
Robust Traffic Engineering using L-balanced
Weight-Settings in OSPF/IS-IS
Henrik Abrahamsson

Swedish Institute of Computer Science
Box 1263, SE-164 29 Kista, Sweden

Email: henrik@sics.se

Abstract-Internet traffic volumes continue to grow at a great
rate, now pushed by video and TV distribution in the networks.
This brings up the need for traffic engineering mechanisms to
better control the traffic. The objective of traffic engineering
is to avoid congestion in the network and make good use of
available resources by controlling and optimising the routing
function. The challenge for traffic engineering in IP networks
is to cope with the dynamics of Internet traffic demands. Today,
the main alternative for intra-domain traffic engineering in IP
networks is to use different methods for setting the weights in the
routing protocols OSPF and IS-IS. In this paper we revisit the
weight setting approach to traffic engineering but with focus on
robustness. We propose I-balanced weight settings that route the
traffic on the shortest paths possible but make sure that no link
is utilised to more than a given level I. This gives efficient routing
of traffic and controlled spare capacity to handle unpredictable
changes in traffic. We present a heuristic search method for
finding I-balanced weight settings and show that it works well in
real network scenarios.

I. INTRODUCTION

Internet traffic volumes continue to grow at a great rate,
now pushed on by video and TV distribution in the networks.
Increasing traffic volumes necessitate upgrades of network
equipment and new investments for operators, and keep up
to-date the question of over-dimensioning network capacity
versus using traffic engineering mechanisms for better han
dling the traffic. In addition, as new bandwidth demanding
and also delay and loss sensitive services are introduced, it
is even more important for the operator to manage the traffic
situation in the network.

The main challenge for traffic engineering is to cope with
the dynamics of traffic demands and topology. How to best
model and describe aggregated Internet traffic is still an open
area of research. On short timescales up to seconds the traffic is
very bursty and on long timescales there are often predictable
daily and weekly cycles. In between there can be unpredictable
changes and shifts in traffic demand, for instance due to
hotspots and flash crowds, or because a link goes down,
there are changes in the inter-domain BGP routing, or because
traffic in an overlay is re-directed. For future networks more
variability in traffic demands is also expected due to mobility
of nodes and networks and more dynamic on-demand service
level agreements (SLA:s).

The traffic variability means that, even if we could measure
the current traffic situation exactly, it would not always cor-

Digital Object Identifier: 10.4108I/CST.BROADNETS2009. 7184
http://dx.doi.org/10.4108I/CST.BROADNETS2009.7184

Mats Bjorkman
Malardalen University

Vasteras, Sweden
Email: Mats.Bjorkman@mdh.se

rectly predict the near future traffic situation and this needs to
be taken into account when doing traffic engineering. Network
operators often handle this by relying on simple well-tried
techniques (like OSPF and IS-IS routing), over-dimensioning
of network capacity, and simple rules of thumb (i.e upgrade
the link capacity when mean utilisation reaches 70-80%) rather
than introducing complex traffic engineering techniques.

In this paper we take this need for spare capacity and simple
rules of thumb as our starting point. We revisit the approach of
using weight settings in OSPF/IS- IS for traffic engineering but
now with focus on robustness. We propose weight settings that
we calli-balanced where the operator, by setting the parameter
I (to say 80%), control the maximum utilisation level in the
network and how much spare capacity is needed to handle
unpredictable traffic changes. With an I-balanced routing the
traffic takes the shortest paths possible but makes sure that no
link is utilised to more than a given level I, if possible.

The main contributions in this paper are:

• We propose I-balanced weight settings in OSPF/IS-IS for
robust traffic engineering.

• We present a heuristic search method for finding 1
balanced weight settings and show that it works well in
real network scenarios.

• We evaluate I-balanced routing and compare it with other
proposed traffic engineering objectives for several real
network topologies and traffic data sets.

If traffic levels continue to grow then of course network
capacity needs to be added at some point. But traffic engi
neering with I-balanced routing can extend the upgrade cycle
and postpone the investment, or be applied to better use the
existing resources in the network until the highly utilised links
have been upgraded.

The paper is organized as follows. Section II gives a short
introduction to traffic engineering in IP networks and Sec
tion III discusses related work. We then present the I-balanced
cost function in Section IV and describe the search heuristic
used for finding I-balanced weight settings. In Section V
we evaluate the proposed methods. We show that the search
heuristic works well for finding I-balanced weight settings in
real traffic scenarios. Further, we compare the robustness of
different weight-setting methods and investigate what happens
to link utilisations in the network if a traffic demand suddenly



increases. Finally, in Section VI we make some concluding
remarks about our findings.

