
VISTA: A New Fair Queuing Algorithm for Packet
Switches

XIA Yu
School ofInfo. Science & Tech.
Southwest Jiaotong University

Chengdu 610031, China
rainsia@gmail.com

GUO Zirong
School ofInfo. Science & Tech.
Southwest Jiaotong University

Chengdu 610031, China
zirongguo@163.com

GAO Zhijiang
School ofInfo. Science & Tech .
Southwest Jiaotong University

Chengdu 610031, China
Santi! 009@gmail.com

Many improved algorithms consider fairness, but some of
them only involve the fairness among different input ports. The
fairness of the flows within the same port or among different
ports with different QoS requirements, such as throughput ,
transmission delays, and jitters , is still not guaranteed. Some
algorithms, such as VC (Virtual Clock), WFQ (Weighted Fair
Queuing), etc. allocate the output link capacity for different
flows in proportion to their bandwidth requirements. However,
they are either too complicated to implement, or cannot provide
exact fairness to each flow in some special conditions [1].

This paper proposes a new fair queuing algorithm called
VISTA (Virtual Clock with Virtual Start Time Alignment) that
is capable ofproviding the known best fairness as by WF2Q [2]
or WF2Q+ [3]. In order to decrease the time complexity of the
new algorithm, a hardware-based Earliest Packet Selector (EPS)
is introduced, which allows the algorithm can be completed in
constant time, i.e., independent ofthe number offlows.

The rest ofthis paper is organized as follows: Section 2 is a
brief analysis to relevant work. Section 3 describes our new fair
queuing algorithm Section 4 further demonstrates the merits of
VISTA with a hardware-based EPS design and Section 5
validates the new algorithm via simulation . Finally, Section 6
concludes the work with a forward view on future work.

II. RELATED WORK

The Generalized Processor Sharing (GPS) [4], which is
based on the fluid flow model, has been thought as being
absolutely fair. However, the GPS server assumes that flows
can be divided into infinitely fine units ; while in real switches ,
flows are served in terms of non-dividable packets (or cells).
For this reason, numerous packet-based fair queuing (PFQ)
algorithms have been developed to approximate GPS. These
algorithms can be divided into two categories .

The algorithms in the first category are named timestamp
based algorithms. For each of these algorithms, the scheduler
maintains three variables: system virtual time V(t), virtual start
time Si,k for the k-th packet from flow i , and corresponding
virtual fmish time Fi,k. All these algorithms use a similar
scheduler to select the packet with the smallest virtual fmish
time to be output next but differ from each other in calculation
ofsystem virtual time, virtual start time and virtual finish time.
Another important difference is whether they test the eligibility

--Flow 1
-e- Flow 2
--Flow 3

0.80.6

Normalized Load

0.40.2

~
~ 0.3
E
(;
c
;; 0.25
-0
.~
"0
C

~ 0.2
"0

*o.Q<i:

Keywords- Packet-based Fair Queuin; QoS guarantee; VISTA
algorithm; Virtual Clock; WF2Q+

0. 35 ..----~--~--~--~--___,

Figure I. The flo\\Sget the same bandwidth allocajon

I. INTRODUCTION

Undoubtedly, different network applications need different
bandwidths and transmission delays. Currently , more and more
real-time and interactive applications are emerging, for
example, VoD (video on demand), video conference and IP
telephone. These new applications need more bandwidths and
lower transmission delays and jitters than traditional text-based
applications such as web surfing and e-mail. However,
traditional Internet switches /routers cannot ensure different
QoS (Quality of Service) for different flows (or sessions).
Figure 1 illustrates three flows with different throughput
requirements are competing the capacity of an output port
without fairness consideration ; as a result, they are statistically
sharing the output capacity without any priority.

Abstract-Fairness and QnS have been main concerns in
designing modern routers or switches in multimedia environment
This paper proposes a new packet-based fair queuing algorithm
for packet switches called VISTA (Virtual Clock with Virtual
Start Time Alignment) to improve fairness in existing VC
(Virtual Clock) algorithm. A novel concept of virtual start time
alignment is introduced to improve fairness ofVC algorithm and
to reduce the computing complexity to constant time with a
hardwa re-based Ea rliest Packet Selector (EPS).

