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Abstract — There is still significant investment in legacy 

healthcare information technology (HIT). Current systems are a 

diverse mix of technologies, standards, platforms and versions. 

Many of which were never intended to be used together to 

achieve a common goal. In order to deliver care effectively and 

efficiently, point-of-care software must navigate this complex 

maze, coordinating multiple disparate systems, to produce as 

holistic a view as possible of a patient’s treatment history, in a 

timely manner. In this paper, we introduce a specific problem of 

enabling the collaboration of HIT to facilitate data ingest and 

integration, present a solution approach and describe a software 

embodiment that was deployed. 

 
Index Terms — Collaborative work, Health care, Medical 

information systems, Information services, Information systems 

I. INTRODUCTION 

urrently, the delivery of care depends on the healthcare 

practitioner having as near complete and up-to-date view 

of the patient's data, based on recent tests, visits, prescriptions, 

prognoses, etc., at the time of care.  Unfortunately, the current 

healthcare system is faced with the following realities [1]: 

1. Patient data is fragmented - A typical patient visit may 

generate five or more lab documents (of the same or 

differing modalities); each of which is likely to be stored 

on a separate server and utilizes different representation 

formats. 

2. Patient data is distributed and mobile - Patient records 

may exist at several providers, payers, etc. As a patient 

moves between providers, locations, etc., several records 

of care are created at treating or service provision 

organizations. 

3. Patient data is replicated - Organizational and or 

legislative policy often dictates that patient information be 

duplicated for security and disaster recovery reasons. 

Additionally, a replica of institutional data is often created 

for stakeholders, i.e. patients, affiliates, etc., and used as 
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their primary records for service processing and or 

delivery. 

4. Patient data is missing - Best practice in the field is to 

have interpretative reports accompanying laboratory 

results. Unfortunately, in real world scenarios, there are 

lab images with no associated reports [1]. 

5. Patient data contains errors and redundancies – 

Depending on the healthcare institution and the input 

method used, both the error and duplication rates can be 

considerable [2].  

Contemporary wisdom recommends the use of the Digital 

Imaging and Communications in Medicine (DICOM) [3] 

standard to solve a lot of the issues involved with healthcare 

information integration. The focus of DICOM [3] has been to 

enable the integration of scanners, servers, workstations, 

printers and network hardware from multiple manufacturers 

into a Picture Archiving and Communication System (PACS) 

[4].  

DICOM is promoted as a standard for handling, storing, 

printing, and transmitting information in medical imaging. As 

the healthcare industry consists mainly of image data, this 

effort is very important to the sector. Unfortunately, adoption 

and support of DICOM has been slow; especially in American 

healthcare [1]. 

One of the primary reasons for this slow uptake is that 

healthcare vendors have made significant investment in their 

current offerings, which tend not to be DICOM-compliant.  

For a myriad of reasons, it is most often the case that the 

systems being sold by the healthcare technology giants 

leverage their own proprietary standards. In this environment, 

it is understandable that the cost of changes to existing 

products, to make them DICOM-compliant, is considerable. 

Thus, there is a strong disincentive to move rapidly towards 

standardization. 

However, it is now recognized that the quality of care will 

be improved, the cost of providing healthcare services reduced 

and the efficiency of care delivery increased, if healthcare 

information from all the relevant data sources, i.e. relevant to a 

particular patient, is integrated. This integration [5], which was 

the hope of DICOM standard, is being hastened by the rapid 

computerization of healthcare assets and the construction of 

(regional) care networks.  
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II. THE PROBLEM 

Formally, the problem can be stated as follows: Given n 

data sources (D1…Dn) from which information is to be 

gathered, where each data source has an associated cost (cd) 

and a probability of returning a valid response (pd), and m data 

slots (S1…Sm), one for each segment of a patient record that 

one is interested in, how does one maximize the probability of 

obtaining valid results for as many important data slots as 

possible, while minimizing the cost of acquiring that data?  

We refer to the completeness constraint as the condition of 

getting as many important data slots filled as possible and the 

latency constraint as the condition of achieving the 

completeness constraint within time and or budget limits. 

Expressed in its simplest form, our (optimization) problem 

is to minimize (retrieval) costs and maximize (important) slots 

retrieved.  

