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ABSTRACT
The optimal allocation of measurements for activity-level de-
tection in a wireless body area network (WBAN) for health-
monitoring applications is considered. The WBAN with
heterogeneous sensors is deployed in a simple star topol-
ogy with the fusion center receiving a fixed number of mea-
surements from the sensors; the number of measurements
allocated to each sensor is optimized to minimize the prob-
ability of detection error at the fusion center. An analysis
of the two-sensor case with binary hypotheses is presented.
Since the number of measurements is an integer, an exhaus-
tive search (grid search) is traditionally employed to de-
termine the optimal allocation of measurements. However,
such a search is computationally expensive. To this end, an
alternate continuous-valued vector optimization is derived
which yields approximately optimal allocations which can
be found with lower complexity. Numerical case studies
based on experimental data for different key activity-states
are presented. It is observed that the Kullback-Leibler (KL)
distances between the distributions associated with the hy-
potheses dominate the optimal allocation of measurements.

1. INTRODUCTION
Wearable health monitoring systems coupled with wireless

communications are the bedrock of an emerging class of sen-
sor networks: wireless body area networks (WBANs). The
objectives of such WBANs are manifold from diet monitor-
ing [18], activity detection [4, 3], and health crisis support
[9]. We focus on the KNOWME network [2], which supports
the development of assessments and interventions for pedi-
atric obesity applications. Pediatric obesity has emerged as
a major national and international health crisis: nationally
collected data from 2003-2006 show 11.3% of adolescents
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Figure 1: The Nokia N95 cellphone fusion center
(A), and the Alive Technologies oximeter sensor (B)
and ECG sensor (C).

aged 12–19 years could be designated by some measures as
obese, while a further 16% would be classified as overweight
and 32% considered at risk for being overweight [16]. In or-
der to truly understand and reverse childhood obesity, we
need a multimodal system that will track stress levels, phys-
ical activity levels, blood glucose levels and other vital signs
simultaneously, as well as anchor these levels to context such
as time of day and geographical location. The KNOWME
network is a first step towards such a system.

A key aspect of the KNOWME network is the unified
design and evaluation of multimodal sensing and interpreta-
tion for automatically recognizing, predicting and reasoning
about human physical activity and socio-cognitive behavior
states. On the one hand, the KNOWME network meets the
needs of traditional observational research practices in the
obesity and metabolic health domain (based on, and vali-
dated through, careful expert human coding of data) while
on the other, it enables new analysis capabilities such as
providing information on user emotional state in conjunc-
tion with physical activity and energy expenditure.

The KNOWME network deploys heterogeneous sensors
which communicate their measurements via Bluetooth to a
Nokia N95 cellphone, shown in Figure 1. The adoption of
the Bluetooth standard for communication results in a“serve
as available” protocol, i.e. every measurement is collected
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from each of the sensors. While this is beneficial for signal
processing and activity-level detection at the fusion center,
it results in particularly high energy consumption. For in-
stance, the Nokia N95 cellphone can support more than ten
hours of telephone conversations on a fully charged battery,
but empirical results show that the battery is drained in un-
der six hours if the GPS receiver is turned on [23]. Similarly,
the battery drains very quickly if Bluetooth functionality is
constantly left on.

Our pilot study [2] was configured to have each sensor
transmit an equal number of measurements to the fusion
center in each time period via the Bluetooth protocol. The
study suggested that some sensors were more effective in
distinguishing between certain activities than other sensors.
For example, low-level activities (lying down, sitting and
standing) were better distinguished between using the elec-
trocardiograph (ECG) sensor, while the accelerometer was
more effective when distinguishing between high-level ac-
tivities (walking and running). In this work, we exploit
the dependency of the detection performance on the specific
activity-levels being considered, and propose an alternate al-
location of the measurements to each of the sensors in order
to develop a more energy-efficient detection mechanism.

The goal of this paper is to develop intuition for what the
optimal allocation of measurements between heterogeneous
sensors should be to minimize the probability of detection
error at the fusion center. Achieving a better performance
via optimal time-resource allocation then suggests that sen-
sors that need to communicate fewer measurements, or no
measurements at all, can turn their Bluetooth off, thus re-
sulting in a more energy-efficient health-monitoring applica-
tion. In the current work, we develop preliminary results for
the binary hypothesis testing problem with two sensors.