Digital Object Identifier: 10.4108/fCST.BROADNETS2009.7659

http://dx.doi.org/10.4108/ICST.BROADNETS2009.7659

of packets [2]. Eligible packets are those whose virtual start
times are no more than current system virtual time.

The algorithms in the second category are called frame
based algorithms. Within a frame, a frame-based algorithm
provides different flows with different amount of services
according to their reservation. The frame-based algorithms are

usually less complex than timestamp-based algorithms, but
they cannot provide exact fairness as timestamp-based
algorithms do.

Table 1 shows the latency [5] and WFI (Worst-case
Fairness Index) [2] comparison between different PFQ
algorithms.

TABLE 1.COMPARISONOFPFQALGOR)lHMS

Ahw ri thm Latencv WFI Com plexitv Ahw rithm Latencv WFI Com plexltv

IGPS [4] ° 0 - BSFQ [6] zL/r;+Lma:!r O(N) 0(1) I
WFQ [4] L/r;+Lma:!r O(N) O(N) LPVC [7] z L/r; +Lma:!r O([;Ir;) O(loglogN)

r VC [8] L/r;+Lma:!r 00 O(logN) DRR [9] (3F-2tP;)lr
O(N) 0(1) I

SCFQ L/ r;+(Lma/r)(N-I) - O(logN) VD [II] Li]n+ZLmax/Fmtn O(N) 0 (1)

[1O] +(N-l)Lmax/r+Lmax/ n

rWF2Q L/r;+Lma.lr O([;Ir;) O(N) SmRR [12] ZLmax/n O(N) 0(1)

I[2] +Z(Lmax/ r)(N-l)

WF2Q+ L/r;+LnUJ:!r O([;Ir;) O(logN) Aliquem >>L/ r;+LnUJ:!r O(N) 0(1)

[3] [1 3]

rMSPFQ L/r;+LnUJ.lr O(L;ir;) O(logNj" StRRTI5] I2c; ». O(N) quasi-O(f)

1[14]

*Additional conditions are needed to achieve such complexities.

Flow 1 starts to send packets continuously from time 0, and
flow 2 behaves similarly but from time 900. According to VC,
F, <)()J=1802 at time 900, while F2)=902. Thus from time 900,
packets of flow 1 cannot get any service until the 499th packet
from flow 2 has been served. As we can see that packets of
flow 1 arrived in the interval [900, 1349) are all postponed to
be served for flow 1 was served excessively in the interval
[0,900) without affecting flow 2. Obviously, in this a case
further refinement is needed.

VC adopts the policy of SFF (Smallest Virtual Finish Time
First) in selection of the next packet to be transmitted . As a
result, VC might sometimes send a packet earlier than the time
with the GPS server. Figure 3 illustrates this situation, where
11 flows share a link with the normalized rate of 1PIS. Flow 1,
whose reserved rate is 0.5 PIS, sends 11 packets continuously
starting at time 0, while each of the other 10 flows, whose
reserved rate is 0.05 PIS, sends only 1 packet at time 0. For
simplicity, we assume that the sizes of all the packets are the
same. The value at the top of each block in Figure 3 represents
the virtual finish time of the packet . According to the virtual
finish times, 10 packets on flow 1 will be served back-to-back
before packets on other flows can be transmitted, then the
packets from other 10 flows are transmitted continuously
before the 11th packet from flow 1 can be transmitted. Packets
from flow 2 through 10 have been postponed because the SFF
policy in VC is in favor of flows with larger reservations and
without considering the virtual start times.:<9",<9",

: VOV7Real time

Real time 0 1 2 3 4

Session 2: r
2
=1/2

F
2
(t)

If a flow has sent more packets than its reservation even
when no packets arrived in other flows, VC will punish this
flow. Figure 2 illustrates this situation : there are two flows 1
and 2 sharing an output link.The link capacity is normalized as
1 PIS (packetltimeslot). Let r)=r2=O.5 PIS and all packets from
both flows are the same size. In itially, at time 0, the virtual
finish times for these two flows are the same (Le. F),o=F2,o=O).

