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ABSTRACT 
Emerging context aware applications call for new networking 

technologies to enable rapid development of integrated solutions 

that gather, process and store context from a diverse set of 

sensors.  We examine Bluetooth in the context of enabling 

emerging classes of context aware applications, such as 

healthcare, fitness, gaming, etc., using off-the-shelf (OTS) 

products. While Bluetooth is widely used today, its applicability 

to this new class of applications is not widely understood and 

applications that use Bluetooth could suffer from inconsistent 

usages and poor performance as a result. We investigate and 

report the challenges of implementing solutions that use software 

and OTS products based on existing Bluetooth standards. We also 

present performance analysis through experimentations to 

highlight some of the issues discussed in the paper. Based on our 

experience from building Bluetooth based sensing solutions, we 

make informed recommendations for modifications in the 

Bluetooth standard and highlight areas where new standards are 

required.   

1. INTRODUCTION 
A new class of applications is rapidly emerging around gathering, 

processing and storing of context data from a diverse set of 

sensors located on-body, on the host platform and in the 

environment. Context data can be used to answer questions such 

as “where am I”, “what am I doing” and “who’s around me.” The 

high level system architecture of these applications often includes 

an aggregator associated with a given person which collects data 

related to that person from various sensors. Typically, the 

aggregator would be implemented on a mobile device, such as a 

PDA, Smartphone, or Mobile Internet Device (MID). Unlike most 

conventional BSN applications that rely on custom-built 

hardware, context-aware applications can benefit from the 

proliferation of Bluetooth-based sensing devices available in the 

market today that support on-the-go lifestyles for mobile users.   

We examine Bluetooth in the context of enabling emerging 

classes of context aware applications, e.g., healthcare, fitness, 

gaming, etc., using Off-The-Shelf (OTS) products available in the 

market today. While Bluetooth is widely used today, it was 

primarily designed as a cable replacement, and its implementation 

and performance issues in context-aware applications are not 

widely understood. The Bluetooth specifications have left several 

design issues open to implementation relative to its use as a 

networking technology [22]. Most prior work in Bluetooth 

research has been focused on developing efficient scatternet 

formation strategies to support ad hoc networks [25] [26] [22] or 

personal area network (PAN) [27]. Our work is distinct from prior 

research in that we focus on the impact of Bluetooth issues on the 

application and user experience rather than the network.  

The requirements and usage of Bluetooth in emerging context-

aware applications is different from typical usages where 

Bluetooth is used to connect to peripheral devices. The aggregator 

needs to interact with a constellation of highly diversified sensors, 

acquire, aggregate and correlate the context data from these 

different sources to make sense of the environment and situation 

of the user.  The dynamic nature of a constantly changing user 

environment imposes additional user and application challenges 

around interacting with sensors over Bluetooth. We have 

discovered a number of serious issues that are not addressed in 

current implementations of a number of OTS Bluetooth sensors 

commonly used in the aforementioned application scenarios. We 

study the performance impact of some of these issues through 

experimentations to highlight the challenges.  

The purpose of this paper is two-fold:  

1) To suggest the need for modifications in the Bluetooth 

standard and implementations, including cases where 

existing standard features have not been adopted. 

2) To provide useful guidelines to system designers for 

developing Bluetooth-based context aware applications.  

Note that recently there have been a number of new additions [2] 

[3] to the Bluetooth standard that are beginning to address some 

of the issues we have identified. In this paper, we consider several 

cases: 1) Issues that are not addressed in any version of the 

Bluetooth standard, either because the standard does not consider 

the issue or the issue is out of scope; 2) Issues that are addressed 

in the most recent Bluetooth standard, which has not been widely 

adopted (if at all) by device manufacturers; 3) Issues that can be 

addressed by other standards, if used in conjunction with 

Bluetooth. 

The rest of this paper is organized as follows. Section 2 presents a 

matrix of Bluetooth features required for emerging context aware 

applications and highlights the high level challenges. Section 3 

describes in detail the challenges that are related to standards. 

Section 4 discusses implementation challenges using existing 

tools (SDKs, libraries). Section 5 presents experimental 
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evaluation on some of the challenges described in earlier sections, 

followed by a conclusion in Section 6. 

2. BLUETOOTH AND CONTEXT-AWARE 

APPLICATIONS  
Bluetooth was originally designed as a cable replacement to 

connect devices such as mobile phone handsets, headsets and 

portable computers [4]. Today, due to its pervasiveness, Bluetooth 

has been widely used for short-range wireless communication 

between a host of electronic devices. The explosive growth in 

Bluetooth based products in the past few years has extended the 

technology into new application areas, such as connecting mission 

critical medical sensors1. The number of new applications and 

new usages simply outpaces the development of Bluetooth 

standards and implementations. 

