
 1

Abstract — There is still significant investment in legacy

healthcare information technology (HIT). Current systems are a

diverse mix of technologies, standards, platforms and versions.

Many of which were never intended to be used together to

achieve a common goal. In order to deliver care effectively and

efficiently, point-of-care software must navigate this complex

maze, coordinating multiple disparate systems, to produce as

holistic a view as possible of a patient’s treatment history, in a

timely manner. In this paper, we introduce a specific problem of

enabling the collaboration of HIT to facilitate data ingest and

integration, present a solution approach and describe a software

embodiment that was deployed.

Index Terms — Collaborative work, Health care, Medical

information systems, Information services, Information systems

I. INTRODUCTION

urrently, the delivery of care depends on the healthcare

practitioner having as near complete and up-to-date view

of the patient's data, based on recent tests, visits, prescriptions,

prognoses, etc., at the time of care. Unfortunately, the current

healthcare system is faced with the following realities [1]:

1. Patient data is fragmented - A typical patient visit may

generate five or more lab documents (of the same or

differing modalities); each of which is likely to be stored

on a separate server and utilizes different representation

formats.

2. Patient data is distributed and mobile - Patient records

may exist at several providers, payers, etc. As a patient

moves between providers, locations, etc., several records

of care are created at treating or service provision

organizations.

3. Patient data is replicated - Organizational and or

legislative policy often dictates that patient information be

duplicated for security and disaster recovery reasons.

Additionally, a replica of institutional data is often created

for stakeholders, i.e. patients, affiliates, etc., and used as

Tyrone W A Grandison is with IBM Services Research, Hawthorne, NY

10532, USA (phone: 408-927-1951; fax: 408-927-3215; e-mail: tyroneg@

us.ibm.com).

Varun Bhagwan is with IBM Almaden Research Center, San Jose, CA

95120 USA.

Daniel Gruhl is with IBM Almaden Research Center, San Jose, CA 95120

USA.

their primary records for service processing and or

delivery.

4. Patient data is missing - Best practice in the field is to

have interpretative reports accompanying laboratory

results. Unfortunately, in real world scenarios, there are

lab images with no associated reports [1].

5. Patient data contains errors and redundancies –

Depending on the healthcare institution and the input

method used, both the error and duplication rates can be

considerable [2].

Contemporary wisdom recommends the use of the Digital

Imaging and Communications in Medicine (DICOM) [3]

standard to solve a lot of the issues involved with healthcare

information integration. The focus of DICOM [3] has been to

enable the integration of scanners, servers, workstations,

printers and network hardware from multiple manufacturers

into a Picture Archiving and Communication System (PACS)

[4].

DICOM is promoted as a standard for handling, storing,

printing, and transmitting information in medical imaging. As

the healthcare industry consists mainly of image data, this

effort is very important to the sector. Unfortunately, adoption

and support of DICOM has been slow; especially in American

healthcare [1].

One of the primary reasons for this slow uptake is that

healthcare vendors have made significant investment in their

current offerings, which tend not to be DICOM-compliant.

For a myriad of reasons, it is most often the case that the

systems being sold by the healthcare technology giants

leverage their own proprietary standards. In this environment,

it is understandable that the cost of changes to existing

products, to make them DICOM-compliant, is considerable.

Thus, there is a strong disincentive to move rapidly towards

standardization.

However, it is now recognized that the quality of care will

be improved, the cost of providing healthcare services reduced

and the efficiency of care delivery increased, if healthcare

information from all the relevant data sources, i.e. relevant to a

particular patient, is integrated. This integration [5], which was

the hope of DICOM standard, is being hastened by the rapid

computerization of healthcare assets and the construction of

(regional) care networks.