II. TRAFFIC ENGINEERING IN IP NETWORKS

The objective of traffic engineering is to avoid congestion
in the network and to make better use of available network
resources by adapting the routing to the current traffic situ
ation. The traffic demands in a network changes over time
and for network operators it is important to tune the network
in order to accommodate more traffic and meet service level
agreements (SLAs) made with their customers. This means
that a network operator can not rely only on long-term network
planning and dimensioning that are done when the network is
first built. Robust traffic engineering mechanisms are needed
that can adapt to changes in traffic demand and distribute
traffic to benefit from available resources.

The first step in the traffic engineering process is to collect
the necessary information about network topology and the
current traffic situation. Most traffic engineering methods need
as input a traffic matrix describing the demand between each
pair of nodes in the network. The traffic matrix is the~ ~sed

as input to the routing optimization step, and the optimized
parameters are finally used to update the current routing.

Today, the main alternative for intra-domain traffic engi
neering in IP networks is to use different methods for setting
the weights (and so decide upon the shortest paths) in the
routing protocols OSPF (Open Shortest Path First) and IS-IS
(Intermediate System to Intermediate System). These are both
link-state protocols and the routing decisions are based on
link costs and a shortest (least-cost) path calculation. With
the equal-cost multi-path (ECMP) extension to the routing
protocols the traffic can also be distributed over several ~aths

that have the same cost. These routing protocols were designed
to be simple and robust rather than to optimize the resource
usage. They do not by themselves consider network utilisation
and do not always make good use of network resources. The
traffic is routed on the shortest path through the network even
if the shortest path is overloaded and there exist alternative
paths. It is up to the operator to find a set of lin~ c~sts

(weights) that is best suited for the current traffic situation
and that avoids congestion in the network.

The general problem of finding the best way to route
traffic through a network can be mathematically formulated
as a multi-commodity flow (MCF) optimization problem (see,
e.g., [1]-[3]). The network is then modeled as a graph. The
problem consists of routing the traffic, giv~~ by a .dema.nd
matrix, in the graph with given link capaciues while mm
imizing a cost function. With no limitations on how the
traffic flows can be divided over the network links the MCF
optimal routing problem can be formulated and efficiently
solved as a linear program. Introducing integer weights and
ECMP shortest paths constraints, where the traffic no longer
can be split arbitrarily, makes the problem computationally
much harder. For reasonably sized networks one usually has
to rely on search heuristics for determining the set of weights,
rather than calculating the optimal weights.

Digital Object Identifier: 10.4108/1CST.BROADNETS2009. 7184

http://dx.doi.org/10.4108/1CST.BROADNETS2009. 7184

2

III. RELATED WORK

Traffic engineering by finding a suitable set of weights
in OSPF/IS- IS is a well studied area of research and it is
described in recent textbooks in the area [3], [4]. When we
now revisit the weight setting approach to traffic engineering
we are most inspired by the pioneering works by Fortz and
Thorup [2], [5] and Ramakrishnan and Rodrigues [6], in that
we use a piece-wise linear cost function and search heuristics
to find suitable weight settings.

Several studies [2], [7]-[9] have shown that even though we
limit the routing of traffic to what can be achieved with weight
based ECMP shortest paths, and not necessarily the optimal
weights but those found by search heuristics, it often comes
close to the optimal routing for real network scenarios. How
the traffic is distributed in the network very much depends
on the objectives, usually expressed as a cost function, in
the optimisation. An often proposed objective function is
described by Fortz and Thorup [2] (and we will refer to it as
the FT cost function further on). Here the sum of the cost over
all links is considered and a piece-wise linear increasing cost
function is applied to the flow on each link. The basic idea
is that it should be cheap to use a link with small utilization
while using a link that approaches 100% utilisation should be
heavily penalized. The I-balanced cost function [1], [10] used
in this paper is similar in that it uses a piecewise linear cost
function to obtain desireable solutions. Additionaly, our cost
function gives the operator the opportunity to set the maximum
wanted link utilisation. Cost functions for traffic engineering
is further investigated by Balon et.al [11].

This paper add to existing work on weight settings by focus
ing on robustness and the objective of achieving a controlled
spare capacity for handling unpredictable traffic shifts. For
robust traffic engineering much of the focus is on handling
multiple traffic matrices and traffic scenarios [5], [12]-[16]
and handling the trade-off between optimising for the common
case or for the worst case. There are also several works on
finding weight settings that are robust to link failures [17]
[19].