We present below, a taxonomy of emerging applications centered 

around context collection and aggregation.  

Table 1 presents a matrix of the characteristics of a class of 

emerging applications and the features required to implement 

them. The table also highlights the challenges in implementing 

these features either due to gaps in existing Bluetooth standards or 

issues in the application space.  The feature characteristics 

presented in the table are color-coded to indicate the degree to 

which they are supported in existing Bluetooth standards and 

implementations. 

The feature characteristics of the emerging applications are: 

• Fast Association: Rapidly pair a host with a device 

seamlessly, reliably, without user intervention. 

• Security: Protect sensor data streams from eavesdropping 

and tampering through authentication and encryption. 

• Audio: Support hands-free voice interactions. 

• Streaming: Support connections that remain open for an 

indefinite period of time to stream sensor data continuously. 

• Periodic/Batch transmission: Reliable delivery of an 

amount of payload that is known a priori. 

• Auto Reconnect: Reconnect seamlessly if the connection to 

sensors is lost. 

• Mixed Master / Slave Mode: Support simultaneous 

connections to multiple sensors operating in either master or 

slave mode. 

The details of these challenges are discussed in later sections of 

this paper.  In the table, we list the features that would be required 

to support applications in different usage scenarios, based on 

typical usages for which the applications are designed. For 

example, in the Gaming usage scenario, the sensors are often 

dedicated and owned by the user for a relatively long period of 

time.  The requirement for Fast Association between the host and 

the sensors is optional because the associations can be setup once 

and they remain active permanently or semi-permanently. On the 

contrary, the sensors used for Fitness in a Fitness Center will need 

to be shared among multiple users, and Fast Association is thus 

mandatory in this usage scenario. 

                                                                 

1 Note that devices, sensors are used interchangeably in this paper 

to refer to the source devices that generate data, and host refer 

to the aggregator or receiver of data from the sensors.  

 

 

 

 

Table 1: Feature Matrix for Emerging Context Aware Applications 

   

2.1 Context Acquisition Building Blocks 
Context aware applications acquire data from a variety of sources 

such as sensors and use an inference process to deduce context.   

The acquired data may be rendered, stored locally, or transmitted 

to backend servers for further processing. Figure 1 shows the 

functional blocks required to acquire context from sensors in a 

typical context aggregation framework. Bluetooth is shown as the 

primary sensor interface, though in reality, sensor interfaces for 

multiple wired/wireless technologies could be included. Several 

context aggregation architectures have been developed.  miTag 

[23] and CodeBlue [24] are two example distributed context 

aggregation systems that utilize IEEE 802.15.4 radio technology 

for medical sensor networks applications while our work focuses 

on Bluetooth. 

We highlight some of the challenges to implementing these 

functional blocks either due to gaps in existing Bluetooth 

standards or due to lack of standards in certain areas such as 

sensor data protocols/formats. 

Sensors: Sensor data formats are often unique and proprietary to 

each sensor (vendor specific).   Depending on the sensor type, the 

data is either scalar (e.g. Blood Pressure, weight) or vector (e.g. 

waveform data from electrocardiogram (EKG), accelerometer). 

The Bluetooth pairing process establishes a trusted relationship 

between the host and the sensor. Section 3.1.1 describes the 

pairing process and issues.  
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Bluetooth Hardware: The Bluetooth hardware (chipset) 

implements radio and baseband layers that comprise the lower 

layers of the Bluetooth communication protocol. Mobile 

platforms today are equipped with Bluetooth hardware and the 

integration is usually over USB. Some vendors provide integrated 

Bluetooth hardware solutions with the higher layers such as 

L2CAP, SDP, RFCOMM and all the profiles [1] embedded in the 

hardware itself. These are widely used in sensor devices as they 

can be easily integrated, typically through a serial interface.  

Integrated hardware solutions make it very difficult to update 

bugs or errata in the Bluetooth standard. For example, there are 

significant changes between version 1.0b and 1.1 specifically to 

improve reliability and interoperability. Devices that use an older 

version of these integrated chipsets suffer from interoperability 

issues, as described in Section 3.1.  

Bluetooth Stack: The Bluetooth stack is the set of drivers that 

communicate directly with the Bluetooth hardware. There are two 

widely used Bluetooth stacks: the Microsoft stack [10] that is 

bundled with the Windows operating system and the WIDCOMM 

stack [11][14] from Broadcom Corporation. The choice of stack 

depends on the Bluetooth chipset installed in the host platform. 

Section 4.1 presents the challenges related to Bluetooth stacks. 

Bluetooth Library: A Bluetooth library is supplied by the 

Bluetooth stack vendor, allowing applications to access services 

from vendor’s Bluetooth stack through an API. Bluetooth libraries 

are tightly integrated with Bluetooth stacks, and a Bluetooth 

library from a vendor will work only with the Bluetooth stack 

from that vendor. Section 4.1.2 presents the related issues. 