 
Fig. 1. General Problem Pictorial 

Fig. 1 shows a pictorial representation of the problem 

space. From the figure, it can be seen that 1) data slots may be 

singular or composite, 2) the number of slots is equal to or 

greater than the number of data sources and 3) a slot has one 

or more associated data sources where its data may be 

retrieved from.  

III. SOLUTION APPROACH 

We assume that each slot can be filled by at least one data 

source, another filled slot or a combination thereof.  

We also assume that each slot has an associated importance 

value. Thus, each Si has a vi. where mi ≤≤1 . 

Algorithm 1 outlines the steps executed in solving this 

problem. As previously stated, the algorithm seeks to 

maximize the probability of obtaining a valid result, while 

meeting the completeness and latency constraints. 

There is a pre-processing step that involves determining the 

slots needed in the slot map, based on the artifact of interest. In 

the case of our scenario, the slot map is composed of the 

different attributes needed to construct the patient record. 

After the slot_map, data_source, importance_value, 

fetch_probability and source_cost arrays are initialized (step 

1), the importance values are assigned, based on 1) Subject 

Matter Expert (SME) knowledge, 2) an expectation of a 

successful fetch from the associated data source; this is derived 

from prior fetches of similar datum, and 3) and an expected 

resource expense, i.e. the cost of performing the fetch. 

Then the return on investment (ROI) for each slot is 

calculated using 

i

ii
i

cs

vp
ROI

*
=  , where mi ≤≤1  

csi is the cost associated with data slot i and is a measure of  

the costs associated with retrieving data from the associated 

data sources.  

1. Initialize_Parameters(S, D, v, p, c) 
2. Assign_Importance(v, D, c) 
3. ROI = Calculate_ROI(p, v, c) 
4. Assign_Limits(budget, hard_stop_end_time) 
5. Scan S for the highest ROI slot to begin filling. 
6. Run Fetch_Process(S, D, p, v, c) 
7. Repeat step 5 until ((budget=0) or  
                                     (current_time > hard_stop_end_time) 
8. Return the optimally partially-filled slot-map S to the 

application. 

ALGORITHM 1: MAIN CODE SEGMENT 

At step 4, a budget
1
 of resources is assigned and a hard stop 

end time is set for the entire slot map. Please note that it is 

often the case that the hard stop time is normally set by the 

calling application. 

At step 5, we use the ROI values to create a virtual priority 

queue, where the slot with the highest ROI is the one for which 

the fetch process is to be executed.  

The information for the selected slot is sent to an ingestor 

module, which automatically negotiates the process of 

acquiring, cleansing and integrating the data. We will discuss 

the details of this module further in the next section.  

Even before attempting data acquisition, the fetch 

cost/success model (that is maintained by the ingestor) is 

updated to reflect the fact that some of the budget has been 

used.  

If all associated data sources that could be used to fill the 

slot have been unsuccessful, then the system goes back to step 

5, where another slot is selected.  

If the ingest process is successful, then the slot result is 

analyzed; as it may trigger more slots to be added to the map. 

If new slots are to be added, then they are assigned cost, time 

and expectation values from the budget in the fetch 

cost/success model in the ingestor.  

The entire process is repeated until the budget is completely 

spent or until the hard stop end time has been reached.  

At this point, the slot map is returned to the calling 

application and it embodies the best attempt at getting the most 

important pieces of data, while meeting the pre-defined 

constraints.  

IV. TECHNOLOGY EMBODIMENT 

The ingest technology used here is the MONGOOSE [6] 

suite, which has been developed over the last few years to 

 
1 The “budget” is the upper bound on the costs that can be expended. 
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address the ingest requirements for advanced analytics systems 

across industries, e.g. media and entertainment [7] and 

automotive [8].  

In this effort, we applied our approach, built on 

MONGOOSE technology, to the task of gathering data for a 

cardiology decision support project [9] with a very large 

healthcare provider. 

A. MONGOOSE  

MONGOOSE [6] is a software library with supporting code 

for control flow monitoring, analysis and correction that 

enables Worst-Case Scenario Workflow Management. We 

define Worst-Case Scenario systems as those that expect  

failures to occur and aim to mitigate these incidents.  