Simulating Collaboration From Multiple,

Potentially Non-Collaborative Healthcare

Systems To Create A Single View of a Patient

Tyrone W A Grandison, Varun Bhagwan, Daniel Gruhl

C

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.17

 2

II. THE PROBLEM

Formally, the problem can be stated as follows: Given n

data sources (D1…Dn) from which information is to be

gathered, where each data source has an associated cost (cd)

and a probability of returning a valid response (pd), and m data

slots (S1…Sm), one for each segment of a patient record that

one is interested in, how does one maximize the probability of

obtaining valid results for as many important data slots as

possible, while minimizing the cost of acquiring that data?

We refer to the completeness constraint as the condition of

getting as many important data slots filled as possible and the

latency constraint as the condition of achieving the

completeness constraint within time and or budget limits.

Expressed in its simplest form, our (optimization) problem

is to minimize (retrieval) costs and maximize (important) slots

retrieved.

Fig. 1. General Problem Pictorial

Fig. 1 shows a pictorial representation of the problem

space. From the figure, it can be seen that 1) data slots may be

singular or composite, 2) the number of slots is equal to or

greater than the number of data sources and 3) a slot has one

or more associated data sources where its data may be

retrieved from.

III. SOLUTION APPROACH

We assume that each slot can be filled by at least one data

source, another filled slot or a combination thereof.

We also assume that each slot has an associated importance

value. Thus, each Si has a vi. where mi ≤≤1 .

Algorithm 1 outlines the steps executed in solving this

problem. As previously stated, the algorithm seeks to

maximize the probability of obtaining a valid result, while

meeting the completeness and latency constraints.

There is a pre-processing step that involves determining the

slots needed in the slot map, based on the artifact of interest. In

the case of our scenario, the slot map is composed of the

different attributes needed to construct the patient record.

After the slot_map, data_source, importance_value,

fetch_probability and source_cost arrays are initialized (step

1), the importance values are assigned, based on 1) Subject

Matter Expert (SME) knowledge, 2) an expectation of a

successful fetch from the associated data source; this is derived

from prior fetches of similar datum, and 3) and an expected

resource expense, i.e. the cost of performing the fetch.

Then the return on investment (ROI) for each slot is

calculated using

i

ii
i

cs

vp
ROI

*
= , where mi ≤≤1

csi is the cost associated with data slot i and is a measure of

the costs associated with retrieving data from the associated

data sources.

1. Initialize_Parameters(S, D, v, p, c)
2. Assign_Importance(v, D, c)
3. ROI = Calculate_ROI(p, v, c)
4. Assign_Limits(budget, hard_stop_end_time)
5. Scan S for the highest ROI slot to begin filling.
6. Run Fetch_Process(S, D, p, v, c)
7. Repeat step 5 until ((budget=0) or
 (current_time > hard_stop_end_time)
8. Return the optimally partially-filled slot-map S to the

application.

ALGORITHM 1: MAIN CODE SEGMENT

At step 4, a budget
1
 of resources is assigned and a hard stop

end time is set for the entire slot map. Please note that it is

often the case that the hard stop time is normally set by the

calling application.

At step 5, we use the ROI values to create a virtual priority

queue, where the slot with the highest ROI is the one for which

the fetch process is to be executed.

The information for the selected slot is sent to an ingestor

module, which automatically negotiates the process of

acquiring, cleansing and integrating the data. We will discuss

the details of this module further in the next section.

Even before attempting data acquisition, the fetch

cost/success model (that is maintained by the ingestor) is

updated to reflect the fact that some of the budget has been

used.

If all associated data sources that could be used to fill the

slot have been unsuccessful, then the system goes back to step

5, where another slot is selected.

If the ingest process is successful, then the slot result is

analyzed; as it may trigger more slots to be added to the map.

If new slots are to be added, then they are assigned cost, time

and expectation values from the budget in the fetch

cost/success model in the ingestor.

The entire process is repeated until the budget is completely

spent or until the hard stop end time has been reached.

At this point, the slot map is returned to the calling

application and it embodies the best attempt at getting the most

important pieces of data, while meeting the pre-defined

constraints.