Xu et.al [20] describe a method to jointly solve the flow
optimization and the link-weight approximation usi~g a sing~e

formulation resulting in a more efficient computatIon. Their
method can also direct traffic over non-shortest paths with
arbitrary percentages. Their results should also be directly
applicable to our problem of providing robustness to ~hang~s,

by just substituting their piece-wise linear cost function with
our cost function. In a continuation on that work Xu et.al [21]
propose a new link-state routing protocol. The protocol splits
traffic over multiple paths with an exponential penalty on
longer paths and achieves optimal traffic engineering while
retaining the simplicity of hop-by-hop forwarding.

IV. L-BALANCED SOLUTIONS

A. Optimal I-balanced routing

A routing is said to be I-balanced if the utilisation is less
than or equal to I on every link in the network. For instance



a solution is (0.7)-balanced if it never uses any link to more
than 70% of its capacity.

The I-balanced cost function , its theoretical foundation, and
use in MCF optimisation is described in [1], [10]. The idea
is to use a simple piece-wise linear cost function as shown
in Figure I and apply it to the utilisation of each link in
the network . The cost function consists of two linear portions
where the slope of the second line segment should be large
enough to penalise utilisation above I and balance traffic over
longer paths.

The work in [1], [10] present a formula to calculate the cost
function, for a given network topology and traffic situation,
that guarantees to find a I-balanced optimal routing (provided,
of course, that such solutions exist) that takes the shortest
paths possible and makes sure that no link is utilised to more
than 1.

Fig. 1. The link cost function.

B. Search for l-balanced weight settings

To apply the I-balanced routing in real OSPF/IS-IS networks
we need to find I-balanced weight settings. For weight settings
we dont have the guarantee to find an I-balanced routing in the
same way as described for optimal routing above. But we want
to use the I-balanced cost function to find weights settings that
achieve the same effect of taking the shortest paths possible
while routing the traffic so that no link is utilised to more than
a given level I.

The problem of finding the optimal weight setting is NP
hard [2], [3]; and so the optimal weights are often too
computationally hard and time consuming to calculate for
real networks and traffic scenarios. Instead we use a problem
specific local search heuristic to determine the set of weights .
An overview of local search methods can be found in [22].
Our search method can be placed under the Tabu search meta
heuristic in that we allow cost-increasing solutions to direct the
search away from local minima, and use a tabu list to prevent
from looping back to old solutions. A solution is a vector
W = {WI , ..,wn } of weights, with one weight per directed link
in the network. We have a solution space W where each weight
can take integer values between 1 and 65535 . We generate a
neighboring solution i E N (w) by increasing one weight in the
current solution W to divert traffic from the most utilised link
(s, t) or change weights to create paths with the same cost to
get ECMP routing of traffic over several links from s. We use a
l-balanced cost function (as described in the previous section)
calculated for the given topology, traffic matrix and required
utilisation level l . The cost f (w) for a given weight vector
is determined by calculating the shortest paths routing with
these weights using Dijkstra's algorithm, adding the traffic

Digital Object Identifier: 10.4108/1CST.BROADNETS2009.7184

http://dx.doi.org/10.4108/1CST.BROADNETS2009.7184

3

matrix, and applying the cost function to the resulting link
loads. The starting point is to set all weights to the same value,
for instance W i = 10. The search terminates either when we
find a solution with utilisation under the threshold l or it stops
after a fixed number of iterations .

At the core of our search method is a simple descent
search [22] where we:

I) choose an initial weight vector i E W
2) find the neighbor j E N(i) with lowest cost i.e.

f(j) <= f(k) for any k E N(i) .
3) If f(j) >= f(i) then stop. Else set i = j and go to

step 2.

This type of search may stop at a local minimum. We therefore
allow the search to continue by doing new descents starting
from weight sets with higher cost. We use information that
becomes available during the search to build a candidate list
of weight sets that are used as starting points, and a tabu list
of weight sets are used to avoid cycling.

We start by setting all weights to the same value. This gives
the shortest paths in number of hops which probably is a good
starting point for most real networks; if the link capacities are
uniform and the network was built with OSPF/IS-IS routing
in mind. Given the network topology, traffic matrix and initial
weights, we calculate the ECMP shortest paths, add the traffic
matrix, and find the most loaded link (s,t) in the network.
If the utilisation is less than I then we are done. We have a
routing that takes the shortest paths possible and makes sure
that no link is utilised to more than the limit I. If the link is
utilised to more than I we start searching for a better weight
setting using two strategies:

• the first search strategy is to increase the weight on the
overloaded link in controlled steps so to divert more and
more demands (or part of demands) from the link. See
details in IV-C.

• the second search strategy is to find weights to get ECMP
routing from s for the demands over (s , t) , and so balance
the traffic over the outgoing links from s. See details
in IV-D.

