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Abstract-In optical burst switching networks, bursts arrive
out-of-sequence due to contention resolution schemes as well as
contention avoidance schemes. Out-of-sequence bursts may imply
out-of-sequence packets, which affect the packet layer perfor
mance. Consequently, it is necessary to classify and investigate the
resulting burst/packet out-of-sequence pattern. In our previous
work, we presented an analytic model to evaluate the out-of
sequence pattern for deterministic traffic showing constant inter
arrival times using the IETF WG IPPM reordering metrics. This
paper extents our previous work. If the amount of out-of-order
arrivals is small, the performance impact may also be small. One
indication of the amount of out-of-order arrivals is the reordering
ratio. In this paper, we prove analytically that deterministic traffic
with constant inter-arrival time generates the highest reordering
ratio for our model with respect to any other traffic characteristic.
Consequently, deterministic traffic serves as an upper bound for
the estimation of the reordering ratio. It allows a quick estimation
of the reordering ratio and indicates if further investigations on
the reordering pattern are required.

Index Terms-burst reordering, worst case considerations,
deterministic traffic

I. INTRODUCTION

Optical burst switching (OBS, [1]) is a promising network
technology for core and metro networks based on wavelength
division multiplex. At the OBS network edge, the OBS assem
bly unit aggregates packets based on their destination address
and optionally their service class. At the end of the assembly
process, the assembly unit forwards the burst to the optical
transmission unit heading to the destination node.

Literature proposes various assembly schemes like time- or
size-based assembly or a combination of both. Each of these
schemes shows a different traffic characteristic of the departing
bursts depending on the input traffic.

In OBS networks, contention occurs on intermediate nodes
if two or more bursts request the same wavelength at the
same time. Given this situation, original OBS discards all but
one successful burst. These burst losses degrade the transport
service and stimulate the research on contention resolution and
contention avoidance schemes to reduce burst losses [2]-[5].

Both, contention resolution schemes and contention avoid
ance schemes delay bursts compared to the primarily planned
shortest path. As a result, the burst order at the destination may
change resulting in out-of-sequence arrivals. Since each data
burst is an aggregate of multiple packets, out-of-sequence burst
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arrivals also imply a special out-of-sequence packet arrival,
which may affect transport and application layer protocols.

Transport protocols provide an unreliable or a reliable con
nection service to applications. Out-of-sequence packets of the
same flow affect the performance of these protocols. [6] gives
an overview on this topic. As summarized in [7], literature
discusses these impacts on the transport layer in several
publications. The transmission control protocol (TCP, [8]) is
the most important representative of transport protocols for a
reliable connection service in IP-based networks. The basic
TCP congestion control algorithm [8] suffers from missing or
out-of-sequence packets. Literature extensively studies in [9]
[14] the impact of burst losses on TCP.

Literature rarely studies the impact of burst reordering on
TCP and other upper-layer protocols. In our previous work [7],
we presented an analytic model as well as a new methodology
to study burst reordering pattern in OBS networks. Pere1l6 et
al. in [15] as well as Schlosser in [16] focus on burst reordering
using simulations rather than formal methods. Their simulation
models usually include several layers in the simulation not
allowing a deep in-sight in the reordering process.

A more basic problem is the definition of an out-of-sequence
burst and the characterization of its out-of-sequence pattern.
Literature proposes several different out-of-sequence metrics.
Piratla et al. propose in [17] the reorder density to measure
the amount of reordered packets and the displacement of a
single packet. They compare their approach to the standardized
metrics of the IETF in [18]. Also in the field of optical burst
reordering, Callegati et al. propose a simple measure for out
of-sequence bursts in [12]. Both metrics lack a standardized
approach. For a comprehensible study, we consider the stan
dardized metrics of the IETF WG IPPM [19].

In our previous work [7], [20], [21], we proposed a first
model to investigate the burst reordering phenomena analyt
ically and showed its applicability for traffic types showing
deterministic traffic with a constant inter-arrival time. We esti
mated these calculations as a worst-case scenario regarding the
reordering ratio but did not provide a formal proof. This paper
closes this gap and provides an analytic proof, showing that
the reordering ratio (the amount of out-of-sequence arrivals)
reaches its maximum with deterministic traffic.