MONGOOSE allows community-based information 

extraction around specific phenomena that can be fed into 

statistical analysis tools. The core components of the 

MONGOOSE system (Fig. 2) are the Intake Platform (Fig. 3) 

and the Control Platform (Fig. 4).  

 
Fig. 2. The MONGOOSE Architecture 

The user of the MONGOOSE system can leverage a series 

of MONGOOSE modules to determine the particular 

information flow for the application they are developing. The 

user also tells the MONGOOSE system the form and content 

of the data they wish to have output.   

In leveraging the MONGOOSE modules, the user gets a 

resilient, fault-aware platform that ingests data irrespective of 

what happens either with the data sources or with the 

processing chain.  This also allows MONGOOSE instances to 

be created for a multitude of domains; as instantiation involves 

plugging in domain knowledge cartridges into the system and 

then setting the outputs to a form suitable for the domain, e.g. 

Online Analytical Processing or Business Intelligence 

consumption.  

The intake platform performs a series of tasks that cleans 

the data, transforms it into a sensible form and combines all 

the dimensions of the phenomenon under investigation. The 

control platform monitors the activities of the intake process 

and performs corrective action. 

1) The Mongoose Intake Platform (MIP) 

The MONGOOSE Intake Acquisition Modules (MIAMs) 

are base constructs used to build specialized ingestors for the 

application domain of interest. The MONGOOSE Intake Pre-

Processing Modules (MIPMs) extract individual comments, 

posts, discussion points, profiles and counts from the ingested 

data and processes the unstructured content to determine spam 

and identify on-topic and off-topic information.  

 
Fig. 3. The MONGOOSE Intake Platform Architecture 

The MONGOOSE Intake Language Modules (MILMs) 

allows the jargon of the domain of interest to be included.  

Dictionaries for terminology in various domains such as 

healthcare, media and entertainment, law, automobiles, 

politics, etc. are included in these modules. The MONGOOSE 

Intake Application Descriptors Modules (MIADMs) allows the 

definition of the key descriptors for the domain and problem of 

interest. For example, in politics underlying concepts would be 

Integrity, Record, and possibly Funds. The MONGOOSE 

Intake Adjudication Modules (MAMs) combine multi-modal 

information in a way that is meaningful for the business task at 

hand.    

2) The Mongoose Control Platform (MCP)  

 
Fig. 4. The MONGOOSE Control Platform Architecture 

The MONGOOSE Control Platform (MCP) allows system 

continuity without visible failure (Fig. 4). The purpose of the 

MCP is to reduce the Total Cost of Ownership (TCO) of 

systems both as they are developed and after they transfer 

either from prototype to development or from research to 

production.  The MCP accomplishes this by providing the 

following general functionality: 1) standard error detection, 

handling and reporting, 2) standard data analytics on 

corruption and consistency reporting, data acquisition layer 

execution state, 3) data flow integrity and source accessibility 

assertion, 4) system wide data volume monitoring to ensure an 

increasingly monotonically increasing input data stream, and 
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5) system wide data flow and cube output volume monitoring. 

B. The AALIM System 

 
Fig. 5. The AALIM system, which gathers data from a large number of 

sources, performs analytics on them to extract features, and then uses those 

features to provide a cardiac clinical decision support system. 

The AALIM
2
 system (Fig. 5) provides an overview and 

decision support for patients in the cardiac care space. As such 

it needs to combine a number of modalities (e.g. textual 

reports from patient visits, structured data from the pharmacy 

and labs, signal data from ECGs
3
 and video from 

Echocardiograms) and to perform analytics on all of these to 

extract features, which then feed the adjudication and clinical 

support functions. In order to perform these analytics, relevant 

data needs to be gathered in a timely manner. It is at this step 

that the challenges arose. Our solution was used to gather the 

facets of a patient’s cardiac. 

V. RESULTS  

We found that a combination of factors made acquiring 

cardiac data challenging – and that these challenges are 

endemic to the health informatics problem space. 

A. MONGOOSE USE OF AALIM 

The initial versions of the AALIM system did not use our 

solution, and required constant human monitoring. We will 

now outline how each part of our solution simplified this 

problem. 