Session 1: r
1
=1/2

F1(t) 246810
I I I I I I

The fIr!t nine algorithmsaretimesamp-based; whilethe las five are frame-based

L; is the maximun length of flow rpeckets, r, isthe reserved rate of flow i, Lnaxis the maximun length over all packets, F isthe frame sizeofframe-based
algorithms and ¢; isthe reserved weightof flow i.

It has been shown that to keep the fairness as WF2Q does,
the complexity is lower bounded by O(logN) [16], there is no
other way to reduce the complexity in traditional method,
except by hardware based parallelism. So some hardware based
methods are proposed such as sequencer [17] and hardware
comparison tree [18]. The former combines all packets into a
single queue which increases comparison; furthermore, the
parallel movement of data is too power-consuming. The latter
is hard to implement, and still have O(longN) complexity.

Among all these algorithms, VC is the simplest, but it
might be inappropriate in following conditions :

Figure 2.Problem 1 ofVC

Digital Object Identifier: 10.410B/ICST.BROADNETS2009.7659

http://dx.doi.orgI10.410BIICST.BROADNETS2009.7659

where t is the time when there is new HoL packet , and t

stands for the time just before t.

When all the S;<t) of the first two classes are updated, we
can calculate the alignment time m by:

81 I I I I I I I I I
82 _
83 _
84 _
85 _
86 _
87 _
88 _
89 _
810_
811 _ ,

o 10

r
1
=1/2

r
j
=1/20 (1<i<12)

S;(t) = {S,(t?
F,(t),

Class I

Class 2
(1)

(2)

For the third class of HoL packet , its virtual start time
equals to current system time directly :

where B(t) is a set at time t that contains all the flows whose
HoL packets belong to the first two classes . Then the virtual
start times for the first two classes are aligned from the
assistant virtual start time by subtracting the alignment time:

81
82
83
84
85
86
87
88
89
810
811

o 10

Figure 3,Problem 2 ofVC

20

S,(t) = S;(t) - m, Vi .

S,(t) = t , Class 3 .

The calculation ofF;(t) is the same as in VC:

(3)

(4)

And according to Theorem 1:

S,(t)::;' t , Vi E E(t)

Theorem 2: In a VISTA server, eligible packets are
those HoL packets whose virtual start times equal to the
current system time.

Proof Let Set E(t) to be the set ofeligible packets at time t,
according to the definition ofeligible packets, we have :

where L;HoL is the length of the HoL packet of flow i and r, is
the reserved rate.

For a VISTA server to choose a HoL packet to transmit,
instead of using SFF policy as in VC, it adopts a policy called
SEFF (Smallest Eligible Finish Time First) [2], which is also
used by both WF2Q and WF2Q+. With this policy, the server
chooses the eligible HoL packet with the smallest virtual fmish
time to be next. A HoL packet is said to be eligible if its virtual
start time is no greater than the current system virtual time.

For the VISTA algorithm we have the following theorems :

Theorem 1: In a VISTA server All the virtual start
times of HoL packets at time t cannot be less than t.

Proof Combine Equations (2) and (3), we have :

•

(5)

LHoL

F;(t) =S;(t)+-'-, Vi
1j

S(t) = S'(t) - min{S'(t)} +t
, , j eB(t) J

S,(t) ~ t .

And S;(t)-min{S'(t)} ~ 0 is always true, we get:
jeB(t) j

For the very reasons, we have tried to improve VC
algorithm.

VV1STA(t) = t

and let the packets offlow i be enqueued into queue i. Only one
S;(t) and F;(t) for each queue are maintained, and they represent
the virtual start time and virtual finish time of HoL packet of
queue i. Virtual times are updated only on the arrivals of new
HoL packets ofeach queue.

HoL packets in a VISTA server can be divided into three
classes: Class (1) . An unserved HoL packet is still HoL packet;
Class (2). A packet becomes a HoL packet after its predecessor
departs in a non-empty queue ; Class (2). A packet arrives to a
previously empty queue (there is no packet in the queue and no
packet is send out from the queue in previous time slot), it
becomes a HoL packet immediately .