In each iteration of a descent we have a number of neighbor
weight settings that we evaluate (one for each weight step
and ECMP set described above). If a neighbor weight setting
gives a lower cost than the current best (in this iteration) it is
saved and used as the starting point in the next iteration. If a
candidate weight setting gives a routing with a higher cost than
the current best but with a different link than (s , t) as most
utilised, then that weight-setting is saved in the candidate list
and used as a starting point for another descent search later
on.

C. How to determine weight increments for a link?

If a link (s, t) is over-utilised we want to increase the weight
on the link in controlled steps so to divert more and more
traffic demands from the link.

To decide the steps in which to increase the weight on
(s, t) we first determine the current total weight-cost for each



4

demand routed over (8, t). We then temporarily take away
the link (8, t) from our representation of the topology and
calculate a new shortest-path routing. For all demands that
before were routed over (8, t) we then check how much the
weight cost have increased and use this for determining the
steps with which to increase the weight on (8, t).

In the example in Figure 2, we assume that the two demands
Fig . 3. Determining ECMP weights

W(S,4)=20W(l,5)=10

Fig. 4. Example with an overloaded link (1,3) . With an extended neigh
borhood in the search the demand D(I,4) can be diverted by increasing the
weight w(3,4) instead of w(l ,3), and avoid disturbing the other flows on the
overloaded link (1,3) .

achieve ECMP weights is to adjust the weights W(8, ti) on
the outgoing links from 8 such that:

W(8, ti) = 1 + maX j=l ,..,n{w (Pj )} - w(Pi)

This gives the same total cost for each path from s to d.
A possible extension to this is to not always spread the

traffic over all possible links but also evaluate different subsets
of ECMP weights setting with varying number of outgoing
links from 8.

E. Increment weight on a less utilised link in a path

With high traffic load in the network, link weights can
become sensitive to change after some iterations in the search.
For instance if we on an overloaded link already have adjusted
the weight to split a large demand with ECMP then we can
not easily increase the link weight to divert yet another flow
without disturbing the existing load balancing.

In order to divert traffic demands to other paths but without
disturbing existing splits on the most utilised link we extend
the neighborhood in the search. We evaluate weight sets where
we instead of changing the weight on the overloaded link (8, t)
increment the link weight some step away closer to the demand
destination . In the example in Figure 4, assume that the link

(1,3) is overloaded. With our search (as described in IV-C)
we would in this example evaluate a weight setting where the
demand D(I, 4) is diverted to the path 1-5-4 by increasing the
weight w(l , 3) to 21. But increasing the weight w(l ,3) will
also send all of D(I , 2) on the link (1,2), possibly creating
overload on that link and a higher cost solution.

With the extended neighborhood we also evaluate alternative
weight settings where we increase the weight on other links in
the path (not only on the most utilised link). In this example
for demand D(I,4) we increase the weight w(3,4) which

D. How to determine ECMP weight settings?

If we have a weight set that results in an overloaded link
(8, t) then we want to also evaluate neighbor weight settings
where we split traffic demands evenly over the outgoing links
from 8 using ECMP. In order to split a traffic demand ECMP
the total weight for each path from 8 to the demand destination
d need to be the same.

Consider, as in Figure 3, a node 8 , the next hops t i,
and the shortest path Pi from each ti to the destination d.
Also consider the corresponding weights W(8, ti) and total
weight cost w(Pi) for a path Pi from t i to d. One way to

Fig. 2. Example with an overloaded link (1,2) where traffic can be diverted to
other paths by increasing the weight on (1,2) in controlled steps w(1,2)= 20,
25, 30 and 31. With the first increment w(l ,2)=20 we divert half of demand
D(4,2) by ECMP. The next increment w(l ,2)=25 diverts all of D(4,2), and with
w(1,2)=30 we route also half of D(I ,2) on another path . Finally , w(l ,2)=31
diverts all traffic from (1,2) .

D(I ,2) and D(4 ,2) overload the link (1,2). We thus want
to divert traffic from the link (1,2) by increasing the weight
w(I,2) .

We start by determining the increase steps in which to
increase the weight w(l , 2):

The total weight costs for D(I , 2) and D(4 ,2) are 10 and
40, respectively. If we take away the link (1,2) , we get total
weight costs of 30 and 50, an increase by 20 and 10 units
respectively. From this we decide on the increase steps 10, 15
(mid-point between 10 and 20), 20 and 21 units. We add this
to the original w(I,2) = 10 and get the candidate weights
w(I ,2)= 20, 25, 30 and 31 to evaluate.

With the first increment w(I,2) = 20 we divert half of
demand D(4 ,2) by ECMP while the other half of D(4,2)
and all of demand D(I, 2) is still routed on (1,2). The next
increment w(l , 2) = 25 diverts all of D(4, 2) but keeps all of
D(I ,2) . With w(l , 2) = 30 we also route half of D(I , 2) on
another path and with w(l , 2) = 31 we divert all traffic from
(1,2).