Starting from a given reordering model, our findings enable
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Fig. I. Queueing model

III. REORDERING ANALYSIS

B. Network delay distribution

The previous section introduced the delay ~k of an abstract
link k. This section motivates the correlation between the inter-

A. Reordering model

Our reordering model considers bursts sent from an OBS
source node to an OBS destination node. These bursts may
follow different paths due to implemented contention resolu
tion and avoidance schemes. Consequently, in an end-to-end
consideration the bursts show a certain jitter at the destination
node. The distribution of the jitter reflects the different paths
from source to destination and their frequency of occurrence.

We discretize the delay jitter and model each delay alterna
tive from source to destination node by one abstract link l . In
general we assume m E N+ parallel abstract links h to lm.
Besides this, lo represents the primarily planned shortest path
with no extra delay. m is finite as the network itself limits the
number of alternative paths.

A burst follows an abstract link and receives an additional
delay, reflecting for instance the time in a fibre delay line or
on a deflection path. Abstract link i , delays the burst following
li by ~i E lR.+.

The jitter distribution at the destination node reflects the
different probabilities of the abstract links. Consequently, we
define the probability Pi for a burst following abstract link li'
Thereby, the law of total probability holds: I:~o Pk = 1.

Summarizing, a 3-tuple (k ,Pk , ~k) characterizes each ab
stract link lk: the link number k, °:::; k :::; m; the probability
Pk, ° :::; Pk :::; 1 to follow lk and the delay ~k . Note, as
an OBS network switches each burst separately, each burst
decides independently of all other bursts which abstract link
to follow.

This section first reviews our reordering model and second
shows the methodology to obtain the reordering ratio for
deterministic traffic showing constant inter-departure times.

)time between two burst departures

II . REORDERING METRIC

This section introduces the definition of IP packet reorder
ing, which is consistent with the proposal of the IETF WG
IPPM [19]. This definition also holds for generic packet
switched networks like OBS networks.

The reordering definition includes the following theoretic
considerations. The source node assigns each burst a sequence
number. The sequence numbers increase strict monotonically.
At the destination node, a 3-tuple (i, sri], s'[iD characterizes
each burst arrival. Index i indicates the arrival order at the
destination. sri] denotes its sequence number and s' [i] denotes
the next expected sequence number at this arrival instance.

The previously received burst determines the value of s'[i].
We distinguish two cases:

1) sri] < s'[i] burst i arrives out-of-sequence
and s'[i + 1] := s' [i].

2) sri] ~ s'[i] burst i arrives in order
and s' [i + 1] := sri] + 1.

Literally, a burst gets to the destination out-of-sequence, if
there is one burst with a larger sequence number arriving prior
to it. For instance, burst I shows sequence number i and burst
J shows sequence number j where i < j . Burst I leaves the
source node earlier than burst J . The inter-departure time)
between burst I and burst J is the random variable T1J . The
path from source to destination shows for each burst a different
delay D, where D ~ 0. Burst I receives random delay DI,
while burst J receives a random delay of D J . According to
the definition, burst I arrives out-of-sequence with respect to
burst J if the following inequality holds:

D 1 > D J +TIJ, where D 1 ~ O,DJ ~ 0, TIJ > ° (1)

With this definition, [19] derives the reordering ratio indi
cating the proportion of bursts, which arrive out-of-sequence .
The reordering ratio equals the probability of an out-of
sequence burst arrival at the destination. As shown in [7], the
burst reordering ratio equals the packet reordering ratio.

a quick estimation of the amount of reordered bursts and
packets at the destination. Thereby, our findings enable a
worst-case estimation of the amount of reordered bursts. The
amount of out-of-sequence bursts/packets indicates if an in
depth investigation on the reordering pattern is necessary or
not [19]. Applying formal methods requires no multi-layer
network simulations. In this scenario, single layer studies on
the OBS layer are sufficient, a simulation of the whole network
stack ranging from the transport protocol down to the OBS
network layer is not necessary.

We structure our paper in the following way: In section II
we introduce the IETF definition of reordered bursts/packets
and the reordering ratio. Section III reviews the reordering
ratio for deterministic traffic schemes and section IV proves
our findings with respect to generic traffic characteristics.
Section V summarizes our work.
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Proof: If the traffic characteristic shows deterministic
arrival instances and constant inter-arrival times, the time axis

Theorem. The reordering ratio of traffic stream Q) showing
an arbitrary inter-arrival time distribution with mean E [T1J]
is less or equal than the reordering probability of a traffic
stream It showing constant inter-arrival times (VAR [It] = 0)
with the same mean inter-arrival time E [TI J] on the same
reordering model. According to (3), this translate to the
following proposition:

(3)

(4)
I

Pr( Q)) ~ Pr( It)

m ( i m )

Pr(lt) = ~Pi 1 - gi=~+l Pi

IV. WORST CASE CONSIDERATIONS

This section proves that the analytic reordering model
together with packet arrivals showing constant inter-departure
times serve as a worst-case approximation of the expected
reordering ratio. We prove that deterministic traffic with a
constant inter-arrival time generates a larger reordering ratio
than any other traffic.