Bluetooth SDK: Commercially available Bluetooth SDKs 

provide application portability across platforms and across 

Bluetooth libraries/stacks from different vendors.  SDKs offer 

features such as support for the .NET frameworks, portability 

across platforms (Windows and CE), and portability across 

vendor libraries. Section 4.2.1 discusses in detail some of the 

SDK related issues. 

Sensor Modules: Most sensors send data as ‘frames’. The frame 

format for each sensor is proprietary and defined by the sensor 

manufacturer.  Sensor Modules implement the logic to parse the 

sensor data stream according to specifications from the sensor 

manufacturer. Since individual sensor vendors chose the frame 

format and contents, features required to perform error handling, 

such as sequence numbers, frame lengths, and robust start and 

stop codes, are not always present. Section 3.2 presents a deeper 

dive into the lack of sensor data standards issues.   

The next two sections detail the challenges in each category. 

3. STANDARDS BASED CHALLENGES 
A number of standards related challenges arise in implementing 

context aware applications based on Bluetooth technology.  The 

challenges fall into two broad categories: those related to the 

Bluetooth standard and those due to lack of standards to represent 

sensor data.   

The Bluetooth standard has been through a number of major 

revisions [4] – from 1.0, 1.0b, 1.1, 1.2, 2.0 to 2.1.  Most revisions 

are incremental improvements over earlier revisions and are 

backward compatible. However, many of the improved features in 

1.1 such as, low-power modes, security procedures and role 

switching, are not backward compatible with 1.0b [15]. This 

section describes challenges related directly to the Bluetooth 

standard and data formatting standards. 

3.1 Bluetooth Standards 
Bluetooth is an actively evolving standard. Most of the OTS 

products in the market today are still based on the older versions 

1.1 and 1.2. The latest version 2.1 [1] (released July 2007) and the 

recently approved (late June 2008) Health Device Profile (HDP) 

[2] and Multi-Channel Adaptation Protocol (MCAP) [3] are 

beginning to address some of the issues mentioned in this section. 

For example, MCAP supports fast reconnection (see Section 

3.1.3) and defines a time synchronization protocol for data time-

stamping (see Section 3.1.4) in the sensors. However, issues such 

as pairing between a sensor and multiple hosts (see Section 

3.1.1.2) are not addressed by the latest version of the Bluetooth 

standard. Furthermore, products supporting these new additions 

do not exist even today. 

The following sub-sections describe some of the major challenges 

related to the current Bluetooth standard. 

3.1.1 Fast Association 
Pairing is a process by which Bluetooth devices establish a trusted 

relationship with each other. User interaction is required only 

during pairing where the user may have to enter the passkey 

manually. Bonding between a host and the peripherals or sensors 

can be permanent or temporary depending on the usage. 

Permanent bonding applies to dedicated or long-term host-device 

associations, e.g., keyboards, mice, or medical devices such as 

weighing scales and BP monitors used for home care. Temporary 

bonding is used in usages where sensors may be frequently 

swapped or paired with multiple hosts on a daily basis and the 

associations between host-device pairs are short-lived. Some 

devices used in Fitness such as treadmills, fall into this category, 

and they are shared among multiple users. The key requirement 

 

Figure 1: Context Acquisition Building Blocks 
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here is for the pairing to be quick, easy and seamless.  Prompting 

the user for a security pin every time the device is used can be 

annoying or other constraints such as lack of an input device can 

make it impractical. The next subsections discuss the challenges 

to make temporary pairing quick and easy, and suggest 

approaches to address them. 

3.1.1.1 Device Identification 
To pair a device with a host, it has to be identified to the host by 

its address. For pairing to be quick, the device must be identified 

to the host with minimal user interaction. Woodings, etc., [21] 

propose a mechanism to accelerate Bluetooth connection 

establishment time between two devices by using an IrDA 

connection to exchange device discovery information required to 

establish the Bluetooth connection. The approach requires both 

devices to be equipped with IrDA capability, a requirement that 

likely cannot be met considering most OTS sensors do not support 

IrDA. The Bluetooth standard 2.1 [1] lists several association 

models that may be appropriate.  In the Out of Band association 

model, the parameters required for pairing are exchanged through 

an out-of-band channel. For example, a barcode on the device 

encoded with the address and pin number can be scanned to 

initiate pairing through the host application. The Just Works 

association model uses a numeric passkey that is never displayed. 

The user is merely asked to accept the incoming connection on the 

host. These two association models use single-touch processes for 

pairing. It should be noted that the Out of Band and Just Works 

association models are not a part of the Bluetooth standard prior 

to 2.0. 