Digital Object Identifier: 10.4108/1CST.BROADNETS2009.7184
http://dx.doi.orgI10.4108/1CST.BROADNETS2009.7184



5

Maximum link utilsation for L- bala nced routings (Ne twork I)

14

12

12

10

106 8
Traffic demand

6
Traffic dema nd

oo:-- -----:- - ----"-- - ---:-- - --:-- - -:':-- -----,':----.J

0 .2

1.2 ~ Minimum hop routing
~ L- bala nced op tima l rouling (L=O.8

1 ~ L- ba lanced weights (L=O.8)

Maximum link utilsation for L- bala nced routings (Network II)

1.2 ~ Minimum hop routin g x ·· ··
~ L- bala nced optima l rouling (L=O.8 .x-. . "

i0:7~ -L~b:la~C:d::9~tS~L:0:)_ -- . .~~
;§ 0.6

x
E0.4

0.2

~

.Qi 0 8

:§ 0.6

x
E0.4

i-balanced cost function is applied to the utilisation of each
link in the network. The utilisation for an individual link (and
so the maximum link utilisation) can be higher in the optimal
solution if it finds a shorter path that still keeps the utilisation
below t.

• Network I: the Geant network with 23 nodes, 74 links
and 506 demands.

• Network II: the American network with 24 nodes, 110
links and 552 demands.

The details of the global IP-network, the subnetwork topolo
gies and traffic demands, are described in [24]. For the Geant
network we set all link capacities to 10 Gb and scaled up the
traffic data to create high loads in the network.

B. Static scenario: Evaiuating the search method

The evaluation shows that the i-balanced objective and our
search method for finding l-balanced weight settings work
well. Figure 5 shows comparisons of optimal and weight-based
i-balanced routing (with i=80%) for increasing levels of traffic
demand in the Geant network (Network I) and the American
network (Network II). The i-balanced routing sends the traffic
on the shortest paths as long as the utilisation is low in the
network. The shape of the curves shows that when we scale
up the traffic demand the i-balanced method tries to keep the
utilisation under i=0.8. The figures also show that the weight
based routing is close to the optimal routing which validates
that our search method for setting the weights works well.
Note that optimal routing minimises the total cost when the

Fig. 5. Comparison of maximum link utilisations for optimal and weight
based L-balanced routing for different scaled traffic demands in the Geant
network (top) and the American network (bottom). The utilisation is kept
under the chosen limit I and the weights found by the search heuristic gives
a routing close to optimal.

V. EVALUATION

diverts the demand D(1,4) from the overloaded link (1,3)
while keeping the needed ECMP split of demand D(l , 2).

F. Comments on the search method

As described above several different techniques are needed
to get an efficient search method to find i-balanced solutions.

When designing and implementing our search method we
were in part inspired by the works of Ramakrishnan and
Rodrigues [6] and Fortz and Thorup [2]. From the first we
borrowed the idea of temporarily taking away the overloaded
link from the representation of the topology, and calculate a
new shortest-path routing, to find the weight increments for
the link. But apart from this idea our approaches are different.
Fortz and Thorup [2] use a Tabu local search heuristic to find
appropriate link weights, and from here we also borrowed the
idea on how to find ECMP weight-settings over many links.

But, for efficiency, we wanted a more problem-specific
search heuristic rather than a generic Tabu search. Instead of
searching at random, we start with the shortest paths possible
and directly look at the most loaded link. If the utilisation is
less than I, then we are done and no search is needed. If the
link is utilised to more than l, then we start to divert traffic
from there.

The higher the traffic level the more difficult it is to find a
weight setting, that not only balances the traffic, but actually
keeps it under a specified level l. We combined the existing
techniques described above: weight increments and ECMP
traffic splits at the most utilised link. But with our direct
approach and at high traffic loads, it turned out not to be
enough to find i-balanced routings.

Therefore, we also added our ideas with candidate lists and
extended neighborhoods. For the candidate list, we choose
weight settings with a higher cost but where the overload has
moved to another link, in order to diverse the search. And
for extended neighborhoods, we increment the weight on a
less utilised link in a path in order to not disturb the weight
composition in sensitive, highly loaded areas.

A. Method

In order to evaluate the i-balanced routing and our search
method for finding i-balanced weights we use real network
topologies and traffic matrix data that we scale up to get high
loads in the networks. First in Section V-B we evaluate that
the search method works well for finding i-balanced weight
setting in these scenarios and compare the resulting network
loads with optimal i-balanced routing and routing with other
traffic engineering objectives. The main objective of i-balanced
routing is to give a controlled amount of spare capacity to
handle traffic changes. In Section V-C we investigate how
different weight settings handle hotspots where one traffic
matrix entry increases.