IV. TECHNOLOGY EMBODIMENT

The ingest technology used here is the MONGOOSE [6]

suite, which has been developed over the last few years to

1 The “budget” is the upper bound on the costs that can be expended.

 3

address the ingest requirements for advanced analytics systems

across industries, e.g. media and entertainment [7] and

automotive [8].

In this effort, we applied our approach, built on

MONGOOSE technology, to the task of gathering data for a

cardiology decision support project [9] with a very large

healthcare provider.

A. MONGOOSE

MONGOOSE [6] is a software library with supporting code

for control flow monitoring, analysis and correction that

enables Worst-Case Scenario Workflow Management. We

define Worst-Case Scenario systems as those that expect

failures to occur and aim to mitigate these incidents.

MONGOOSE allows community-based information

extraction around specific phenomena that can be fed into

statistical analysis tools. The core components of the

MONGOOSE system (Fig. 2) are the Intake Platform (Fig. 3)

and the Control Platform (Fig. 4).

Fig. 2. The MONGOOSE Architecture

The user of the MONGOOSE system can leverage a series

of MONGOOSE modules to determine the particular

information flow for the application they are developing. The

user also tells the MONGOOSE system the form and content

of the data they wish to have output.

In leveraging the MONGOOSE modules, the user gets a

resilient, fault-aware platform that ingests data irrespective of

what happens either with the data sources or with the

processing chain. This also allows MONGOOSE instances to

be created for a multitude of domains; as instantiation involves

plugging in domain knowledge cartridges into the system and

then setting the outputs to a form suitable for the domain, e.g.

Online Analytical Processing or Business Intelligence

consumption.

The intake platform performs a series of tasks that cleans

the data, transforms it into a sensible form and combines all

the dimensions of the phenomenon under investigation. The

control platform monitors the activities of the intake process

and performs corrective action.

1) The Mongoose Intake Platform (MIP)

The MONGOOSE Intake Acquisition Modules (MIAMs)

are base constructs used to build specialized ingestors for the

application domain of interest. The MONGOOSE Intake Pre-

Processing Modules (MIPMs) extract individual comments,

posts, discussion points, profiles and counts from the ingested

data and processes the unstructured content to determine spam

and identify on-topic and off-topic information.

Fig. 3. The MONGOOSE Intake Platform Architecture

The MONGOOSE Intake Language Modules (MILMs)

allows the jargon of the domain of interest to be included.

Dictionaries for terminology in various domains such as

healthcare, media and entertainment, law, automobiles,

politics, etc. are included in these modules. The MONGOOSE

Intake Application Descriptors Modules (MIADMs) allows the

definition of the key descriptors for the domain and problem of

interest. For example, in politics underlying concepts would be

Integrity, Record, and possibly Funds. The MONGOOSE

Intake Adjudication Modules (MAMs) combine multi-modal

information in a way that is meaningful for the business task at

hand.

2) The Mongoose Control Platform (MCP)

Fig. 4. The MONGOOSE Control Platform Architecture

The MONGOOSE Control Platform (MCP) allows system

continuity without visible failure (Fig. 4). The purpose of the

MCP is to reduce the Total Cost of Ownership (TCO) of

systems both as they are developed and after they transfer

either from prototype to development or from research to

production. The MCP accomplishes this by providing the

following general functionality: 1) standard error detection,

handling and reporting, 2) standard data analytics on

corruption and consistency reporting, data acquisition layer

execution state, 3) data flow integrity and source accessibility

assertion, 4) system wide data volume monitoring to ensure an

increasingly monotonically increasing input data stream, and

 4

5) system wide data flow and cube output volume monitoring.

B. The AALIM System

Fig. 5. The AALIM system, which gathers data from a large number of

sources, performs analytics on them to extract features, and then uses those

features to provide a cardiac clinical decision support system.