Queuing Service:  By providing a queuing service of tasks 

to be run, with failed tasks returned to the queue, the task of 

batching work became much simpler. The “fetcher” was 

handed a target machine to log into and a patient’s medical 

record number and it merely had to make an attempt to fetch 

the data. It could then report its success or failure and exit. The 

 
2 AALIM (Advanced Analytics for Information Management) work is 

performed at IBM Almaden Research Center. More information can be 

retrieved from http://www.almaden.ibm.com/cs/projects/aalim/ 
3 ECG refers both to an electrocardiograph and an electrocardiogram. An 

electrocardiograph is a transthoracic interpretation of the electrical activity of 

the heart over time captured and externally recorded by skin electrodes. An 

electrocardiogram is a graphical recording of the cardiac cycle produced by 

an electrocardiograph. 

MONGOOSE control framework handled rescheduling failed 

tasks as well as handing successful work onto the next stage in 

the pipeline. 

Pipeline Management: Every modality underwent private 

patient health information removal immediately after fetching. 

This allowed the analytics to run on “clean” data, and allowed 

developers to debug their code without being exposed to 

personally identifiable information (PII). This is an example of 

a step that needed to be developed and run after every 

successful fetch. Our solution allowed steps such as this to be 

registered in the pipeline, and automatically flagged areas 

where PII removal failed. 

Fail Over Mechanism: If data acquisition failed and there 

were alternate paths to the data, the system queued failed 

fetches via alternate paths. Additionally, it took remedial 

action, such as flushing DNS caches, resetting connections, 

etc. and attempting to retry main code before failing over. This 

provides a natural place to decompose complex code into 

stand alone tasks that are easier to develop and debug. 

Central Reporting: By gathering statistics such as how long 

data acquisition took, how many results were fetched, which 

source servers were up and down, etc. and providing all this 

information at a central summary page it became very easy for 

an operator to get an “at a glance” idea of how the system was 

working, as well as identify when problems arose where they 

started and what might need to be done to address them. 

 
Fig. 6. A visualization that shows the flow of data through multiple 

processing pipelines. The colors indicate the status of the work-items, and the 

width of the bar indicates the number of work-items being processed in any 

stage.  

In Fig. 6, we show how obtaining and processing of a 

patient record is done in the deployment. Moving from top to 

bottom, patient request denotes the batch of MRNs (Medical 

Record Number), also referred to as work-items, whose data 

needs to be acquired and processed through the system. This 

triggers Ingest of the relevant data, which itself is forked off 

into four parallel pipelines (one per data-modality). As each 

work-item is processed successfully, it is passed through the 
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next stage in the pipeline, e.g., upon successful completion of 

‘fetch Struct’ for a work-item, it is automatically sent to the 

‘PHI clean Struct’ stage and so forth.  

In addition to displaying the movement of work-items 

through the entire AALIM pipeline, the visualization also 

indicates the status of work-items in each stage. This is done 

by means of color-coding, where the color Blue indicates a 

queued and Pending item, Green implies an item In Process, 

Yellow implies Transient Failure (where the number of retries 

haven’t been exhausted); and Red implies Permanent Failure 

(where the threshold of failures has been exceeded and human 

intervention is required). Additionally, the width of the bar 

indicates the relative number of work-items in a given status in 

a given stage within the system. Our system has the capability 

to provide additional details, such as individual counts, 

processing throughput, etc., as required.  

Clearly, Fig. 6 is a fairly simplistic visualization. However, 

it forms the base for a more sophisticated version, which is in 

the works.  

Alerting: By providing an email and page-out system, our 

solution can notify developers when they need to pay attention 

to (batch) processes that they wish to monitor, as well as to 

inform the operator when important steps failed. 

VI. DISCUSSION  

The cardiological instance of our solution provided a 

glimpse into the difficulties that IT departments in healthcare 

providers across the US face; due to the lack of widespread 

uptake and implementation of standards, e.g. DICOM [3], HL7 

[10], etc. In this section, we present some of the lessons 

learned from the AALIM effort and then generalize to 

articulate the challenges in healthcare IT departments globally.  

A. AALIM Lessons Learned  

Large health care environments are a collection of machines 

and systems dating back, in some cases, over two decades. 