The contribution of this work is to describe the optimal
allocation of measurements between two sensors for the bi-
nary hypothesis testing problem in order to minimize the
probability of detection error. Specifically, an approximately
optimal continuous-valued solution, which does not require
a high-complexity integer grid search, is derived. Not re-
quiring a grid search enables the real-time deployment of
the allocation scheme, since the optimal allocation of mea-
surements can be computed faster at the fusion center. This
is particularly important as the number of sensors and hy-
potheses considered increases. The extension to multiple
hypotheses is outlined, and we are currently developing an
energy-efficient algorithm using this optimal allocation of
measurements.

The remainder of this paper is organized as follows. Prior
relevant work in activity-level detection and energy-efficient
algorithms in WBANs, and its relationship to our work, is
presented in Section 2. In Section 3, we describe the specific
WBAN employed for activity-level detection, and the cor-
responding signal model used to develop our optimal time-
resource allocation. In Section 4, we outline the framework
for minimizing the probability of detection error, and de-
rive an approximately optimal solution. Numerical results
and case studies based on experimental data are presented
in Section 5. Finally, we draw conclusions and discuss our
future work direction in Section 6.

2. RELATED WORK
In recent years, there have been several projects that have

investigated activity-level detection in a variety of frame-

works. Much of the work appears to center on accelerom-
eter data alone (e.g. [4, 11, 13]), with some systems using
many accelerometer packages. These studies employ both
accelerometer data and the relative positions of the sensors
to discriminate between specific high-level and low-level ac-
tivities. The work in [4] develops a Hidden Markov Model
based identification system that uses accelerometer measure-
ments to detect high-level activities, and the relative prox-
imity between accelerometers to distinguish between low-
level activities. Multi-sensor systems have also been imple-
mented and deployed for activity-level detection, context-
aware sensing and specific health-monitoring applications:
the work of Gao et al [9] is tailored for emergency response
and triage situations, while Dabiri et al [7] have developed
a lightweight embedded system that is primarily used for
patient monitoring. The system developed by Jovanov et al
[12] is used to assist physical rehabilitation, and Consolvo et
al’s UbiFit system [5] is designed to promote physical activ-
ity and an active lifestyle. In these works, the emphasis is
on the higher layer communication network processing and
hardware design. In contrast, our work explicitly focuses
on developing the statistical signal processing techniques re-
quired for activity-level detection, while also creating an im-
plementation scheme. This scheme was tested in our pilot
study [2], and is currently being further developed.

A variety of context-aware sensing systems and activity-
level detection schemes have been designed using multiple
accelerometers and heterogeneous sensors. However, the
long-term deployment of some systems is constrained by the
battery life of the individual sensors or the fusion center.
The problem becomes more severe when Bluetooth, GPS
measurements, and similar high-energy requirement features
and applications are part of the sensor network.

Energy-saving strategies, well-studied and implemented in
the context of traditional sensor and mobile networks [20,
14], have also been incorporated into WBANs for activity-
level detection. For example, the goal of Benbasat et al [3] is
to determine a sampling scheme (with respect to frequency
of sampling and sleeping/waking cycles) for multiple sensors
to minimize power consumption. Our approach is different
in that the energy-efficiency of the system is a result of op-
timized performance. In the next section, we describe our
signal model and develop the optimal time-resource alloca-
tion problem.

3. PROBLEM FORMULATION
The current study employs an Alive Technologies [1] elec-

trocardiograph (ECG). The ECG is a single channel device
with 8 bit resolution and a peak sampling rate of 300 sam-
ples/second. This sensor also incorporates an accelerom-
eter that provides three-dimensional acceleration measure-
ments over the single channel. The pulse-oximeter, also from
Alive, provides non-invasive monitoring of oxygen saturation
(SpO2) and pulse rate. The sensors are deployed in a simple
star topology, as shown in Figure 1: each sensor sends its
measurements directly to the cellphone fusion center.