The AALIM
2
 system (Fig. 5) provides an overview and

decision support for patients in the cardiac care space. As such

it needs to combine a number of modalities (e.g. textual

reports from patient visits, structured data from the pharmacy

and labs, signal data from ECGs
3
 and video from

Echocardiograms) and to perform analytics on all of these to

extract features, which then feed the adjudication and clinical

support functions. In order to perform these analytics, relevant

data needs to be gathered in a timely manner. It is at this step

that the challenges arose. Our solution was used to gather the

facets of a patient’s cardiac.

V. RESULTS

We found that a combination of factors made acquiring

cardiac data challenging – and that these challenges are

endemic to the health informatics problem space.

A. MONGOOSE USE OF AALIM

The initial versions of the AALIM system did not use our

solution, and required constant human monitoring. We will

now outline how each part of our solution simplified this

problem.

Queuing Service: By providing a queuing service of tasks

to be run, with failed tasks returned to the queue, the task of

batching work became much simpler. The “fetcher” was

handed a target machine to log into and a patient’s medical

record number and it merely had to make an attempt to fetch

the data. It could then report its success or failure and exit. The

2 AALIM (Advanced Analytics for Information Management) work is

performed at IBM Almaden Research Center. More information can be

retrieved from http://www.almaden.ibm.com/cs/projects/aalim/
3 ECG refers both to an electrocardiograph and an electrocardiogram. An

electrocardiograph is a transthoracic interpretation of the electrical activity of

the heart over time captured and externally recorded by skin electrodes. An

electrocardiogram is a graphical recording of the cardiac cycle produced by

an electrocardiograph.

MONGOOSE control framework handled rescheduling failed

tasks as well as handing successful work onto the next stage in

the pipeline.

Pipeline Management: Every modality underwent private

patient health information removal immediately after fetching.

This allowed the analytics to run on “clean” data, and allowed

developers to debug their code without being exposed to

personally identifiable information (PII). This is an example of

a step that needed to be developed and run after every

successful fetch. Our solution allowed steps such as this to be

registered in the pipeline, and automatically flagged areas

where PII removal failed.

Fail Over Mechanism: If data acquisition failed and there

were alternate paths to the data, the system queued failed

fetches via alternate paths. Additionally, it took remedial

action, such as flushing DNS caches, resetting connections,

etc. and attempting to retry main code before failing over. This

provides a natural place to decompose complex code into

stand alone tasks that are easier to develop and debug.

Central Reporting: By gathering statistics such as how long

data acquisition took, how many results were fetched, which

source servers were up and down, etc. and providing all this

information at a central summary page it became very easy for

an operator to get an “at a glance” idea of how the system was

working, as well as identify when problems arose where they

started and what might need to be done to address them.

Fig. 6. A visualization that shows the flow of data through multiple

processing pipelines. The colors indicate the status of the work-items, and the

width of the bar indicates the number of work-items being processed in any

stage.

In Fig. 6, we show how obtaining and processing of a

patient record is done in the deployment. Moving from top to

bottom, patient request denotes the batch of MRNs (Medical

Record Number), also referred to as work-items, whose data

needs to be acquired and processed through the system. This

triggers Ingest of the relevant data, which itself is forked off

into four parallel pipelines (one per data-modality). As each

work-item is processed successfully, it is passed through the

 5

next stage in the pipeline, e.g., upon successful completion of

‘fetch Struct’ for a work-item, it is automatically sent to the

‘PHI clean Struct’ stage and so forth.

In addition to displaying the movement of work-items

through the entire AALIM pipeline, the visualization also

indicates the status of work-items in each stage. This is done

by means of color-coding, where the color Blue indicates a

queued and Pending item, Green implies an item In Process,

Yellow implies Transient Failure (where the number of retries

haven’t been exhausted); and Red implies Permanent Failure

(where the threshold of failures has been exceeded and human

intervention is required). Additionally, the width of the bar

indicates the relative number of work-items in a given status in

a given stage within the system. Our system has the capability

to provide additional details, such as individual counts,

processing throughput, etc., as required.