For the evaluation we here use two different data sets that
include network topologies and traffic matrix data from the
Geant network [23], and from the American sub-network of a
global IP network.

Digital Object Identifier: 10.4108/1CST.BROADNETS2009.7184
http://dx.doi.org/10.4108/1CST.BROADNETS2009.7184



6

14

·.X

12106 8
Traffic demand

oL-- --'-- - -'-- ---'- - -'-- - -'--- ---'- - --'
o

Maximum link utilsation for different traffic engineering objectives

0.2

0.8

0.6

0.4

1.4 -M-- Minimum hop routing
-i-- L- balanced optimal routing
-e- L- balanced weights

1.2 ~ FT optimal routing
-a- FT weights
__ Minmax optimal routing

Fig. 6. Comparison of maximum link utilisations for different traffic
engineering objectives in the Geant network.

load- Min. hop routing L-balanced routing (L=0.8)
level links > L max uti! time max uti! descents sets

7 0 0.728 0.4 s 0.728 0 0
8 I 0.832 0.4 s 0.732 I 41
9 2 0.936 0.6 s 0.766 I 95
10 5 1.040 2.2 s 0.732 7 671
II 5 1.144 477.5 s 0.801 4390 200037

TABLEII
P ERFORMANCE OF THE SEARCH HEURI STIC FOR NETWORK II

TABLEI
PERFO RMANCE OF THE SEARCH HEURISTIC FOR NETWORK I

load- Min. hop routing L-balanced routing (L-0.8)
level links >L max util time max uti! descents sets

7 0 0.751 0.1 s 0.751 0 0
8 2 0.858 0.3 s 0.784 I 63
9 3 0.965 0.2 s 0.797 I 51
10 3 1.072 0.4 s 0.780 I 82
II 4 1.179 0.4 s 0.795 I 91
12 5 1.287 0.4 s 0.794 I 123
13 6 1.394 56.8 s 0.790 262 21451

Tables I and II describe the performance of our search
method and show that our search heuristic is fast. The left-hand
side of the tables describes the load situation in the networks.
The increasing load levels (shown in the first column) come
from multiplying each entry in the traffic matrix with a higher
and higher constant value. For both networks it holds that, up
to level 7, no search is needed since the start weights (all set to
10) and the resulting minimum-hop routing give a maximum
link utilisation of less than l = 0.8.

The second and third columns show the number of links
that are loaded to more the level l = 0.8 and the maximum
link utilisation, when all weights are set to 10. This is the state
from which the search start.

The right-hand side of the tables shows the performance
of our search method. The first column shows how long time
it takes to find an i-balanced solution for different levels of
network load. The table also shows the number of search
descents (number of new starts) and the total number of
neighbor weight sets that were evaluated.

As an example, for Network I in Table I, at scale 8 there are
two links that are utilized to more than l = 0.80. The search
heuristic investigate 63 different weight settings to find an i
balanced solution with a maximum link utilisation of 0.784.
This search took only 0.3 seconds on a standard laptop with
a 1.6GHz Intel Core 2 Duo CPU and 2 GB of memory.

At scale 13 there are 6 links utilized to more than l = 0.80
and with a maximum utilisation of 1.394. The search needs
to find a weight setting that diverts traffic and simultaneously
pushes down all six link utilisations under l = 0.8 (and without
increasing any other link to more than l, of course). Our
search heuristic evaluates 21451 weight settings and finds an
i-balanced solution at this level in less than a minute.

Figure 6 shows a comparison between the i-balanced routing
and other traffic engineering objectives. The minimum-hop
routing (with all weights set to 10), where no attempt is done to
adapt the weight setting to the current traffic demand, quickly

leads to overload in the network when the traffic demands
are increased. The i-balanced method sends the traffic on
the shortest paths as long as the utilisation is less than the
chosen value i=0.8. With a low utilisation of the network
there is no reason to split the traffic over several paths. The
FT cost function used in [2], pushes down the maximum link
utilisation already at lower traffic levels. This piece-wise linear
cost function consists of several segments which is reflected in
the shape of the curve with plateaus where the maximum link
utilisation is pushed down. With minmax routing the objective
is to minimise the maximum link utilisation in the network.
This routing always balance the load over the network to
keep the highest link utilisation down to a minimum. The
optimal minmax routing gives a lower bound on how much it
is possible to keep down the maximum link utilisation.