A large number of Bluetooth devices in the market today are 

based on versions 1.1 or 1.2 of the standard. They use the Passkey 

Entry association model that requires the user to enter a numeric 

key on the host. It is important for device manufactures to adopt 

Fast Association models for sensors that will be used in critical 

applications where host-device associations change frequently. 

3.1.1.2 Pairing with Multiple Hosts 
When a device is paired with a host, both the device and the host 

store the link keys for the association.  The stored keys are 

subsequently used when the two connect, speeding up the 

connection process.  However, a given device typically limits the 

number of link keys that can be stored, due to resource 

constraints. Some devices allow pairing with only one host at a 

time and once they are bonded, they stop responding to device 

inquiries from other hosts, i.e., they become non-discoverable. 

Others store link associations with more than one host. The user 

has to go through the pairing process, potentially with different 

steps, under different conditions. For instance:   

1. When a new association is needed between a device and a 

host, the user has to go through the normal pairing process. 

2. When the device runs out of room to store additional link 

associations, some previous associations on the device have 

to be removed to make room for the new ones before going 

through the normal pairing process.  The removal of previous 

association(s) on the device can either occur automatically 

when a new association is added, or may require the user to 

press one or more buttons on the device for an extended 

period of time. In both cases, when the previously bonded 

hosts need to talk to the device, the user will need to go 

through the pairing process again because their original 

associations have been removed as a result. 

Because these two cases require different procedures, and it is 

difficult for the user to know whether or not the device can accept 

additional link keys, user confusion and frustration can result. 

Pairing may also be challenging for devices based on legacy 

versions of the Bluetooth standard (pre 1.1). If such a device is 

already bonded to host A, the user pairs it with host B, and then 

tries to connect or pair it with host A again, connection or pairing 

may fail indefinitely. This is because mutual authentication is not 

enforced in legacy versions of Bluetooth [15]. If an old link key is 

reused at one end, pairing/connection will fail because the keys do 

not match.  The only workaround is for the user to delete the 

device from the list of known devices (e.g., via the Windows 

Bluetooth Manager2) on the host and re-try pairing. 

3.1.2 Master versus Slave Mode 
Bluetooth devices operate in one of two modes: Master or Slave. 

Communication between Bluetooth devices is based on the Time 

Division Duplex (TDD) scheme [1] in which a Master provides a 

common clock and frequency hopping pattern for sharing the 

physical channel. Slaves synchronize to the Master in time and 

frequency by following the Master’s hopping sequence. The 

device that initiates the connection (paging) becomes a Master, 

and the paged device becomes a Slave. Bluetooth-enabled sensors 

operate either in master mode or slave mode depending on the 

targeted use cases. 

3.1.2.1 Master Mode 
Typically, a device that collects a small amount of data 

sporadically or on an on-demand basis operates in the master 

mode enabling simpler and more efficient power management. A 

good example is a blood pressure (BP) monitor device.  A BP 

monitor takes a measurement either when the user presses a 

button or automatically at regular intervals. By operating in the 

master mode, the device can save power by keeping the Bluetooth 

hardware powered off and only power it on to upload data to a 

host after a measurement has been taken. Note that in this case, 

the sensor controls the timing for connection assuming that either 

1) the host platform is always ready to establish the 

communication link for the data upload, or 2) the sensor platform 

has enough memory to store the collected data until the host is 

available for upload. Note that in the former case, the host 

platform must support the Bluetooth Scatternet feature to 

communicate with more than one master sensor simultaneously. 

3.1.2.2 Slave Mode 
Data streaming devices such as accelerometers and Pulse-

Oximetry (SpO2) sensors often operate in slave mode while 

delegating timing and control of connections to the host platform.  

This is done for several reasons: 

Real-time requirement: The host software must be ready to 

receive data from the sensor in real-time when data collection 

starts.  An example is a host application displaying EKG or SpO2 

photoplethysmographic (PPG) waveform in real-time. As a result, 

it makes sense for the host to initiate and control the connection to 

the device. 

Storage: Due to higher data rate and continuous data collection 

processes, resource-limited sensor platforms often do not have 

enough memory to store the collected data for an extended 

                                                                 

2 This workaround is known to work on Microsoft Windows XP. 
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amount of time. These sensors often remain dormant (not 

collecting data) until they are activated by the host. 

Sensor configuration: Streaming devices such as EKG sensors 

often support multiple operation modes and need to be configured 

with specific parameters before data can be collected. Such 

parameters include sampling rate, the number of analog-to-digital 

(ADC) channels and report frequency. The setting of these 

parameters often has UI or data analysis implications and should 

be configured by the host software during start-up. 