Clearly, Fig. 6 is a fairly simplistic visualization. However,

it forms the base for a more sophisticated version, which is in

the works.

Alerting: By providing an email and page-out system, our

solution can notify developers when they need to pay attention

to (batch) processes that they wish to monitor, as well as to

inform the operator when important steps failed.

VI. DISCUSSION

The cardiological instance of our solution provided a

glimpse into the difficulties that IT departments in healthcare

providers across the US face; due to the lack of widespread

uptake and implementation of standards, e.g. DICOM [3], HL7

[10], etc. In this section, we present some of the lessons

learned from the AALIM effort and then generalize to

articulate the challenges in healthcare IT departments globally.

A. AALIM Lessons Learned

Large health care environments are a collection of machines

and systems dating back, in some cases, over two decades.

With the constant financial pressures in this space it is not

surprising that systems that work well tend not to be replaced

simply because another file format has emerged. Additionally

incremental support of systems by vendors does not continue

indefinitely. Taken together, this results in a large number of

systems that contain data critical to understanding patient

health that may not have been updated in a long time. One

specific example we encountered was a set of machines that

stored ECG data. These machines were over 15 years old, yet

contained critical information on how a patient’s heart was

performing a decade ago. These machines were not developed

with an API
4
 for integration in mind, and in fact, in the life

cycle of upgrades they did receive, they ended up in an

unstable state, where remote access to the underlying data

storage of the machine was impossible (due to conflicting co-

4 API (Application Programming Interface) is a set of routines, data

structures, object classes and/or protocols provided by libraries and/or

operating system services in order to support the building of applications,

installed versions of the ODBC
5
 stack). Additionally, the

waveform data was stored encoded in a BLOB
6
 in a relational

database. The format of this encoding was not available. This

left the only way to retrieve this coding through navigation of

the (at the time) cutting edge Web interface, followed by

“pressing” the print button and downloading the resultant HP

Printer Control Language (PCL). This PCL was decoded into a

raster which was then converted into a vector of measurements

for the waveform.

An additional complication was that these machines were

not completely stable, and at any given time there was

approximately 5% of them that were not available.

Fortunately, some of the data from the ECG (mostly raw

measurements such as P and Qt intervals as well as diagnosis)

was propagated to a mainframe system much of the time. Thus,

to draw this data for analysis, a complex set of tasks needed to

be authored. These tasks needed to be monitored. If machines

were unavailable, then alternate data acquisitions paths needed

to be pursued, with the “full record” perhaps being monitored

and later included if it became available.

Despite the best of intentions, modern health care systems

are a heterogeneous collection of systems that span many years

and many versions. It is clear that as newer systems move to

more standards based approaches, like DICOM, this kind of

data integration will become easier, it is also clear that systems

that wish to provide health care informatics today cannot wait

for these standards based systems, but must instead work with

complex, messy environments to extract the data they need to

empower the transformation of the health care system.

B. General Challenges in Ingestion and Integration

The first challenge is that a unified, coherent and complete

picture of the patient is required to provide the best possible

care; in environments that do not support this goal [11-13]. A

patient‘s data is fragmented due to current mode of care

delivery. The record for a single instance of care for a patient

who goes to a general practitioner and gets referred to a

specialist, who then refers them to a laboratory for tests is

distributed across at least three systems and is made up of

segments of differing modalities (e.g. text documents, scanned

files, X-Rays, CT Scans, etc.). Each modality has its own class

of system and all of them are required to get a complete

picture of the patient’s condition.