C. Dynamic scenario : Evaluation of robustness

The main purpose with i-balanced routing is to give a con
trolled traffic level and spare capacity to handle uncertainties
and sudden changes in the traffic situation. To confirm that the
i-balanced weight settings fulfil this, we added hotspot traffic
(in a magnitude that the i-balanced routing should be able to
handle) and investigated the resulting link utilisations. Figure 7
shows the maximum link utilisations for minimum hop rout
ing, i-balanced and FT weight-settings under assumed hotspot
traffic in the Geant network scenario. After determining the
weights and the routing for a given traffic matrix each of the
506 demands was increased one at a time by 20% of the link
capacity.

The minimum hop routing, without any traffic engineering,
gives link overload for all hotspot traffic at this demand level.
The FT routing sometimes results in overloaded links when
the hotspot traffic is added. The i-balanced routing (with i=0.8)
on the other hand gives 20% spare capacity and so handle the
increase for any of the demands.

Digital Object Identifier: 10.4108/1CST.BROADNETS2009.7184

http://dx.doi.org/10.4108/1CST.BROADNETS2009.7184



Minimum hop routing

"~1.4

1.2

1~0.8

0.6o 50 100 150 200 250 300 350 400 450 500

FT routing

lo:~§§
0.6o 50 100 150 200 250 300 350 400 450 500

L-balanced (1=0.8)

l,:~h~
0.6o 50 100 150 200 250 300 350 400 450 500

Fig. 7. Hotspot traffic scenario in the Geant network. Comparison of
maximum link utilisations for three weight setting strategies. Minimum hop
routing and Ff routing exceeds the link capacity while I-balanced routing can
avoid overload.

VI. CONCLUSIONS

In this paper we propose I-balanced routing with OSPFIIS
IS for robust traffic engineering. We present a heuristic search
method for finding I-balanced weight settings and show that
the search and the resulting weight settings work well in real
network scenarios.

L-balanced weight settings give the operator possibility to
apply simple rules of thumb for controlling the maximum link
utilisation and control the amount of spare capacity needed to
handle sudden traffic variations. It gives more controlled traffic
levels than other cost functions and more efficient routing for
low traffic loads when there is no need to spread traffic over
longer paths.

Our local search method can be placed under the Tabu
search meta-heuristic in that we allow cost-increasing solutions
to direct the search away from local minima, and use a
tabu list to prevent from looping back to old solutions. But
for efficiency, rather than using a generic Tabu search, we
implement a search heuristic specific for the problem of
finding I-balanced weight settings. We start with minimum-hop
routing and investigate the most loaded link. If the utilisation
is less than I, then we are done and no search is needed. If
the link is utilised to more than I, then we start the search
from there, and we use several different weight strategies for
diverting traffic to other paths.

The higher the traffic level the more difficult it is to find a
weight setting, that not only balances the traffic, but actually
keeps it under a specified level I. We combine controlled
weight increments and ECMP traffic splits to divert traffic from

Digital Object Identifier: 10.4108/1CST.BROADNETS2009.7184
http://dx.doi.org/10.4108/1CST.BROADNETS2009.7184

7

the most utilised link. We also introduce candidate lists and
extended neighborhoods. Promising weight settings that move
the overload to other links are saved in the candidate list to
be starting points for further search. Extended neighborhoods
means that, when diverting a traffic flow from an overloaded
link, we do not only try to increase the weight on the
overloaded link. We also evaluate weight settings where we
increment the weight on a less utilised link further down the
path. This is done in order to not disturb already achieved
traffic splits in highly loaded areas.

We evaluate our search heuristic in several real network
scenarios and show that the search is fast and that it finds 1
balanced weight-settings in seconds or minutes depending on
the traffic level.

ACKNOWLEDGMENT

The authors would like to thank Anders Gunnar for provid
ing the traffic data used in the evaluation. We also would like
to thank Adam Dunkels and Bengt Ahlgren for inspiring and
helpful discussions .

REFERENCES

[I] H. Abrahamsson, J. Alonso, B. Ahlgren, A. Andersson, and P. Kreuger,
"A multi path routing algorithm for IP networks based on flow optimi
sation," in Proceedings of the Third International Workshop on Quality
ofFuture Internet Services (QoFIS), Ziirich, Switzerland, October 2002.

[2] B. Fortz and M. Thorup, "Internet traffic engineering by optimizing
OSPF weights," in Proceedings IEEE INFOCOM 2000, Israel,
March 2000, pp. 519-528. [Online]. Available: http://www.ieee
infocom.org/20oo/program.html

[3] M. Pi6ro and D. Medhi, Routing. Flow, and Capacity Design in
Commmunication and Computer Networks. Morgan Kaufmann, 2004.