3.1.2.3 Supporting Mixed Mode 
Context-aware applications often need to support multiple sensors 

operating in either mode (master or slave) at the same time. The 

Bluetooth standard supports mixed mode operations on a device 

through Scatternet and Master-Slave-Switch [1]. However, 

depending on the chipset used and HCI firmware version, not all 

Bluetooth hardware supports Scatternet and role switching 

features. The issue is mainly due to ambiguities in Bluetooth 

version 1.0b, as well as incompatibility between 1.0b and later 

versions [15]. While most PC and handheld devices use hardware 

that support Bluetooth versions 1.1 or later, a good portion of the 

medical sensors in the market today still use legacy Bluetooth 

chipsets. This creates a challenge on the host to support both 

master and slave sensors at the same time. Until all sensor 

manufacturers comply with the latest standards, application 

developers will require workarounds such as using only Slave 

sensors or working with sensor manufacturers to modify their 

firmware to operate their sensors in the slave mode. 

3.1.2.4 Power Management 
Bluetooth supports multiple low power modes, i.e., Standby, 

Park, Hold and Sniff mode, but only in the connected state.  

Before a device joins a piconet, the most viable low power mode 

is to turn off the radio transceiver.  For devices that operate in the 

master mode, turning off the radio works well as they control 

when connections are made. However, devices that operate in the 

slave mode wait for connection from a master (e.g., the host 

platform) and must keep the radio on until they are paged and 

connection is established.  For battery-powered sensors, keeping 

the radio powered on could drain the battery quickly. A Bluetooth 

device that is discoverable must regularly perform an inquiry scan 

before it joins a piconet, and inquiry scan is one of the most 

power consuming operations. It is therefore common for a slave 

sensor to turn off inquiry scan and become non-discoverable once 

it has been paired (or bonded) with another device, and would 

require an out-of-band method (Section 3.1.1.1) to allow a new 

host to bond and connect to the sensor without inquiry. 

3.1.3 Auto Reconnect 
Auto-reconnect minimizes data loss, particularly for sensors that 

send streaming data such as 3-axis accelerometer and EKG 

waveforms. A device may disconnect or be unable to send data 

due to various reasons such as poor signal quality caused by body 

absorption, RF interference, going out of range, etc., or simply 

because the device runs out of battery or the user turns off the 

device. The Bluetooth specification defines a parameter called the 

Link Supervision Timeout (LST) that controls the amount of time 

an active connection is monitored for missing packets. If no 

baseband packets are received for this duration (default is 20 

seconds), the link is disconnected. However, there are sensors that 

will stop sending data if they lose connectivity to the host more 

than a few seconds because of limited buffer space or other 

resources. When this happens, the aggregator has to disconnect 

from the sensor and establish a new connection. Packet loss due to 

reconnection latencies can significantly impact data analysis 

especially in critical care applications that use data from sensors 

such as EKG.  

The setting of the Link Supervision Timeout should be carefully 

chosen. If the value is too large, the Bluetooth stack may take a 

long time before notifying the application that the link has been 

disconnected, where disconnecting and reconnecting sooner 

would have reestablished the data streams. If the value is too 

small, the Bluetooth stack may disconnect from the device 

prematurely, resulting in unnecessary data loss.  

The Health Device Profile [2] that uses the MCAP [3] protocol 

solves this problem through a reconnect feature that allows an 

application to quickly reestablish disconnected channels without 

the overhead associated with a new connection. The application 

can set the Link Supervision Timeout to a small value, for rapid 

notification, and use the reconnect feature to quickly reestablish 

the connection. To enable this feature, the device has to support 

the new standard and maintain enough state to allow 

reconnection.  However, this feature may not work across sensor 

reset, e.g., for battery replacement. Section 5.2 presents a 

comparative analysis of the overheads associated with 

disconnecting and connecting versus using the reconnect feature. 

3.1.4 Data Time Stamping 
Accurate time-stamping of sensor data is crucial in context aware 

applications not only for displaying data, e.g., showing waveform 

or trends, but more importantly to correlate time-sequence data 

from different sensors for inference and/or fusion purposes. 

Sensor devices today often do not have a real-time clock to keep 

track of wall clock time. Even if they do, clocks drift over time 

(differently on different devices) and the time differences between 

different devices makes correlating time-sequence data extremely 

difficult depending on the drift ranges and accuracy needed. In 

order to use a common time-reference across different data 

streams, most applications today timestamp data packets only after 

they arrive on the host platform.  However, time-stamping data on 

the host has limited accuracy due to a number of factors such as 

transmission latencies due to retransmissions and processing 

delays due to system load. In our application, the time jitters 

introduced by these variables on a relatively powerful PC 

platform (ThinkPad T61) can skew the data timestamps enough to 

completely distort waveforms such as the PPG waveform from a 

pulse-ox sensor, as shown in Section 5.1. As a result, accurate 

time-stamping of sensor data should be done at the point of 

acquisition on the sensor device. 