Virtual start times S;(t) of different classes are calculated
differently.

To calculate S;(t) of the first two classes , the assistant
virtual start time S;(t) is introduced and calculated as follow:

III. VISTA: A NEW FAIR QUEUING ALGORITHM

In this section, we will propose a new algorithm that
improves VC to solve the problems it suffers from, and at the
same time to keep the simplicity of its system virtual time.
Since the basic idea of this new algorithm is to force all the
virtual start times ofHoL (Head of Line) packets to be aligned
by subtracting an alignment time, we call this algorithm Virtual
Clock with Virtual Start Time Alignment or VISTA for short.

For a VISTA algorithm, we choose the system virtual time
the same as in VC:

Digital Object Identifier: 10.4108/1CST.BROADNETS2009.7659

http://dx.doi.org/10.4108/ICST.BROADNETS2009.7659

Sj(t) ~ I.

Theorem 3: In a VISTA server, at any time, if the
queues are not empty, there must be at least one eligible
packet.

Proof. According to equation (5), when the queues are not
empty, if the HoL packets belong to the first two classes, there
must be at least one HoL packet has the minimum assistant
virtual start time, and for the generality, we let it be queue k,
thus :

So for all eligible packets we have:

Si(/) = I. •
81
82
83
84
85
86
87
88
89
810
811

Figure 5. Solution to problem2

Sk(/) = S:(t)-rnin{S'(/)} + 1=1
j eB(,) J

Otherwise, if the HoL packet belongs to the third class , its
virtual start time must equal to current system time according
to equation (4).

By applying Theorem 2, we know that Theorem 3 is true. •

Theorem 3 ensures that at any time when there is at least
one backlogged queue, an eligible packet can be found. For
some of the other algorithms, this is not guaranteed. To let the
server work-conserving, some complicated processes should be
invoked, but a VISTA server has no such problem

Now consider again the two problems that VC meets, but
this time under a VISTA server.

The first situation is illustrated in Figure 4, in which the
value inside each block represents the length of the queue and
the values at the top ofeach block are the virtual start time and
the virtual finish time of the HoL packet at that time. Not like
in VC, in a VISTA server, the virtual start times is aligned to
system virtual time when there is a new active flow (flow 2) at
time 900 . Therefore, the flow 1 and flow 2 packets can get the
service alternately according to their reservation after the
arrival ofthe first flow 2 packet as shown in Figure 4.

Consider another situation shown in Figure 5, which is the
second problem that VC meets, and the values above or below
each block represent the virtual start time and virtual fmish
time of that packet . Note that the VISTA server uses SEFF
policy when choosing the next packet to send out . At time 0, all
the HoL packets are eligible because they all have the virtual

Real time : V ~..rV17

Figure4. Solutjon to problem I

Digital Object Identifier: 10.4108I1CST.BROADNETS2009.7659

http://dx.doi.org/10.4108//CST.BROADNETS2009.7659

start time of O. The HoL packet of flow 1 is selected because it
has the smallest virtual finish time of 2 while others have
virtual fmish time of 20. When finished transmitting the first
packet from flow I, the second packet becomes the HoL packet
of queue 1. The system state is in Case II, the virtual start time
ofthis packet would be 2, and its virtual fmish time would be 4.
Now the system virtual time is updated to I , only queue 1 is not
eligible and all the HoL packets of other 10 queues have the
same virtual start time and virtual fmish time, so a packet from
other 10queues is selected arbitrarily . After that, system virtual
time is updated to 2, so the HoL packet of queue I is eligible
now and has the smallest virtual fmish time . The departure
sequences are illustrated in Figure 5. The output under the
VISTA server is much smoother than under VC and on the
same level as that ofWF2Q.

By now, we showed that VISTA is one of the PFQ
algorithms that are most similar to GPS, but it is rather
complicated. Although the calculation of virtual times is vel)'
simple and can be done in constant time, the server has to find
out the smallest virtual start time and the smallest virtual fmish
time among all the HoL packets. Furthermore, it has to align
the virtual start times. Both the time alignment and finding of
minimum value from an unordered list have very high time
complexity in traditional method.