[4] J. Rexford, "Route optimization in IP networks," in Handbook of
Optimization in Telecommunications, M. G. Resende and P. M. Pardalos,
Eds. Springer Science+Business Media, 2006.

[5] B. Fortz and M. Thorup, "Optimizing OSPF/IS-IS weights in a changing
world," IEEE Journal on Selected Areas in Communications, vol. 20,
no. 4, pp. 756-767, May 2002.

[6] K. Ramakrishnan and M. Rodrigues, "Optimal routing in shortest path
data networks," Lucent Bell Labs Technical Journal, vol. 6, no. 1,2001.

[7] A. Gunnar, H. Abrahamsson, and M. Soderqvist, "Performance of Traffic
Engineering in Operational IP-Networks: An Experimental Study," in
Proceedings of5th IEEE International Workshop on IP Operations and
Management, Barcelona, Spain, October 2005.

[8] A. Sridharan, R. Guerin, and C. Diot, "Achieving Near-Optimal
Traffic Engineering Solutions for Current OSPF/IS-IS Networks,"
in IEEE Infocom, San Francisco, March 2003. [Online]. Available:
http://ipmon.sprintlabs.com

[9] D. Applegate and E. Cohen, "Making Intra-Domain Routing Robust to
Changing and Uncertain Traffic Demands: Understanding Fundamental
Tradeoffs,' in Proceedings of ACM SIGCOMM, Karlsruhe, Germany,
August 2003.

[10] J. Alonso, H. Abrahamsson, B. Ahlgren, A. Andersson, and P. Kreuger,
"Objective functions for balance in traffic engineering," SICS - Swedish
Institute of Computer Science, Tech. Rep. T2oo2:05, May 2002.

[11] S. Balon, F. Skivee, and G. Leduc, "How Well Do Traffic Engineering
Objective Functions Meet TE Requirements?" in Proceedings of IFIP
International Networking Conference, Coimbra, Portugal, May 2006.

[12] C. Zhang, Z. Ge, J. Kurose, Y. Liu, and D. Townsley, "Optimal Routing
with Multiple Traffic Matrices: Tradeoffs between Average Case and
Worst Case Performance," in Proceedings ofICNP 2005, Boston, USA,
November 2005.

[13] C. Zhang, Y. Liu, W. Gong, J. Kurose, R. Moll, and D. Townsley, "On
Optimal Routing with Multiple Traffic Matrices ," in Proceedings of
Infocom 2005, Miami, USA, March 2005.

[14] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
"Cope: Traffic engineering in dynamic networks," in Proceedings of
ACM SIGCOMM, Pisa, Italy, September 2006.



[15] A. Gunnar and M. Johansson, "Robust routing under bgp reroutes," in
Proceedings of Globecom 2007, Washington, DC, USA, 2007.

[16] M. Menth, R. Martin, and J. Charzinski, "Capacity Overprovisioning for
Networks with Resilience Requirements," in Proceedings of the ACM
SIGCOMM'06, Pisa, Italy, September 2006.

[17] A. Nucci, S. Bhattacharyya, N. Taft, and C. Diot, "IGP Link Weight
Assignment for Operational Tier-l Backbones," IEEE/ACM Transactions
on Networking, vol. 15, no. 4, August 2007.

[18] M. Menth, M. Hartmann, and R. Martin, "Robust IP Link Costs for
Multilayer Resilience," in Proceedings of the 6th International IFIP
Networking Conference, Atlanta, Georgia, USA, May 2007.

[19] A. Sridharan and R. Guerin, "Making IGP Routing Robust to Link
Failures," in Proceedings of the 4th International IFIP Networking
Conference, Waterloo, Ontario, Canada, May 2005.

[20] D. Xu, M. Chiang, and J. Rexford, "DEFT: Distributed exponentially
weighted flow splitting," in IEEE Infocom, Anchorage, Alaska, USA,
May 6-12, 2007.

[21] --, "Link-state routing with hop-by-hop forwarding can achieve
optimal traffic engineering," in IEEE Infocom, Phoenix, Arizona, USA,
April 2008.

[22] E. Aarts and J. K. Lenstra, Eds., Local search in combinatorial opti
mization. Princeton University Press, 2003.

[23] The Geant network, http://www.geant.net.
[24] A. Gunnar, M. Johansson, and T. Telkamp, "Traffic Matrix Estimation on

a Large IP Backbone - a Comparison on Real Data," in Proceedings of
ACM Internet Measurement Conference, Taormina, Sicily, Italy, October
2004.

Digital Object Identifier: 10.4108/1CST.BROADNETS2009.7184
http://dx.doi.org/10.4108/1CST.BROADNETS2009. 7184

8