Measurements of certain biometrics, e.g. heart-rate and
pulse, are transmitted with some fixed transmission power
to the fusion center via Bluetooth. Both the sensing and
the communication of the measurements are assumed to be
noisy given the measurement systems and wireless channels,
respectively. The features extracted from the biometric sig-
nals are modeled as correlated Gaussian random variables,
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Figure 2: Accelerometer time-series for three hy-
potheses: Sitting, Walking and Running.

and thus we propose the following signal model for the mea-
surements received by the fusion center:

yi =
√

Pi(θ + zi) + ni, i = 1, . . . , Nk (1)

for the k-th sensor, where Pi represents the transmission
power of the i-th measurement, and zi and ni represent
the independent and identically distributed (iid) zero-mean
Gaussian measurement and channel noises, respectively. For
a general feature A, θ is a normally distributed random vari-
able specified as

θj = µjA + wi (2)

for hypothesis Hj . The noise term wi is modeled using an
autoregressive (AR) model of the first order, denoted AR(1),
i.e.,

wi = ϕwi−1 + ε , i = 2, . . . , Nk, (3)

for the k-th sensor, which has been allocated Nk measure-
ments, and ε is zero-mean Gaussian with variance σ2

jA. The
AR(1) process models the temporal dependency of the bio-
metric signals. To simplify notation, we omit the hypoth-
esis subscript j when expressions and definitions are ap-
plied to both hypotheses. We denote the number of mea-
surements sent by the two sensors as N1 and N2, respec-
tively, and impose a constraint of N total measurements,
i.e. N1 + N2 = N , for a specific time-period.

For example, consider a single set of sample waveforms,
as in Figure 2, which show the accelerometer signal received
at the fusion center for the Sitting, Walking and Running
hypotheses for a single subject. The variance of the time-
series over 1-second non-overlapping segments is the feature
extracted from the accelerometer data. This feature is mod-
eled, as described in our signal model, as a Gaussian random
variable; in this particular case we find

Sitting : µS = 0.18, σ2
S = 0.02,

Walking : µW = 27.2, σ2
W = 1.94,

Running : µR = 33.8, σ2
R = 0.76,

and the AR(1) parameter is φ = 0.24. The signals from each
of the sensors are processed in a similar manner for each of
the required features. The means and variances obtained

by modeling the features as Gaussian are subsequently used
to determine the optimal allocation of measurements as de-
scribed in Section 5.

Given our assumptions, the binary hypothesis test using
the model in (1) is simply the generalized Gaussian problem,
which is specified as

H0 : Y ∼ N(m0,Σ0)
H1 : Y ∼ N(m1,Σ1)

(4)

where mi,Σi, i = 0, 1 are the mean vectors and covariance
matrices of the observations under the two hypotheses.

We initially assume that measurements from different sen-
sors are independent of each other for two activity-levels.
Thus, for two features A and B from these sensors, the mean
vector and covariance matrix of the observations for hypoth-
esis Hj are of the form

mj =

[

µjA

µjB

]

and Σj =

[

Σj(A) 0
0 Σj(B)

]

, (5)

respectively. Note that µjA and µjB are N1 × 1 and N2 × 1
vectors, and Σj(A) and Σj(B) are N1 × N1 and N2 × N2

matrices, respectively. Given the signal models in (1) and
(3) for a particular sensor with feature A, the i-th element
of mean vector is

√
PiµA, and the elements of covariance

matrix are specified as

Σii(A) = Pi
σ2

A

1 − ϕ2
+ Piσ

2
z + σ2

n (6)

Σij(A) =
√

PiPj
σ2

A

1 − ϕ2
ϕ|i−j|, (7)

where φ is the AR(1) model parameter which incorporates
the temporal dependency of the biometric signal. The co-
variance block Σ(A), described in (6) and (7), is a Toeplitz
matrix which, for equal transmission powers, can be written
as

Σ(A) =
σ2

A

1 − ϕ2
T + (σ2

z + σ2
n)I (8)

where T is a Ni × Ni Toeplitz matrix of the form

T =

















1 ϕ · · · ϕNi−2 ϕNi−1

ϕ 1 ϕ ϕNi−2

... ϕ 1
. . .

...