We will introduce a new hardware-based Earliest Packet
Selector in the next section, which makes the alignment and
finding be done in constant time.

IV. EARLIEST PACKET SELEcrOR

In this section, we design a new device called EPS (Earliest
Packet Selector) to make the time alignment and eligibility test
be done in constant time.

As we all known, data are stored in binary format, and the
higher bits ofa number are more significant than the lower bits.
So the basic idea offmding the smallest virtual start/finish time
(called virtual time) is to evaluate the virtual times in parallel of
each other bit by bit from highest to lowest. This process is also
called scanning. During the scanning, we always exclude the
virtual times with 1 at the current evaluating bit, because 1 is
larger than O.

The simple schematic model performing the scanning is
illustrated in Figure 6. In this model, each row represents a

Figure 6.To fmdtheMinimwn Value in Consant Tme

virtual time with each bit stored in a cell, and each cell is
connected to a switch, which is also controlled by the cell. Ifall
the switches on a match line are on, the match line is in
"match" state. Otherwise, ifany ofthe switches on a match line
is set to off, that match line is "unmatched". At the beginning
of a scanning, all match lines are set to match state. Then the
controller sends a command to the first compare control
through the control bus and, that compare control broadcast the
value 0 to all the cells in that column. Each cell compare the
value 0 with the value they stores, if they are not equal, the
switch is set to off, thus the corresponding match line is set to
unmatched state. Then the controller detects the states of the
match lines and takes actions according to the four cases ofthe
states as described below. After that, the controller sends
another command to the second compare control, and repeat
the process until the last bit is compared or the smallest virtual
time is found .

During the scanning process, four cases may occur:
(I) .After comparing some bit (including the last bit), there is
only one match line in match state, then the corresponding
virtual time is the smallest. The controller sends a command to
stop the scanning process. (2).After comparing some bit (not
the last bit), all match lines are unmatched, but before the
comparing more than one match line is matched. In this case,
the controller sends a command to skip comparing current bit
and continue to compare the next bit, because the
corresponding virtual times must be all have value 1 at current
bit. (3).Just after comparing the last bit, all match lines are
unmatched, but before the comparison, some match lines are
matched , then they must have the same (minimum) virtual time.
(4).After comparing the last bit, there are stilI several match
lines are in match state, then they must be equal and both have
the smallest virtual time.

Since we only co mpare one bit (in parallel) at each time,
the speed should be very fast . In addition, the time of the
scanning process is independent of the number of active flows
but only depends on the length of the times in terms of bits.
Thus, we can find out the smallest virtual time in O(B) time,
where B is the length of virtual times in bits, which is
independent ofN and is a constant for a specific system.

Digital Object Identifier: 10.4108/1CST.BROADNETS2009.7659

http://dx.doi.org/10.4108/ICST.BROADNETS2009.7659

We must mention that if the compare controls broadcast the
corresponding bits of the current system virtual time to each
column, the selector can decide which virtual times equal to
system virtual time. According to Theorem 2 this property can
be used to test the eligibility of the packets in O(B) time, and
from Theorem 3 we known that the eligible packets can be
found at any time when there is at least one backlogged queue.
This simplifies the process.

The concept model of EPS is shown in Figure 7. As we can
see, the EPS is a combination of two scanning modules: one is
used to compare the virtual start times, which is called the
virtual start time scanner (VSTS); and the other is in charge of
the comparison of virtual finish times, we would like to call it
virtual fmish time scanner (VFTS).

The match lines are driven by the queue length detectors,
which activate the match lines if the queue lengths are greater
than O. If a queue is empty, the corresponding match line is
deactivated, i.e. the match line will be always in unmatched
state until there is a packet arrival to that queue.

The number of rows in EPS is equal to the maximum
number of possible flows (queues). Each row associates with
one queue and is responsible for calculating the virtual start
time and the virtual finish time for that queue. Note that in
other PFQ algorithms memories are also needed to store the
virtual times, but in our algorithm, this "memory" is in EPS
and it is also responsible for the calculation and comparison.