With the constant financial pressures in this space it is not 

surprising that systems that work well tend not to be replaced 

simply because another file format has emerged. Additionally 

incremental support of systems by vendors does not continue 

indefinitely. Taken together, this results in a large number of 

systems that contain data critical to understanding patient 

health that may not have been updated in a long time. One 

specific example we encountered was a set of machines that 

stored ECG data. These machines were over 15 years old, yet 

contained critical information on how a patient’s heart was 

performing a decade ago. These machines were not developed 

with an API
4
 for integration in mind, and in fact, in the life 

cycle of upgrades they did receive, they ended up in an 

unstable state, where remote access to the underlying data 

storage of the machine was impossible (due to conflicting co-

 
4 API (Application Programming Interface) is a set of routines, data 

structures, object classes and/or protocols provided by libraries and/or 

operating system services in order to support the building of applications, 

installed versions of the ODBC
5
 stack). Additionally, the 

waveform data was stored encoded in a BLOB
6
 in a relational 

database. The format of this encoding was not available. This 

left the only way to retrieve this coding through navigation of 

the (at the time) cutting edge Web interface, followed by 

“pressing” the print button and downloading the resultant HP 

Printer Control Language (PCL). This PCL was decoded into a 

raster which was then converted into a vector of measurements 

for the waveform. 

An additional complication was that these machines were 

not completely stable, and at any given time there was 

approximately 5% of them that were not available. 

Fortunately, some of the data from the ECG (mostly raw 

measurements such as P and Qt intervals as well as diagnosis) 

was propagated to a mainframe system much of the time. Thus, 

to draw this data for analysis, a complex set of tasks needed to 

be authored. These tasks needed to be monitored. If machines 

were unavailable, then alternate data acquisitions paths needed 

to be pursued, with the “full record” perhaps being monitored 

and later included if it became available. 

Despite the best of intentions, modern health care systems 

are a heterogeneous collection of systems that span many years 

and many versions. It is clear that as newer systems move to 

more standards based approaches, like DICOM, this kind of 

data integration will become easier, it is also clear that systems 

that wish to provide health care informatics today cannot wait 

for these standards based systems, but must instead work with 

complex, messy environments to extract the data they need to 

empower the transformation of the health care system. 

B. General Challenges in Ingestion and Integration 

The first challenge is that a unified, coherent and complete 

picture of the patient is required to provide the best possible 

care; in environments that do not support this goal [11-13]. A 

patient‘s data is fragmented due to current mode of care 

delivery. The record for a single instance of care for a patient 

who goes to a general practitioner and gets referred to a 

specialist, who then refers them to a laboratory for tests is 

distributed across at least three systems and is made up of 

segments of differing modalities (e.g. text documents, scanned 

files, X-Rays, CT Scans, etc.). Each modality has its own class 

of system and all of them are required to get a complete 

picture of the patient’s condition. 

The second challenge is the struggle between legacy 

systems and new technology. While legacy systems are 

expected to eventually be shut down, they are often the 

authoritative sources in some departments for particular pieces 

of information. Thus, the older the systems that one ingest data 

from, the better the picture of the patient history that can be 

 
5 ODBC (Open DataBase Connectivity) is a standard database access 

method developed to make it possible to access any data from any 

application, regardless of which database management system  is handling the 

data. 
6 BLOB (Binary Large OBject) is a collection of binary data stored as a 

single entity in a database management systems (DBMS). BLOBs are used 

primarily to hold multimedia objects such as images, videos, and sound, 

Unfortunately not all DBMSs support BLOBs. 
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created. Simply because, this piece of data may only be 

available from that older system. The MONGOOSE-AALIM 

deployment provides evidence of this.  

The third challenge is that an episode of care may span 

years. Within those years, multiple technology cycles would 

have been experienced. With these cycles come a myriad of 

device interface and technology obsolescence issues and 

process and policy changes. These factors exacerbate the 

problem of the number of device formats and (proprietary) 

standards that must be supported in order to deliver care.  