To address the aforementioned problems, it is necessary to time 

synchronize all Bluetooth connected devices within a piconet. 

Today, a number of time synchronization protocols are available 

[16] for sensor networks that can achieve micro-second accuracy. 

However, those protocols often are hardware dependent and/or 

topology dependent. Given the diversity of the sensor platforms in 

context aware applications, fine-tuning those protocols on each 

sensor platform is a significant challenge. On the other hand, each 

Bluetooth enabled device already has a synchronized clock in the 

Bluetooth implementation. As previously mentioned, Bluetooth 

slaves within a piconet synchronize to the Master in real time with 

high accuracy. It is thus logical to leverage the Bluetooth clock 

for data time-stamping purposes. Similar approaches have been 

proposed in [28] [29]. It should be noted that the Bluetooth Clock 
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has no relation to the time of day but just provides the “heart 

beat” of the Bluetooth transceiver [1]. A higher layer protocol is 

needed to track and map the “heart beat” to time of day. The 

recently approved MCAP [3] defines a Clock Synchronization 

Protocol (CSP) exactly for this purpose. While the CSP is 

optional in MCAP, and products that support MCAP have yet to 

be developed, we recommend sensor manufacturers include CSP 

for all sensors that generate time sensitive data. 

3.2 Sensor Data Standards 
As mentioned in Section 2.1, currently there are no commonly 

adopted standards for sensor data protocols and sensor data 

format. Each sensor manufacturer defines a set of proprietary 

protocols and data format, and therefore proprietary drivers are 

needed on the host to format and interpret the data from a specific 

sensor. Most OTS sensor products today are bundled with demo 

software to communicate with the sensor and interpret the data.  

However, it is very difficult and often impossible to reuse the 

demo code for integrating these sensors with a custom 

application. Developers often resort to writing custom code for 

each supported sensor device according to the specifications 

supplied by the sensor manufacturer. The redundant effort in 

debugging and unit testing the custom code unavoidably incurs 

additional development time and cost. 

To facilitate genuine interoperability between data sources 

(sensor) and recipients of device application data (host), there is a 

need for a standard that defines a base data protocol, command set 

and device data formats for a diverse set of devices needed in 

context-aware applications. Such a standard could minimize the 

need for proprietary drivers and facilitate code reuse from 

different vendors. The IEEE 11073-20601 Data Exchange 

Protocol [17] is a standard under development for this purpose.  It 

attempts to solve the issues mentioned above, in the medical 

space. The standard defines a common framework for making an 

abstract model of personal health data available in transport 

independent transfer syntax to support logical connections 

between medical devices. However, the standard focuses only on 

medical usages and is still only a draft, unavailable to anyone 

outside of the working group.  

We present one possible approach that can be applied to context 

aware systems in general. We address the data format issues 

(Section 3.2.2) by creating template objects that provide a set of 

common data representations of sensor data for various classes of 

data types, e.g., EKG waveform type, SpO2 scalar type, 3-Axis 

acceleration type, etc. We also abstract common sensor 

management features, e.g., connect/disconnect, sensor errors and 

system resources representations, etc., through a set of well 

defined interfaces that encapsulates device specific protocols in a 

thin layer of middleware. The next subsection focuses on enabling 

a common sensor management framework that is independent of 

sensor hardware. 

3.2.1 Metadata and Sensor Management 
As the diversity and the number of sensors increases, managing, 

maintaining and troubleshooting sensor related problems could be 

a daunting task for the average user. It is reasonable to see the 

high value of generic sensor management software modules that 

can manage sensors without requiring them to interpret 

proprietary sensor data. Today, device status is typically 

embedded in sensor data packets as device specific status bits. 

System resource information such as battery level and memory 

usage as well as generic errors such as wire disconnected, are 

common among most, if not all of the sensor platforms. It is thus 

beneficial to abstract out the common elements of device 

information and formalize them into device independent metadata 

that can be interpreted by generic sensor management software 

modules.  

The metadata idea can be further generalized to eventually 

support a plug-n-play sensor framework. Analogous to USB 

devices and usages, when the user connects to a new sensor, the 

host management software would be able to query and acquire the 

device information, vendor information, device classes, device 

data types, etc. using standardized metadata, and load the 

corresponding sensor driver automatically, perhaps even 

download the required driver from the Internet. Note that, the 

newly adopted HDP coupled with the MCAP and the drafted 

IEEE 11073-20601 Data Exchange Protocol promises a similar 

solution for medical applications. 

3.2.2 Sensor Data 
All the sensors in the market today use proprietary data formats.  

Application developers have to develop custom code to parse data 

streams in the proprietary formats. Some of the proprietary data 

formats used by sensors today lack sufficient support to reliably 

detect missing or corrupted packets through mechanisms such as 

sequence numbers or CRC. 