The calculation of virtual start time and virtual finish time
is only performed on the arrivals of new HoL packets. The
virtual start time is updated according to equation (I) for the
first two classes of HoL packets . Then VSTS fmds out the
smallest virtual start time in O(B) time. In addition , the virtual
start times of all HoL packets should be aligned by subtracting
the difference between the smallest virtual start time and
current system virtual time. This can be done in 0(1) time by
using the parallel subtractors. Let the virtual start times equals
to current system time directly according to equation (4). Then ,
all the virtual fmish times are updated with the help of parallel
adder. Consequently all virtual finish times are updated
according to new virtual start time and the calculation ofvirtual
finish times is done in constant time with the help of the

Smallest virtual start time

Figure 7. Concept Model ofEPS

parallel adder.

The process offinding a packet to transmit consists of two
steps: finding eligib Ie packetslalignment of virtual start time
and finding minimum finish time.

Step 1: When finding eligible packets, all the start times are
comparing with current system virtual time, and all the packets
whose virtual start times are no greater than current system
virtual time are eligible. This can be done by VSTS in 0(1)
time.

If there is only one eligible packet, the selector selects it
and no further step should be done. If there are several eligible
packets, the second step should be invoked.

Step 2: The VFTS can fmd out all the eligible packets (have
been evaluated in last step) that have the smallest virtual finish
time in O(B) time. If there is only one packet having the
smallest virtual finish time, the selector selects it as the next
packet to send out. Otherwise, ifthere are some packets having
the same (smallest) virtual finish time, the selector chooses one
randomly.

We should also mention that in other algorithms the
maximum value of system virtual time is assumed infinitely
large ; however, it is limited in a real system If the system
virtual time reaches its maximum value, it turns back to O. In
EPS, when the system virtual time get its maximum value, all
the virtual start times ofHoL packets are aligned by subtracting
this maximum value. This keeps the packets still in the right

Figure 8. Bandwidth guarantee by VISTA

order after the system virtual time turned back to O. The
process ofthis operation is the same as normal virtual start time
alignment, but the alignment time is the maximum value in this
case, so the running time is also in constanttime .

VI. CONCLUSIONAND FUTURE WORK

In this paper, we proposed a new fair Queuing algorithm,
which is based on existing Virtual Clock algorithm because of
its simplicity of calculating virtual times. We also analyzed the

V . SIMULATIONS AND RESULTS

Consider the situation shown in Figure 1 again: three flows
sharing a link with normalized rate 1 PIS, and the bandwidth
reservations offlows 1,2 and 3 are 1/6 PIS, 1/3 PIS and 1/2 PIS
respectively . However, this time, we schedule these three flows
with a VISTA server. The loads of these three flows vary from
0% to 90%. As we can see from Figure 8, when the aggregated
load is no more than 100%, all flows can be satisfied; when
some flows send packets exceed their reservations, the spare
bandwidth is shared between the flows according to their
reservation. When all the flows send packets more than their
reservations (i.e. the aggregated load is more than 100%), the
allocated bandwidths are just equal to their reservations. This
simulation shows that the VISTA server can guarantee the
bandwidths that flows reserved.

In the next simulation shown in Figure 9, we show the
delay performance of four different PFQ algorithms . In fact, we
do simulations of a lot of algorithms, but only the algorithms
which have very similar performances are shown here. In this
scenario, the reservations of three flows are the same as the
previous simulation. The load of each flow is 55%, and flow 1
keeps sending packets from time 0 and flow 2 begins to send
packets from time 500, while flow 3 starts to send packets from
time 1000 . As we can see from Figure 9, VC punishes flow 1
for its innocent over sending. WF2Q shows better fairness than
VC , and MSPFQ, which need some assumption on traffic,
shows very similar performance as WF2Q, but not exactly the
same, however, VISTA, which re~uires no assumption on
traffic, performances exactly like WF Q.

The system virtual times of different algorithms during the
above simulation is shown in Figure 10. As we can see, VISTA
maintains the smallest system virtual time, which means the
binary bits (B as introduced in last section) of system virtual
time would be smallest. Thus, the EPS for VISTA can find next
packet much faster than for other algorithms such as WF2Q+.