For the generic traffic scenario, we assume a mean inter
arrival time of E [TIJ] ' The reordering model corresponds
to the analytic reordering model of section III-A with m
abstract links . According to the definition, an abstract link
i delays a packet by i6. = i E [TIJ] with probability Pi,
where L:~1 Pi = 1. Thereby, the abstract link probability
is arbitrarily distributed. With this scenario, we state the
following theorem:

the test burst) . The reordering probability is a joint probability
of (a) the test burst receives a delay and (b) there is at least one
burst arrival with a larger sequence number than zero before
the test burst. For condition (a), we assume that the test burst
receives a delay of dt with probability Pd,. Then there are dt
candidate bursts, which may accomplish condition (b).

We derive the probability of (b) by its complement, i. e., that
there is no arrival before the test burst. The random variable
of the delay of the test burst is D t . Then the probability
that the candidate burst i , 0 < j :::; dt does not accomplish
condition (b) is P(B = 0 ID, = dt IJ = j) = L~=d,-i+l Pk·
B denotes the random variable of the arrival of burst j
before the test burst. The sum of probabilities represents
the probability that burst j arrives later than the test burst.
It considers the position of the burst j and sums up the
probabilities of all abstract link leading to a later arrival than
the test burst. For instance, consider figure 2. Burst 3 arrives
later than the test burst if it follows abstract links i ~ 2. It
arrives before the test burst if following abstract links 0 and I.

The joint probability that none of the candidate bursts
accomplish condition (b) at the same time is P(B = 0 ID, =
dd = TI;~l P(B = 0Io, = dt IJ = j ). The complementary
probability of P (B = 0 ID; = dt ) accomplishes condition (b).
The burst reordering probability for deterministic traffic results
in

, ..
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Fig. 2. Reordering with deterministic (top) and generic traffic (bottom) traffic

C. The reordering probability

Our previous work derived the reordering extent and the
TCP relevant n r-reordering metric in [20] and [7]. Here , we
briefly summarize the calculation of the reordering ratio for
a deterministic traffic scenario It, where VAR [TIJ] = O. For
this investigation, we assume a lossless burst network.

Figure 2 depicts in the first row the general reordering
scenario for one selected burst , i. e., the test burst, but our
considerations also hold for any other burst, too. As we
consider the reordering probability, we distinguish two kinds
of bursts :

1) the test burst (black) for which we evaluate the reorder
ing ratio . Without loss of generality, its sequence number
sis s = O.

2) bursts (gray) departing later but arriving earlier than the
test burst because of the delay of the test burst. These
bursts cause the test burst arriving out-of-sequence.

The test burst arrives out-of-sequence at the destination if
there is at least one burst arrival with s > 0 prior to the test
burst (at least one out of five bursts of figure 2 arrives before

arrival time and the delay 6.k for deterministic traffic showing
constant inter-arrival times .

In our scenario, we consider deterministic traffic with a con
stant inter-arrival time. This scenario corresponds to constant
bit rate traffic as introduced in our previous work [7]. There,
the delay on two neighbouring abstract links differs by exactly
the mean inter-arrival time : 6. i +l - 6. i = 6. = E [TIJ]. Con
sequently, the delay per abstract link k results in 6.k = k 6..

Figure 1 depicts the corresponding queuing model of the
whole reordering process. This model represents our simula
tion model used to validate our findings. The bursts leave the
source node and enter the reordering model. An initial splitting
process assigns each burst to a certain abstract link following
the probability distribution of the abstract links. Each abstract
link - except lo - delays the burst by k 6. using an infinite
number of server places. After leaving the abstract link the
burst leaves the network and arrives at the destination node.
The initial splitting process determines the total number of
delay units to pass .
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(2)

00

shows slotted characteristics as depicted in figure 2. At each
slot border, there occurs exactly one burst (first row). The time
between two bursts is constant ~. If the test burst follows
abstract link i, then in the mean time at maximum i bursts
may pass by, if they do not follow any abstract link, causing
a later arrival than the test burst. The figure illustrates the
scenario for i = 5, i. e., the test burst follows abstract link
5. Besides for the constant inter-arrival time, the slots serve
a different purpose. The slot number determines the sum of
probabilities for a later arrival than the test burst (cf. (3)).