3.2.3 Common Data Standards 
The lack of common standards to represent sensor data makes 

sensor integration a difficult task. The problem can be addressed 

at two levels. First, at the sensor level, a standard needs to be 

adopted to represent the packets in the raw data streams from the 

sensors. This will enable developers to implement sensor modules 

that can acquire data from any sensor irrespective of the type of 

the sensor or the manufacturer. Second, at the application level, 

there should be a standard way of representing data that is 

common to all sensors that belong to a specific class. E.g., all BP 

sensors at the very least send the systolic and diastolic readings. 

Applications often do not care about the raw data streams but only 

the context that the data actually represents. A common data 

representation separates sensing context from sensors 

(hardware/vendor) and supports application logic that is hardware 

independent. If the raw data from each sensor were converted to 

the standards-based format for the corresponding sensor class, 

applications can be easily extended to handle sensors without any 

additional code. 

4. INTEGRATION CHALLENGES 
This section describes the software issues and challenges that 

developers are likely to encounter when dealing with Bluetooth 

stacks, Bluetooth libraries and 3rd party Bluetooth SDKs. 

4.1 Bluetooth Stack/Library 
Bluetooth stacks are tightly coupled with the Bluetooth chipset 

integrated on the host platform. Depending on the chipset, 

switching between stacks is sometimes possible though it is not 

easy. 

4.1.1 Support for Hands-free Headsets 
The stacks differ in the features they support. The WIDCOMM 

stack from Broadcom supports more profiles than the Microsoft 

(MS) stack (e.g., the MS stack does not support the Hands-Free 

profile under Windows XP, while the WIDCOMM stack does). 

Switching from the MS stack to the WIDCOMM stack is possible 

only if the WIDCOMM stack supports the Bluetooth chipset on 
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the host platform, otherwise the Bluetooth hardware itself may 

need to be replaced. There is also a limitation in the number of 

Bluetooth headsets that the stacks support due to the number of 

synchronous channels that are supported by the Bluetooth 

standard. 

4.1.2 Bluetooth Libraries 
Bluetooth libraries are supplied by the Bluetooth stack vendor and 

are typically available as free downloads. They provide functions 

to access the vendor’s Bluetooth stack. The interface exposed by 

the library is proprietary and each vendor’s library will only work 

with the Bluetooth stack from that vendor. An application that is 

linked to a specific vendor’s Bluetooth library will not work on a 

host platform that has a Bluetooth stack from another vendor. To 

make the application portable across vendor libraries, a developer 

would have to implement a software abstraction layer above the 

vendor libraries that insulates the application from the vendor-

specific interfaces. These factors put an additional burden on the 

developer, increasing development costs and time-to-market. 

Commercially available SDKs partially solve this problem as 

discussed in the next section. 

4.2 Bluetooth SDK Libraries 
Bluetooth SDK libraries provide a layer of abstraction above the 

Bluetooth vendor libraries and make it easy to develop 

applications that are portable across Bluetooth stacks from 

different vendors. Several commercial Bluetooth SDKs are 

available. Table 2 provides a feature matrix for common 

Bluetooth SDKs. 

4.2.1 Problems with SDK Libraries 
Though SDKs ease the burden on the developer, they have 

inherent problems. The interfaces exposed by SDKs are 

proprietary and not compatible with each other.  This is due to a 

lack of standard interface definitions.  SDKs typically support 

specific Bluetooth stacks (e.g., Microsoft and WIDCOMM), or 

only provide features common to all supported stacks.  The 

richness of features available in the individual Bluetooth stacks is 

thus lost.  Since SDKs are not supported by hardware vendors, 

bugs such as data loss are common when communicating with 

specific devices. This may be due to internal buffering in the 

SDKs.  There are additional licensing cost associated with SDK’s 

as very few of them of them are free. 

Applications should be designed with the flexibility to allow 

switching SDKs if necessary.  A switch may be necessary due to 

various reasons such as new requirements that are not supported 

by the SDK that the application is currently using, or lack of 

support in the SDK for the Bluetooth stack on the target platform.  

A standard application-level interface for Bluetooth SDKs will 

allow developers to easily migrate applications across SDKs.  The 

standard could include a core set of commonly used functions to 

communicate with sensors such as connect, pair, read and write 

data etc, and allow for extensions to support features unique to 

individual sensors.  A similar approach has been used in the 

Wireless Extensions for Linux [20] which extends the core 

networking interface to wireless networking devices. The Wireless 

Extensions allows the developer to communicate to diverse 

networking devices in a standard and uniform way. 