The fourth challenge is the siloed nature of healthcare 

institutions, particularly providers, where each silo acts with a 

lot of autonomy and very little coordination with the other 

silos in order to ensure consistency. Thus, each silo may make 

budget decisions on technology investment that widen the 

integration gap. This eventually leads to a situation with lots of 

groups of specialized systems and groups of varying system 

types, e.g. the radiology department purchasing groups of 

General Electric and Siemens equipment and then multiple 

versions of a specific brand. In this scenario, the 

incompatibilities in the devices (from the same manufacturer 

or across manufacturer), when devices are used randomly for 

different patients, exacerbates the integration problem.  

These challenges would be greatly reduced (if not 

eliminated) were the DICOM standard widely adopted. In such 

a case, MONGOOSE technology would simply be used for 

monitoring and fault-tolerance.  

VII. CONCLUSION  

Currently, integration of healthcare data to provide a 

complete view of the patient is a messy task, which cannot be 

easily performed. Use of standards would greatly enhance the 

task of integration. Unfortunately, current systems require 

extraction and integration of some systems that are and will 

never be standards-compliant and were not intended to work in 

a collaborative manner. In this paper, we provided a possible 

solution. We explained how the technology was used in a 

cardiac decision support solution and presented the 

observations and lessons learned in the process.  

ACKNOWLEDGMENT 

We would like to thank the AALIM team for their 

invaluable contributions. 

REFERENCES 

[1] Bhagwan, V,  Grandison, T, Gruhl, D. "Ingest and Integration of 

Medical Data in a World with very little DICOM". The 

proceedings of the 13th World Congress on Medical and Health 

Informatics (MEDINFO) 2009. September 12-15, 2010. Cape 

Town, South Africa. 

[2] HIMSS. "Patient Identity Integrity". White Paper. December 

2009. Retrieved From 

http://www.himss.org/content/files/PrivacySecurity/PIIWhitePa

per.pdf 

[3] Pianykh, OS. "Digital Imaging and Communications in 

Medicine (DICOM): A Practical Introduction and Survival 

Guide". Springer. Edition 1. July 24, 2008. ISBN-13: 978-

35407455709. 

[4] Wiley, G. "The Prophet Motive: How PACS Was Developed 

and Sold". Imaging Economics, May 2005. 

http://www.imagingeconomics.com/issues/articles/2005-

05_01.asp Accessed on October 15, 2009. 

[5] Brailer, DJ. "Interoperability: The Key To The Future Health 

Care System". Health Affairs: The Policy Journal of the Health 

Space. 

http://content.healthaffairs.org/cgi/content/full/hlthaff.w5.19/DC

1 Accessed October 15, 2009. 

[6] Bhagwan, V, Grandison, T, Alba, A, Gruhl, D and Pieper J. 

"MONGOOSE: MONitoring Global Online Opinions via 

Semantic Extraction. The proceedings of the 2009 Service 

Quality and Assurance Management (SQAM) workshop at IEEE 

2009 International Conference on Cloud Computing (CLOUD-

II 2009), September 21-25, 2009, Bangalore, India. 

[7] Bhagwan, V, Grandison, T and Gruhl, D. "Sound Index: Music 

Charts By The People, For The People". Communications of the 

ACM. September 2009. Vol 52, No 9. 

[8] Zakharian, Z, Mishra, M and Chandramohan, S. "Cars 2.0". 

Masters Thesis, San Jose State University, December 2008. 

[9] Syeda-Mahmood, T, Wang, F, Beymer, D, Amir, A, Richmond, 

M, and Hashmi SN. Multimodal mining for cardiac decision 

support. In Computers in Cardiology, pages 209-212, 2007.  

[10] Health Level Seven Inc., “HL7 Standard”. http://www.hl7.org/ 

Accessed October 15, 2009. 

[11] Rigby, MJ, Robins, SC. "Building healthcare delivery and 

management systems centred on information about the human 

aspects". Computer Methods and Programs in Biomedicine, 

Volume 54, Issue 2, Pages 93-99. 

[12] Gilhooly, K. "Rx for better health care: interoperable electronic 

health records promise to streamline health care delivery, 

improve quality and help contain costs. But financing, a lack of 

standards and the scope of implementation stand in the way". 

ComputerWorld, January 31, 2005.  

[13] Sarkar, D. “NHIN save lives reduce costs E-records vital to 

health strategy,” Federal Computer Week, August 2, 2004 