---G- Flow 1 (reservation: 1/6)
-e-- Flow 2 (reservation: 1/3)
-+- Flow 2 (reservation: 1/2)

0.4 0.6 0.8 1
Normalized Load

0.2

0.5
=0-
Q)

.~
roE 0.4
<5.s
~ 0.3
.§
"0
<:

~ 0.2
"0
2
I1l
U
.2 0.1
«

6000

I
VI STA Y

./ /
.x-V /

1
X

~~

2100 ' 3000 4000 50006000

00 600C

00 500C

00 I I
MSPFQ f WF 2Q V00

""/
300C

'i00
/' /,x- I -

200c .x- I
00 »: x-

X 100c--- ..- y...-
~

.......-
21:00' 3000 4000 5000 6000 2l DC 300C 400C 500C

10

20

30

40

60

50

6000

--flow 1 (1/6)1

""*" f1ow 2 (1 /3~1 /---flow 3 (1/2)

VC /
I

2OJO 3OJO 4000 5000

2000

ioooo

12000

14000

>- 8000
I1l

;3 6000
4000

Packet sequence number

Figure9. DelayPerfonnanceofPFQ Algoritiuns

Digital Object Identifier: 10.4108I1CST.BROADNETS2009.7659

http://dx.doi.org/10.41081ICST.BROADNETS2009. 7659

5X10' 4 X10' 4 x 10' 3x 10' 15000
WFQ SCFQ WF 2Q+ MSPFQ VISTA

4 WF>O 2.5 VC
Q)

10000E
F 3

"iii 1.5
::J 2t
5 5000

0.5

00 5000 10000 1500000 5000 10000 1500000 5000 10000 150000d 5000 10000 15000 00 5000 10000 15000

Time

Figure 10. VirtualT ime Traces ofPFQ Algoritluns

disadvantages of VC, and developed the time alignment
method to correct them The basic idea of time alignment
method is to align the virtual start times of all HoL packets to
current system virtual time when there is a new active flow. By
doing this, all the flows can re-allocate the bandwidth
according to their reservation. As we have shown in this paper,
with the VISTA algorithm and the SEFF policy it adopts, the
problems that VC meets are eliminated.

Besides of showing the same performance of VISTA and
WF2Q by using simulation, we could also analytically proof
that the latency and WFI of VISTA, which are two most
important parameters of PFQ algorithms, are the same in as
those ofWF2Q by using the LR server [5] and RP server [19]
model, however, the proof is quite long, we would like to show
the proofin our next paper.

The time complexity of VISTA algorithm is still high
because the time alignment and fmding the smallest virtual
time are time-consuming operations . To reduce the complexity
of the algorithm, we described a Earliest Packet Selector to
make the time alignment in 0(1) time and to make the smallest
time finding and eligibility evaluating in O(B) time, where B is
a constant for a certain system Thus VISTA algorithm can be
performed in O(B) time. However, in this paper, only the
concept model of EPS is shown, and we would like to complete
the design and implementation ofEPS in the future work ofour
lab.

It has been shown that in a GPS server, if the traffic is
limited by leaky bucket or token bucket, its delay can be
bounded [4], thus the QoS can be guaranteed. Since VISTA is
one of the algorithms fitting into the GPS server most closely,
we can say that the QoS can be guaranteed in a VISTA server.

ACKNOWLEDGMENT

The work presented in this paper is supported by Chinese
Natural Science Foundation (project No. 60773102) and
Sichuan University (project name: Next Generation Internet
Architecture). The authors would like to acknowledge the
financial support from CNSF and SCD.

REFERENCES

[1] D. Stiliadis, "Traffic Scheduling in packet-switched networks: analysis,
design, and implementation," PhD. dissertation, University of
California ,Santa Cruz, 1996.