ϕNi−2
. . .

. . . ϕ
ϕNi−1 ϕNi−2 · · · ϕ 1

















. (9)

This implies the covariance matrices Σ0 and Σ1 are block-
Toeplitz. In the next section, we derive a bound for the
probability of error which we optimize over the measure-
ments from each of the sensors. Furthermore, a closed-form
approximately optimal solution for a simplified case is de-
veloped.

4. MINIMIZING ERROR PROBABILITY
The probability of detection error, also known as classifi-

cation error, i.e. deciding H0 when H1 is actually true or
vice versa, cannot be meaningfully simplified for the gen-
eral Gaussian hypothesis testing problem in (4) [22]. Since
a purely numerical analysis has limited value, we attempt to
the Chernoff upper bound for the probability of error, which
will then allow us to better investigate the optimal allocation
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of measurements between the sensors. We assume that the
hypotheses are equally likely and the error costs are equal,
and thus we can bound the probability of error for the above
hypothesis testing problem as [8]

P(ε) ≤ e−k(βm), (10)

where

k(β) = − ln

∫ ∞

−∞

[p(Y|H1)]
β [p(Y|H0)]

1−β dY, (11)

and 0 ≤ βm ≤ 1 satisfies k̇(βm) = 0. For the hypotheses in
(4), we compute

k(β) =
β(1 − β)

2
(m0 − m1)

T Λ−1(m0 −m1)

+
1

2
ln

|Λ|
|Σ1|β |Σ0|1−β

, (12)

where

Λ = βΣ1 + (1 − β)Σ0 . (13)

Thus, the optimization problem can be expressed as

min
N1,N2

P(ε) such that N1 + N2 = N . (14)

The optimal allocation of measurements between the two
sensors that minimizes the probability of error can be ob-
tained via a grid search over the total number of observations
since the total number of measurements is an integer, and
the structure of the covariance matrix changes for different
allocations of measurements between the two sensors. How-
ever, this exhaustive search is computationally expensive,
and increasingly so as the number of sensors and hypothe-
ses increases. Therefore, we derive a closed-form analysis
of a simplified case which yields an approximately optimal
allocation of measurements between the individual sensors,
while remaining less computationally expensive.

To simplify the analysis, we assume equal transmission
powers for each of the measurements, and the sensor covari-
ance matrix in this case is given by (8). Note that for the
block-diagonal structure of Σj in (5), we have

detΣj = detΣj(A) · detΣj(B) (15)

and

Σ−1
j =

[

Σ−1
j (A) 0

0 Σ−1
j (B)

]

. (16)

In order to derive an analytic expression for the probability
of error, we further simplify the Chernoff bound by con-
sidering the case in (12) where k = 1/2, which yields the
Bhattacharyya bound that is rewritten as

k

(

1

2

)

=
1

8
(m0 − m1)

T

[

Σ0 + Σ1

2

]−1

(m0 − m1)

+
1

2
ln

1
√

|Σ1||Σ0|

∣

∣

∣

∣

Σ0 + Σ1

2

∣

∣

∣

∣

(17)

where (Σ0+Σ1)/2 is block-diagonal as in (5). Although the
Chernoff bound is tighter than the Bhattacharyya bound, it
is only marginally so since the optimal value βm of the Cher-
noff bound does not normally lie at the ends of the interval
[0, 1]. On the other hand, this simplification significantly
reduces the complexity of the derivation.

We first derive results for a single block of the covariance
matrix Σ(A), and then consider the two-sensor case to sim-
plify the expression in (17). To evaluate the determinant
terms in (17), we use the Toeplitz structure from (8), and
rewrite the covariance matrix as follows [10]:

Σ(A) = ΣD(A) + Σoff(A) (18)

= αI +
σ2

A

1 − φ2
(T − I), (19)

where α = σ2
A/(1 − φ2) + σ2

z + σ2
n, and T is as defined in

(9). Given this expansion, the determinant of the covariance
matrix can be computed using

detΣ = detΣD · det
(

I + Σ−1
D Σoff

)

. (20)

We denote A = Σ−1
D Σoff , and we now evaluate

det (I + A) = exp (tr (log (I + A))) (21)

= exp

(

tr

(

A − A2

2
+

A3

3
− · · ·

))

. (22)

From the form in (20), and using the geometric progression

n
∑

k=0

krk = r

[

1 − rn+1

(1 − r)2
− (n + 1)rn

1 − r

]

for r 6= 1 , (23)

we evaluate the single feature term |Σ(A)| as

detΣ(A) = αNke−C[−1+φ2Nk−Nk(1−φ−2)], (24)

where

C =
1

α2

[

σ2
A

1 − φ2

]2
φ−2

(1 − φ−2)2
.