Figure 2 shows the scenario for a general burst arrival
pattern in the bottom row. Consequently, the number of burst
arrivals within one slot varies. Mapping the burst arrivals onto
the slotted time axis leads to a random distribution of arrivals
within each slot. In the figure, Xi denotes the number of
burst arrivals within one slot. For instance, in the first slot
one burst arrives, while in the third slot no burst arrives.
Thereby, we neglect the burst length and consider only the
arrival instance of the burst. The distribution of arrivals within
the slots corresponds to the burst traffic characteristic.

For the generic traffic scenario, Px(t) is the probability
distribution function of the number of arrivals within an
arbitrary time interval t. Then, for the first slot the following
equations hold:

(5)

(6)

equations:

00

L L Pr (X = xA N = n) = 1 (7)
n=OxES~

00

L L nPr (X = xA N = n) = i (8)
n=OxES~

(7) states the total probability of all possible arrivals within the
next i slots. (8) represents the average number of packets in
the whole interval. According to the definition of section 111-B
this is i for i slots.

According to the reordering probability of equation (3), we
formulate an equivalent equation to determine the reordering
probability of a general arrival pattern in (2). Its structure
follows equation (3).

The outer sum considers all possible branches i of the test
burst (Pi). The bracket shows the complementary distribu
tion of a burst arrival with a larger sequence number. The
product combines the number of possible arrivals N and the
distribution of these arrivals among the i slots (S~). For each
arrival within a certain slot, the same condition applies for
the sum of probabilities (for a later arrival than the test burst)
equivalent to (3). The product of sums guarantees the joint
probability for all slots. Further, equation (2) reformulates this
conditioned probability to a joint probability in the second
line. The innermost sum represents a sum of probabilities. For
convenience of reading, qk abbreviates the individual factors.

According to the theorem, (4) must hold for any distribution
of p. As a first step, we enforce our proposition by demanding
that each individual summand of (2) is smaller than the
corresponding summand of (3). If this is true, also (4) is true.

Applying this simplifications leads to the following inequal
ity, where the expression of Q; (from (2)) stands left and the
expression of ~ (from (3)) stands right (the inequality sign
changed because of resolving the complementary probability):

The next approximation focus on the q~k product of equa
tion (9). The product consists of n factors as E~=l Xk = n.
The subsequent step divides both sides by the individual

(5) states the requirement of the mean inter-arrival time being
~ = E [T]J] and (6) gives the total probability of all arrivals.

We consider for the test burst the arbitrary delay of i. With
this, we introduce the vector x representing the number of ar
rivals within the i slots. Therein, Xk holds the random number
of arrivals within slot k, where 1 < k < i. Additionally, Si
represents the co-domain of X holding all possible vectors x
of length i. The subset S~ shows exactly n arrivals within
the i slots. We summarize these properties in the following
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00

:L q n Pr (X = x1\ N = n) ? q i (11)
n= O

qk S 1 for 1 S k S m . As the product reflects a joint proba
bility, we approximate the individual qk by its smallest value
q = mink {qk}. Inserting q in (9) leads to the approximation
of the product:

(12) shows the same structure than the inequality by
Jensen [22] for convex functions .p:

cp (L::aiXi) S L::aicp(Xi) where a; > O. (13)
L:: ai L:: ai

In our case cp = g(n) = qn is convex as g"(n) > 0, 'in> O.

•
A. Numerical results

In this section, we first introduce the applied network delay
distributions and traffic characteristics for a comprehensive
discussion. Second, we show some illustrative results to vi
sualize the upper bound burst reordering ratio and compare
these results to the simulation results of other the traffic
characteristics.

1) Parameterization: We parameterize our reordering
model with the following parameters: (a) the probability of
delay P, which corresponds to the complementary probability
to follow Zo, (b) the number of abstract links m and (c) the
delay distribution among the m abstract links. We distinguish
three different delay distributions, where i gives the index of
the abstract link with 1 S i S m.