5. EXPERIMENTAL EVALUATION 

5.1 Data Time-stamping 
To understand the performance of time-stamping data on the host 

platform (see Section 3.1.4), we examine the impact of time jitter 

introduced by the host through experimentations. A PulseOx 

sensor (Nonin 4100 [18]) generates data at 75 samples/sec and 

sends a data frame consist of 25 samples every 333 ms to a PC 

(2GHz dual-core CPU, 2GB RAM, Windows XP). The PC 

software time-stamps the data frame upon receiving it from the 

Bluetooth stack. We obtain the timestamp skew by calculating the 

difference between the expected timestamp of a data frame 

estimated based on the sampling rate and the receive time of the 

first data frame, and the timestamp generated by the host software.  

Figure 2 presents the probability distribution of the timestamp 

skews measured on a host with the WIDCOMM stack and 

Microsoft stack. We collected data for several 15-minute runs 

performed at different times with the same setup. For space 

considerations, only data from one run is shown in the figure 

(each run resulted in a similar distribution). In the plot, negative 

values indicate the time lag of the timestamps in milliseconds, 

while positive values indicate that the timestamps are getting 

ahead due to the time jitters in operations such as buffering and 

data transmissions. As shown in the figure, a large portion of the 

timestamping errors, i.e., 63% for MS stack, 90% for WIDCOMM 

stack, are time lags or delay. The time skews range from -1600ms 

to 2000ms. The WIDCOMM skew is heavily distributed around -

800ms while MS skews are more uniformly distributed around -

200ms. It is interesting to note that different Bluetooth stacks 

impact timestamp performance differently. Overall, in our setup, 

the MS stack introduces less time jitter than the WIDCOMM 

stack. As shown in the figure, more than 60% of the timestamp 

skews are less than 400ms on MS stack while on WIDCOMM 

more than 80% of the timestamp skews are larger than 400ms. 

Note that MS Windows is not a real-time OS, hence a large part 

of the time jitters can be attributed to the OS scheduling and the 

interactions between the OS and the Bluetooth stacks. Other 

factors such as sensor hardware specification, data encoding 

scheme and transmission rates also impact the time-stamping 

performance on various levels based on our experiments with 

different type of streaming devices. The result highlights the need 

to support accurate time-stamping on the device that generates the 

 

Table 2: Feature Matrix for Bluetooth SDKs 
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data to eliminate the latencies introduced at different layers of the 

system. 

5.2 Reconnection and Link Supervision Timeout 
A number of context aware applications interact with on-body 

sensors. Prior research has shown that on-body sensor 

communication is highly sensitive and dependent on the relative 

positions of the sensors and aggregator [19]. Sensors frequently 

lose connectivity to the aggregator, and the disconnect time 

periods may vary from under a second to minutes. 

During periods of intermittent connectivity, the application may 

need to disconnect and reconnect to the sensors to restore data 

streaming. As discussed in Section 3.1.3, the Link Supervision 

Timeout (LST) defines the length of time the Bluetooth stack 

monitors a link for data before disconnecting the sensor. 

Overheads due to disconnect and reconnect latencies can be 

reduced by choosing optimal values for the LST. Figure 3 plots 

the overhead as a function of the LST. The overhead is calculated 

by taking the ratio between the data lost due to the 

disconnect/reconnect latencies and the net lost during the link 

vulnerable period. Note that the latencies include processing delay 

in OS, application and the Bluetooth stack. In our application, the 

averages disconnect/connect delay was measured to be ~1.5 

seconds each. Note that the overhead, as we define it, is 

independent of the sampling frequency of the sensor. To quickly 

detect disconnection, a smaller LST is preferable. However, as 

shown in Figure 3, the overhead for LST in the sub-second range 

is significantly larger than the rest of the values. Specifically, the 

overhead levels off at around 3.5 seconds, which marks an 

optimal LST that balance the tradeoff between overhead and 

quick disconnection detection. Figure 3 also shows the overhead 

assuming the MCAP reconnect feature is supported. Assuming the 

reconnect delay in MCAP is 100 milliseconds, the plot shows that 

the data loss can be reduced significantly and the LST can be as 

low as ~500 milliseconds. 

6. CONCLUSION 
Emerging context aware applications often utilize a constellation 

of OTS sensors for making sense of the environment and situation 

of the user. As the diversity and number of sensors increases, 

system designer and developer are facing a multitude level of 

challenges in integrating these sensors into their solution. Our 

contributions in this paper are three-fold: 

1) We investigate and report the challenges and solutions of 

using the existing Bluetooth standard and implementations to 

support rapid development of classes of context aware 

applications. 

2) We provide useful guidelines and experimental evaluation 

results to system designers for developing future context 

aware applications.  

3) We also recommend specific modification of Bluetooth 

standards and implementations, including calls for sensor 

manufacturers to revise current practices in cases where 

existing standard features have not been adopted. 
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