In order to evaluate the inverse term in (17), we replace
the Toeplitz matrices with their associated circulant matri-
ces, based on the well-known fact that Toeplitz matrices
asymptotically converge to their associated circulant matri-
ces in the weak sense [21, 19] as the number of total mea-
surements gets large.

Note that a block of the covariance matrix with Ni mea-
surements can be rewritten as

Σ(A) =
σ2

A

1 − ϕ2
C + σ2I (25)

where σ2 = σ2
z + σ2

n and C is a Ni × Ni circulant matrix of
the form

C =

















1 ϕ · · · ϕNi−2 ϕNi−1

ϕNi−1 1 ϕ ϕNi−2

... ϕNi−1 1
. . .

...

ϕ2
. . .

. . . ϕ
ϕ ϕ2 · · · ϕNi−1 1

















(26)

where the first row of the approximated covariance matrix
in (25) is identical to that of the original Toeplitz matrix,
described in (6) and (7).

We denote d = m0 − m1 and Σs = (Σ0 + Σ1)/2, and
rewrite (17) as

k

(

1

2

)

=
1

8
dT Σ−1

s d +
1

2
ln

|Σs|
√

|Σ1||Σ0|
(27)

where

Σs(A) =
σ2

0A + σ2
1A

2(1 − ϕ2)
C + σ2I, (28)
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and the inverse matrix Σ−1
s is of the form described in (16),

and d has the form

d =

[

µ0A − µ1A

µ0B − µ1B

]

(29)

which results in (17) being further simplified to

k

(

1

2

)

=
1

2
ln

|Σs(A)||Σs(B)|
√

|Σ1(A)||Σ1(B)||Σ0(A)||Σ0(B)|

+
1

8
(µ0A − µ1A)2

N1
∑

i=1

N1
∑

j=1

[

Σ−1
s (A)

]

ij

+
1

8
(µ0B − µ1B)2

N2
∑

i=1

N2
∑

j=1

[

Σ−1
s (B)

]

ij
. (30)

Notice that instead of explicitly computing Σ−1
s , we simply

need the sum of the elements of the inverse matrix. To this
end, we employ a simple result by Wilansky [24] which states
that if the sum of elements in each row of a square matrix
is c, then the sum of elements in each row of the inverse is
1/c. Note that the sum of the elements of the n-th row of
Σ(A) can be simplified as

M
∑

k=1

Σnk(A) =
σ2

A(1 − ϕM )

(1 − ϕ2)(1 − ϕ)
+ σ2 (31)

using the identity

m
∑

n=0

xn =
1 − xm+1

1 − x
for x 6= 1 . (32)

Thus we can compute

N1
∑

i=1

N1
∑

j=1

[

Σ−1(A)
]

ij
= N1

[

σ2
A(1 − ϕN1)

(1 − ϕ2)(1 − ϕ)
+ σ2

]−1

(33)

for a single block of the covariance matrix Σ(A). We fi-
nally obtain the required continuous-valued objective func-
tion by substituting (24) and (33) into the expression in
(30). The resulting closed-form expression allows us to eval-
uate an approximately optimal allocation of measurements
without performing an exhaustive search. As this computa-
tion executes significantly faster than an exhaustive search,
it makes possible the real-time allocation of measurements
amongst the heterogeneous sensors. We are currently work-
ing on deploying this allocation scheme on the Nokia N95.