• geometric distribution:
Pi = q (1 - q) i-l with q = 1 - (1 _ p)l /m,

(15)

(14)

fD(t) = 8(t - d)

E[T] =d

• linear distribution: Pi = 2 i P/ (m2 + m) ,
• uniform distribution: Pi = 1/m.
We load our traffic model with three different traffic distri

butions: Pareto traffic, Poisson traffic and deterministic traffic
for comparison. The properties of the Pareto distributed traffic,
showing heavy tail characteristics, are:

kO:
fp( t) = a ko:+1

{

a k for a > 1
E [T] = 000:- 1

for a S 1

The first line shows the probability density function, while
the second line shows the mean value. The parameters of the
Pareto distribution are the shape parameter a > 0 and the
minimum value k > O. If a > 2, then also the variance exists.

The next equations show the characteristics attributes of the
well known Poisson distribution (left) and the deterministic
distribution (right):

f N(t) = Aexp(-At)

E[T] = ~
Therein, A represents the mean arrival rate and d represents
the constant inter-arrival time.

2) Illustrative results: For numerical results, we fix the traf
fic mean rate. In case of the negative exponentially distributed
inter-arrival time and deterministic traffic, this relates directly
to the parameters of the distribution. For the Pareto traffic
model, we use three different parameterizations for a wide
range of a leading all to the same mean rate: a l = 6.81, k1 =
0.77; a2 = 2.52, k2 = 0.59 and a3 = 1.5, k3 = !.

Figures 3, 4 and 5 show the calculated values of the
reordering metric for deterministic traffic (dashed line) and
the simulated values for the Pareto distributed traffic for
an increasing number of abstract links. We simulated these
scenarios with our event-driven simulation library [23]. For
reasonable results, we obtained the statistical values from ten
batches each including at least one million burst arrivals (the
figures also depict the tiny confidence intervals). We obtained
the results for the deterministic traffic scenario, by our analytic
model from [7]. As these results match the corresponding
simulation results, we skip the simulation results here.

(12)

(10)

v

E[g(X )]

00

:L g(n) Pr (X = x1\ N = n) ? g(E [Xl)
n= O,

With i = E [N] and g(n) = qn equation (11) becomes:

i

IT x k - 1 > n-iqk - q
k=1

With this approximation, (9) simplifies to:
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Our evaluation of the formal proof includes branch prob
abilities of 0.1 and 0.3 for the introduced three different
delay distributions. We also simulated the much lower branch
probability of 0.01 but skip the results as they do not provide
additional findings.

For a small number of abstract links, the reordering proba
bility in all cases is much lower than the branch probability p.
With the increasing number of links, the reordering ratio ap
proximates the branch probability of 0.1 and 0.3, respectively.

The reordering probability of the different values of a is
very similar if a > 2. For a < 2, the reordering ratio is larger,
as the variation is much larger in this case. Nevertheless, the
reordering ratio of all Pareto parameterizations is well below
the corresponding value of the deterministic traffic.

Thereby, the number of links has a significant impact on
the reordering ratio while the network delay distribution has
only minor influence. For the geometric, uniform and linear
distribution, the values of the reordering ratio are very similar.

Figures 6, 7 and 8 show the same scenario for Poisson
traffic showing negative exponentially distributed arrival times.
Again, the figures depict the reference value for the determin
istic traffic showing the same mean than the Poisson traffic.

The findings for the Poisson traffic are equivalent to the
findings of the Pareto traffic. The reordering ratio is always
below the deterministic value as well as the reordering value
approaches the branch probability for a large number of links.

Comparing the reordering ratio to the corresponding value
of the Pareto traffic highlights that Poisson traffic shows in
general a smaller reordering ratio than Pareto traffic.

The analytic model with a constant inter-departure time
serves as an upper bound for the reordering ratio. The analytic
model enables worst-case considerations more easily than with
extensive simulations.

V. CONCLUSION

In this paper, we reviewed our queuing model for our
reordering analysis presented in [7]. Applying the reordering
queuing model, we stated that the reordering ratio of deter
ministic traffic with constant inter-arrival time is worse than
any other traffic pattern in the same scenario. We proved the
above statement using formal methods and showed illustrative
results obtained from simulations.

In the simulation scenarios, we applied three different traffic
characteristics (Poisson, Pareto and deterministic traffic) in
three different network delay scenarios (geometric, linear and
uniform distributed) to cover a broad spectrum of potential
combinations of traffic and delay characteristics. The simula
tion results backup our findings and validated our proof.

The application of the model showing constant inter-arrival
time enables reordering investigations, without performing
exhaustive simulations, if the network delay distribution is
known in advance (e. g. by previous simulations).
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