Digital Object Identifier: 10.4108/fCST.BROADNETS2009.7659

http://dx.doi.org/10.4108/ICST.BROADNETS2009. 7659

[2] J. Bennett and H. Zhang, "WF2Q: wors-case fair weighted filir
queueing," INFOCOM '96. Fifteenth Annual Joint Corference of the
IEEE Computer Societies. Networking the Next Generation.
ProreedingsIEEE, 1996, pp. 120-128 vol I.

[3] J. Bennett and H Zhang, "Hierarchical packet fair queueing
algoritluns," Networking, IEEFJACM Transactons on, vol. 5, 1997,
pp.675-689.

[4] A. Parekh and R. Gallager, " A generalized processor ffiaring approach
to flow control in integrated services networks: the single-node case,"
Networking, IEEE/ACMTransactionson, vol. 1, 1993,pp.344-357.

[5] D. Stiliadis and A Varma, " Latency-rate servers: a general model for
analysis of tratfic scheduling algoritluns," Networking, IEEFJACM
Transactions on, vol 6, 1998, pp. 611--Q24.

[6] S. Cheung and C. Pencea, " BSFQ: bin sort fair queueing," INFOCOM
2002. Twenty-First Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, 2002, pp. 1640
1649 vo13.

[7] S. Suri, G. Varghese, and G. Chandranmenon, "Leap forward virtual
clock : a new fair queuing scheme with guaranteed delays and
throughpu faimess ," INFOCOM '97. Sixteenth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, 1997, pp. 557-565 vol2.

[8] L. Zhang, " Virtual clock: a new traffic control algorithm for packet
switching networks, " SIGCOMMComput. Commun. Rev., vol. 20,
199O,pp.19-29.

[9] X. Zhang and L. Biuyan, " Deficit round-robin scheduling for inpu
queued switches," Selected Areas in Communications, IEEE Journal
on, vol. 21, 2003 , pp. 584-594.

[10] S. Golestani , "A self-clocked fair queueing scheme for broadband
applications ," INFOCOM 94. Networking for Global
Communications; 13thProreedingsIEEE, 1994, pp. 636-646 vol2.

[11] S. Bakiras, F. Wang, D. Papadias, and M Hamdi, " Vertical
dimensioning: A novel DRR implementation for efficient filir
queueing," ComputerCommunications, vol, 31, Sep. 2008, pp. 3476
3484.

[12] C. Guo, "SRR: an 0(1) time-complexity pocket scheduler for flows in
multiservice pocket networks," Networking, IEEE/ACMTransactions
on, vol. 12,2004, pp. 1144-1155 .

[13] L. Lenzini, E. Mngozzi, and G. Stea, "Tradeoffs between hw
complexity, low latency, and fairness with deficit round-robin
schedulers," Networking, IEEE/ACMTransactions on, vol. 12,2004,
pp.681-693.

[I4] D. Kwak, N. Ko, and H Park, "Mean s artjng potential fair queuing for
high-speed packet networks,' GlobalTelecommunications Conference;
2003.GLOBECOM'03. IEEE, 2003, pp. 2870-2874 vol.5.

[I5] S. Ramabhadran and J. Pasquale , "The Stratified Round Robin
scheduler : design, analysis and implementation," IEEE/ACM Trans.
Netw. , vol. 14,2006, pp. 1362-1373 .

[16] J. Xu and RJ. Lipton, "On fundamental tradeoffs between delay bound;
and computational complexity in pocket scheduling algirjthms,"
IEEE/ACMTrans. Netw. , vol 13,2005, pp. 15-28.

[17] H. Chao and N. Uzun, "A VLSI sequencer chip for ATM traffic shaper
and queue manager," Solid-State Circuits, IEEE Journal of vol. 27,
1992, pp. 1634-1643.

[18] K.G. Harteros, Fast Parallel Comparison Circuits for Scheduling, lns,
of Complier Science, 2002.

Digital Object Identifier: 10.410B/ICST.BROADNETS2009.7659
http://dx.doi.org/10.41OB/ICST.BROADNETS2009. 7659

[19] D. Stiliadis and A Vanna, "Rate-proportional servers: a design
methocblogy for fair queueing algorithms," Networking, IEEE/ACM
Transactions on, vol 6, 1998, pp. 164-174.