4.1 Scalability
Although this paper only considers the binary hypothe-

sis testing problem with two sensors, our results are easily
extended both to incorporate multiple sensors and to dis-
criminate amongst multiple hypotheses. Multiple sensors
are included by expanding the block diagonal structure of
the covariance matrix in (5), wherein the j-th block is of size
Nj × Nj . To incorporate multiple hypotheses, we employ
a union bound and thus consider pairwise Bhattacharyya
bounds, given in (10) for k = 1/2, over all the hypotheses
considered. Thus, the optimization problem for M hypothe-
ses and K sensors can be expressed as

min
N1,...,NK

P (ε) =
∑

i<j

e−kij(1/2) subj to
K
∑

k=1

Nk = N, (34)

where kij(1/2) is the Bhattacharyya bound specified in (17)
for hypotheses Hi and Hj . We note that the complexity
of the continuous-valued vector optimization problem de-
rived above is significantly lower than an optimization via
grid search, especially when the multiple sensor, multiple
hypotheses problem is considered. The optimization prob-
lem for this more general framework is under preparation;
meanwhile, we develop the optimal allocation of measure-
ments using our simplified model for specific case studies
from our pilot study in Section 5.

5. PERFORMANCE ANALYSIS
In this section, we illustrate the utility of optimal mea-

surement allocation using Kullback-Leibler (KL) distances
between the distributions associated with each of the two
hypotheses as a metric. Case studies based on experimental
data collected in our pilot study [2] are also presented.

Recall that the KL divergence between two distributions
P and Q is a measure of the difference between the two
probability distributions. Since the KL divergence is non-
commutative, we use the symmetric Kullback-Leibler (SKL)
distance, which in the case of two Gaussian distributions
N (µP , σ2

P ) and N (µQ, σ2
Q) is defined as [6]

DSKL(P ||Q) =
σ2

P

σ2
Q

+
σ2

Q

σ2
P

+(µP −µQ)2
(

1

σ2
Q

+
1

σ2
P

)

, (35)

to quantify the difference between the distributions associ-
ated with the hypotheses for each of the features/sensors.
Since the magnitude of the symmetric KL distance is pro-
portional to the ability to distinguish between two distribu-
tions, we expect the sensor with the larger SKL distance to
be more significant in discriminating between the binary hy-
potheses. In other words, a larger SKL distance corresponds
to a lower probability of error, as the distributions associ-
ated with the hypotheses are easier to differentiate. Given
means and variances for certain activity-levels, the optimal
allocation of measurements between the accelerometer and
heart monitor is the solution to the continuous-valued vector
optimization derived in the previous section.

5.1 Numerical Simulations
To exemplify minimizing the probability of error via the

optimal allocation of measurements, we consider the follow-
ing simple scenario: given two hypotheses H1 and H0 and
two sensors A and B, we denote N (µ1A, σ2

1A) as the proba-
bility distribution associated with hypothesis H1 for Sensor
A. The distributions associated with Sensor A remain fixed
with SKL= 2.5 for both hypotheses, as do distributions as-
sociated with hypothesis H0 for Sensor B. We increase the
value of µ1B , thus separating the densities associated with
the two hypotheses for Sensor B, in order to investigate the
effect of the SKL on the optimal measurement allocation
scheme.

Consider a case wherein the symmetric KL distance is
incrementally increased from 2.5 to 5.5 for Sensor B. For
different scenarios of distributions associated with the hy-
potheses for the two sensors A and B, we compare the prob-
ability of error for equal allocation of measurements and
the optimized allocation of measurements. Figure 3 plots
the Bhattacharyya bound of the probability of error for the
equal allocation of measurements (dashed lines) versus the
optimal allocation of measurements (solid lines) for both
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Figure 3: Comparing the optimal allocation to equal
allocation as SKL distance between distributions for
Sensor B increases.

N = 20 and N = 40 total measurements. When the SKL
distances for the two sensors are equal, equal allocation of
the measurements between sensors A and B is optimal. As
the SKL distance for sensor B increases while the SKL dis-
tance for sensor A stays constant, the optimal allocation
of measurements is uniformly better than equally allocating
measurements amongst sensors, and the gain due to the op-
timal allocation increases as the SKL distance for sensor B
gets larger. We also find that the probability of error de-
creases as a greater number of measurements are available.

