. Third, Equation 3 could be altered to only make

changes in the number of delta bits when the benefits of the

change exceed a defined threshold, but that does not guarantee

that the algorithm will converge on the optimal number of delta

bits over time. Combinations of these three methods were

investigated, but none improved the compression ratios more than

2%.

Figure 6 compares the performance of dynamic delta encoding to

two other variations of delta encoding. The first, passive delta

encoding, always uses seven delta bits. Seven was selected based

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6017
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6017

on an analysis of the deltas for all of the sensor locations and axes

from several datasets. The second, optimized delta encoding, also

uses a constant number of delta bits, but that number was

determined for each individual sensor location and axis based on

the deltas in the 45 minute dataset. Neither technique benefits

from dynamic adaptation and, therefore, neither achieves the

compression ratios provided by dynamic delta encoding.

Optimized delta encoding approaches that of the dynamic

algorithm, but it has issues related to programmability and

deployment. It is impractical to individually characterize and

program every sensor location and every axis, especially since

that process will likely have to be performed for every BSN

platform, application, and wearer. Dynamic delta encoding

provides better compression while enabling the same algorithm to

be pervasively implemented.

0%

50%

100%

150%

200%

250%

X Y Z X Y Z X Y Z

Right wrist Left ankle Head

C
o
m
p
re
s
s
io
n
 r
a
ti
o

Sensor location

Passive Delta
encoding "7 bits"

Optimized Delta
encoding

Dynamic Delta
encoding

Figure 6. Compression ratios for delta encoding

While neither of these alternative delta encoding techniques

benefit from dynamic adaptation to activities, they are both

simpler algorithms (no dynamic decision making and no need to

keep track of the number of overflows) and require fewer

processing cycles and less memory as a result. The average

number of processor cycles per sample on the MSP430F1611 to

execute dynamic delta encoding was about 95, while the two

static techniques (passive and optimized) required only 75.

Figure 7 shows the percent energy savings provided by the three

delta encoding techniques over the uncompressed baseline. As

specified in Equations 1 and 2, these results take both

transmission energy and processor energy into account. The

transmission energy per bit and processor energy per active cycle

were taken from the datasheets of the Bluetooth module [3] and

the MSP430F1611 [11], respectively. It is interesting to note that

when processor energy is taken into account, the optimized delta

encoding sometimes provides slightly higher energy savings than

the dynamic algorithm. However, the programmability and

deployment issues remain and prevent optimized delta encoding

from being practical for most BSN applications. Dynamic delta

encoding provides nearly the same energy savings while being

much easier to program and deploy.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

X Y Z X Y Z X Y Z

Right wrist Left ankle Head

%
 e
n
e
rg
y
 s
a
v
in
g
s

Sensor location

Passive Delta
encoding "7 bits"

Optimized Delta
encoding

Dynamic Delta
encoding

Figure 7. Percent energy savings for delta encoding

7. CONCLUSION

Given that the vast majority of energy consumption in most BSN

platforms is due to the wireless transmission of sensed data, pre-

transmission data compression is one of the most direct and high-

impact ways to increase the energy efficiency of BSNs. However,

the use of compression comes with tradeoffs and constraints,

especially given the extreme resource limitations on BSN nodes

and the many static and dynamic variables associated with various

BSN applications, wearers, sensor locations, sensor axes, dynamic

activities, etc. First, the compression algorithm must fit within the

limited memory of a BSN embedded processor while providing

real-time performance. Second, given the difficulty of

differentiating important from unimportant data and the criticality

of many target BSN applications (e.g. those in the medical

domain), lossless compression is desirable and can be made

application independent. Finally, in order to provide significant

energy savings, the algorithm must maintain a high compression

ratio regardless of the static and dynamic variable settings and

without significant additional programming and deployment

effort. That is, it is highly desirable to program every sensor node

the same way without profiling and without consideration of

application, sensor location, etc.

This paper evaluated two families of lossless compression

techniques – Huffman encoding and delta encoding – within the

context of these BSN requirements using a custom accelerometer-

based BSN platform within a motion capture application. Both

static and adaptive/dynamic variations of these techniques were

considered. Results revealed that dynamic delta encoding

provided the best combination of energy savings (including both

reduced transmission energy and increased processing energy),

low memory requirements, high performance across a range of

activities and sensor locations/axes, and low programming and

deployment effort. The approximately 35% average energy

savings provided by dynamic delta encoding can go directly

towards extending a BSN platform’s battery life and/or reducing

the required battery (and total BSN node) size. The results for

compression ratios and the energy savings depend on the

platform’s processor and wireless communication system.

However, the trend of these results and the analysis of the other

metrics can be generalized to other platforms, applications, and

dynamic data.

While dynamic delta encoding showed strong adaptability, future

work will evaluate its performance on other BSN platforms and

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6017
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6017

applications and in combination with other on-node signal

processing techniques, such as feature detection and pattern

classification algorithms.

8. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for

their helpful suggestions and the INERTIA group at UVA for

their support and equipment. This work is supported in part by the

National Science Foundation under grant Nos. CBET-0756645

and IIP-0646008, the ARCS Foundation, Philips Research North

America, and the University of Virginia Institute on Aging.

9. REFERENCES

[1] Arici, T., Gedik, B., Altunbasak, Y. and Liu, L., “PINCO: A

Pipelined In-network Compression Scheme for Data

Collection in Wireless Sensor Networks,” ICCCN Computer

Communications and Network, pp. 539-544, 2003.

[2] Barr, K.C. and Asanović, K., “Energy-aware Lossless Data

Compression,” ACM Transactions on Computer Systems,

vol. 24, no. 3, pp. 250-291, 2006.

[3] Bluetooth RN-41 Class datasheet

http://www.rovingnetworks.com/documents/RN-41.pdf

[4] Chang, H.L., Yuan, X. and Wolf, W., “LZW-based Code

Compression for VLIW Embedded Systems,” Proceedings of

Design, Automation and Test in Europe Conference and

Exhibition, vol. 3, pp. 76-81, 2004.

[5] Chou, J., Petrovic, D. and Ramachandran, K., “A Distributed

and Adaptive Signal Processing Approach to Reducing

Energy Consumption in Sensor Networks,” INFOCOM

Annual Joint Conference of the IEEE Computer and

Communications Societies, vol. 2, pp. 1054-1062, 2003.

[6] Ganesan, D., Greenstein, B., Perelyubskiy, D., Estrin, D. and

Heidemann, J., “An Evaluation of Multi-resolution Storage

for Sensor Networks,” ACM Proceedings of the International

Conference on Embedded Networked Sensor Systems, pp.89-

102, 2003.

[7] Kimura, N. and Latifi, S., “A Survey on Data Compression

in Wireless Sensor Networks,” International Conference on

Information Technology: Coding and Computing, vol. 2, pp.

8-13, 2005.

[8] Lu, W. and Gough, M., “A Fast-adaptive Huffman Coding

Algorithm,” IEEE Transactions on Communications, vol. 41,

no. 4, pp. 535-538, 1993.

[9] Mathur, G., Desnoyers, P., Ganesan, D., and Shenoy, P.,

“Ultra-low Power Data Storage for Sensor Networks,” ACM

International Conference on Information Processing in

Sensor Networks, pp. 374-381, 2006.

[10] Mogul, J.C., Douglis, F., Feldmann, A., and Krishnamurthy,

B., “Potential Benefits of Delta Encoding and Data

Compression for HTTP,” ACM SIGCOMM Computer

Communication Review, vol. 27, no. 4, pp. 181-194, 1997.

[11] MSP430F1611 datasheet

http://focus.ti.com/lit/ds/symlink/msp430f1611.pdf

[12] Panda, P.R., Dutt, N.D., and Nicolau, A., “On-chip vs. Off-

chip Memory: The Data Partitioning Problem in Embedded

Processor-based Systems,” ACM Transactions on Design

Automation of Electronic Systems, vol. 5, no. 3, pp. 682-704,

2000.

[13] Petrovic, D., Shah, R., Ramchandran, K., and Rabaey, J.,

“Data Funneling: Routing with Aggregation and

Compression for Wireless Sensor Networks,” IEEE

International Workshop on Sensor Network Protocols and

Applications, pp. 156-162, 2003.

[14] Powell Jr., H.C., Hanson, M.A., and Lach, J., “A Wearable

Inertial Sensing Technology for Clinical Assessment of

Tremor,” IEEE Biomedical Circuits and Systems Conference,

pp. 9-12, 2007.

[15] Puccinelli, D. and Haenggi, M., “Wireless Sensor Networks:

Applications and Challenges of Ubiquitous Sensing,” IEEE

Circuits and Systems Magazine, vol. 5, no. 3, pp. 19-31,

2005.

[16] Sadler, C.M. and Martonosi, M., “Data Compression

Algorithms for Energy-constrained Devices in Delay

Tolerant Networks,” ACM proceedings of the international

conference on Embedded Networked Sensor Systems, pp.

265-278, 2006.

[17] Baek, S. J., Veciana, G. D. and Su, X., “Minimizing Energy

Consumption in Large-scale Sensor Networks through

Distributed Data Compression and Hierarchical

Aggregation,” IEEE Journal on Selected Areas in

Communications, pp. 1130-1140, 2004.

[18] Vitter, J.S., “Design and Analysis of Dynamic Huffman

Coding,” Annual Symposium on Foundations of Computer

Science, pp. 293-302, 1985.

[19] Welch, T.A., “A Technique for High-Performance Data

Compression,” IEEE Computer, vol. 17, no. 6, pp. 8-19,

1984.

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.6017
http://dx.doi.org/10.4108/ICST.BODYNETS2009.6017