5.2 Case Studies
The case studies presented here are based on experimental

data collected during our pilot study [2]. The initial deploy-
ment during this study was with three graduate and two
undergraduate student test subjects. Subsequently, data
from two child subjects was collected in the Exercise Phys-
iology Lab at the USC Keck School of Medicine. Subjects
were fitted with the Alive Technologies heart-monitor and
accelerometer at the hip, with electrode cables connecting
the heart-monitor unit to standard electrode pads adhered
to the chest. The features extracted from the accelerom-
eter and heart-monitor time-series data were the variance
of the accelerometer time-series (as shown in Figure 2) and
the ECG time-period, respectively. All seven subjects were
asked to perform each of the following activities: Lying,
Sitting, Sitting&Fidgeting, Standing, Standing&Fidgeting,
Walking, and Running. The protocol followed was a modi-
fication of Puyau [17] and McKenzie [15], and required sub-
jects to perform each activity for a 10-minute period, with
6 minutes of rest between activities.

We note that the parameters for the Gaussian distribu-
tions associated with the different sensors for each of the
hypotheses are unique to each of the test subjects, so that
as described earlier, a dedicated training period is required
to estimate these parameters for a subject before the opti-
mal allocations can be determined. Thus, the case study
presented in this section is specific to a particular subject.

In this section, our experimental data is used to obtain
means and variances of the distributions corresponding to
each of the hypotheses for both sensors. For example, the
distributions associated with the Run/Walk and Sit&Fidget
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Figure 4: Densities associated with the Walking and
Running hypotheses for ACC and ECG sensors.
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Figure 5: Densities associated with the Sit&Fidget
and Stand&Fidget hypotheses for ACC and ECG
sensors.

/ Stand&Fidget hypothesis tests for both the ACC and ECG
sensors are plotted in Figures 4 and 5, respectively.

The activities listed above are grouped into the following
activity-levels:

High : Walking, Running

Medium : Sitting&Fidgeting, Standing&Fidgeting

Low : Lying, Sitting, Standing

We consider binary hypothesis tests both within the same
activity-level and spanning across different activity-levels.
The number of measurements allocated to the ACC and
ECG sensors are denoted N1 and N2, respectively. The
continuous-valued objective function, derived in (30), is min-
imized by varying N1 and N2 such that N1 + N2 = N .
The probability of error is computed for all values of N1 ∈
[1, N − 1], and the optimal allocation of measurements cor-
responds to the minimum probability of error.

The bivariate Gaussian classifier, described in [2], is used
to discriminate between any two hypotheses. As the use
of this detector results in a >95% probability of accuracte
detection for both the intra-level and inter-level binary hy-
pothesis tests, we investigate the necessity of each of the
sensors to accurate detection. In other words, if sensor A is
significantly better at discriminating between two hypothe-
ses than sensor B, we expect the probability of error when all
measurements are allocated to the sensor A to be minimal.
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Figure 6: P (ε) for increasing number of measure-
ments allocated to the ACC sensor for Walk vs Run
hypothesis test (◦ denotes equal allocation).

Table 1: Optimal allocation of measurements be-
tween ACC and ECG for binary hypothesis tests.

Hypothesis Test Allocation % Improvement

Run/Walk 100% ACC >95%
Sit&Fidget/

Stand&Fidget
Any allocation <1%

Between low
activities

100% ECG 5%-10%

High/Medium 100% ACC >95%
Medium/Low 100% ACC 60%-80%

High/Low 100% ACC >95%

This means that collecting N measurements from sensor A
results in a probability of error that is equal to that achieved
by collecting N measurements from each of the two sensors.
This implies that fewer total measurements may be collected
to achieve the same performance, thus yielding an energy-
aware application.

Using the continuous-valued vector optimization derived
in the previous section, we compute the probability of error
for all possible measurement allocations for the Run/Walk
hypothesis test. The P (ε) is plotted in Figure 6 as a function
of N1, and we find that the minimum probability of error
is achieved when all measurements are allocated to the ac-
celerometer. The distributions associated with the Run and
Walk hypotheses for each of the sensors, shown in Figure
4, indicate that the SKL for the ACC sensor is significantly
greater than the SKL between the distributions for the ECG
sensor. Thus, given our data, we expect it is optimal to al-
locate all measurements to the accelerometer.

The optimal allocation of measurements is tabulated in
Table 1 for binary hypothesis tests both within activity-
levels (first three rows) and spanning different activity-levels
(last three rows) using the ACC and ECG sensors. For ex-
ample, the “Medium/Low” entry in Table 1 includes the Sit
/ Sit&Fidget and Stand / Stand&Fidget hypothesis tests.
The third column indicates the percentage by which the
probability of error is reduced, in comparison to the equal
allocation scenario, by optimal allocation of measurements.
A >95% improvement, seen when discriminating between

High/Medium and High/Low activities, corresponds to the
probability of error approaching zero when all measurements
are allocated to the accelerometer. Thus, we find that sig-
nificant gains result from employing only the accelerome-
ter when discriminating between two hypotheses if one or
more of the hypotheses is a high-level activity; i.e. collecting
1.1N1 accelerometer measurements is approximately equiva-
lent to collecting N1 ACC and N2 = N1 ECG measurements.
On the other hand, we find that the ECG sensor is better
at distinguishing between low-level activities, but to a lesser
degree. The probability of error when optimally allocating
all measurements to the ECG sensor is reduced by 5%-10%
in comparison to equally allocating measurements between
the accelerometer and the heart monitor. Thus, collecting
1.9N measurements from the ECG sensor is approximately
equivalent to collecting N measurements from each sensor.

In contrast to the above situations, there is no clear opti-
mal allocation of measurements for the Sit&Fidget / Stand&
Fidget hypothesis test. As seen in Figure 5, the SKL dis-
tances for the two sensors are comparable, so that any alloca-
tion of measurements only changes the probability of error
by <1%. Thus any allocation of measurements, including
the equal allocation between the two sensors, is approxi-
mately optimal.

5.3 System Implementation
The optimal allocation of measurements as described in

this paper is only a theoretical model at this time. We are
currently in the process of testing its implementation on
the system described in Section 3 above, which includes the
Nokia N95 as the fusion center that collects measurements
from the other sensors via the Bluetooth protocol.

Our proposed implementation would involve modifying
the software program on the Nokia N95, written in Python
for s60 devices, which is multi-threaded, wherein each thread
is waiting for data from a particular sensor to become avail-
able. Thus, the optimal allocation of measurements is im-
plementable on the Nokia N95 by detecting the activity on-
the-fly on the phone and subsequently disconnecting the sen-
sor whose measurements are not useful for discriminating
between the current set of activities, and re-connecting to
it when the activity-level changes. The optimal allocation
scheme is implementable in real-time on the Nokia N95 be-
cause the continuous-valued vector optimization can execute
faster than an exhaustive search, which would be too pro-
cessor and time-intensive if multiple hypothesis and multiple
sensors with high sampling rates were considered. On the
other hand, activity-level detection could also be done on an
external server in real-time, which could alert the phone as
to which sensors to disconnect. Using this approach would
enable us to implement more sophisticated algorithms for
real-time activity detection.

6. CONCLUSIONS AND FUTURE WORK
Current approaches to activity-level detection encompass

both advanced classification capabilities for use in a variety
of health-monitoring applications and energy-saving strate-
gies, since battery life is often a limiting resource in long-
term deployment of wireless body-area networks. In this
paper, we have shown that an optimal allocation of mea-
surements can achieve better performance when compared
to allocating equally between sensors. Furthermore, the fact
that measurements from a particular sensor are not required
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in some scenarios results in an energy-efficient system, since
the Bluetooth communication between that sensor and the
fusion center can be turned off.

We have found that the optimal allocation of measure-
ments reduces the probability of error by varying degrees for
specific binary hypothesis tests, and that an approximately
optimal solution can be obtained using a low-complexity
continuous-valued vector optimization which does not re-
quire an exhaustive search. We are currently extending
our analysis to incorporate multiple sensors and multiple
hypotheses via a union bound, and are developing a real-
time implementation of our optimal allocation scheme on
the KNOWME network infrastructure. Furthermore, more
data is being collected which we hope to present at the con-
ference.
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