The second challenge is the struggle between legacy

systems and new technology. While legacy systems are

expected to eventually be shut down, they are often the

authoritative sources in some departments for particular pieces

of information. Thus, the older the systems that one ingest data

from, the better the picture of the patient history that can be

5 ODBC (Open DataBase Connectivity) is a standard database access

method developed to make it possible to access any data from any

application, regardless of which database management system is handling the

data.
6 BLOB (Binary Large OBject) is a collection of binary data stored as a

single entity in a database management systems (DBMS). BLOBs are used

primarily to hold multimedia objects such as images, videos, and sound,

Unfortunately not all DBMSs support BLOBs.

 6

created. Simply because, this piece of data may only be

available from that older system. The MONGOOSE-AALIM

deployment provides evidence of this.

The third challenge is that an episode of care may span

years. Within those years, multiple technology cycles would

have been experienced. With these cycles come a myriad of

device interface and technology obsolescence issues and

process and policy changes. These factors exacerbate the

problem of the number of device formats and (proprietary)

standards that must be supported in order to deliver care.

The fourth challenge is the siloed nature of healthcare

institutions, particularly providers, where each silo acts with a

lot of autonomy and very little coordination with the other

silos in order to ensure consistency. Thus, each silo may make

budget decisions on technology investment that widen the

integration gap. This eventually leads to a situation with lots of

groups of specialized systems and groups of varying system

types, e.g. the radiology department purchasing groups of

General Electric and Siemens equipment and then multiple

versions of a specific brand. In this scenario, the

incompatibilities in the devices (from the same manufacturer

or across manufacturer), when devices are used randomly for

different patients, exacerbates the integration problem.

These challenges would be greatly reduced (if not

eliminated) were the DICOM standard widely adopted. In such

a case, MONGOOSE technology would simply be used for

monitoring and fault-tolerance.

VII. CONCLUSION

Currently, integration of healthcare data to provide a

complete view of the patient is a messy task, which cannot be

easily performed. Use of standards would greatly enhance the

task of integration. Unfortunately, current systems require

extraction and integration of some systems that are and will

never be standards-compliant and were not intended to work in

a collaborative manner. In this paper, we provided a possible

solution. We explained how the technology was used in a

cardiac decision support solution and presented the

observations and lessons learned in the process.

ACKNOWLEDGMENT

We would like to thank the AALIM team for their

invaluable contributions.

REFERENCES

[1] Bhagwan, V, Grandison, T, Gruhl, D. "Ingest and Integration of

Medical Data in a World with very little DICOM". The

proceedings of the 13th World Congress on Medical and Health

Informatics (MEDINFO) 2009. September 12-15, 2010. Cape

Town, South Africa.

[2] HIMSS. "Patient Identity Integrity". White Paper. December

2009. Retrieved From

http://www.himss.org/content/files/PrivacySecurity/PIIWhitePa

per.pdf

[3] Pianykh, OS. "Digital Imaging and Communications in

Medicine (DICOM): A Practical Introduction and Survival

Guide". Springer. Edition 1. July 24, 2008. ISBN-13: 978-

35407455709.

[4] Wiley, G. "The Prophet Motive: How PACS Was Developed

and Sold". Imaging Economics, May 2005.

http://www.imagingeconomics.com/issues/articles/2005-

05_01.asp Accessed on October 15, 2009.

[5] Brailer, DJ. "Interoperability: The Key To The Future Health

Care System". Health Affairs: The Policy Journal of the Health

Space.

http://content.healthaffairs.org/cgi/content/full/hlthaff.w5.19/DC

1 Accessed October 15, 2009.

[6] Bhagwan, V, Grandison, T, Alba, A, Gruhl, D and Pieper J.

"MONGOOSE: MONitoring Global Online Opinions via

Semantic Extraction. The proceedings of the 2009 Service

Quality and Assurance Management (SQAM) workshop at IEEE

2009 International Conference on Cloud Computing (CLOUD-

II 2009), September 21-25, 2009, Bangalore, India.

[7] Bhagwan, V, Grandison, T and Gruhl, D. "Sound Index: Music

Charts By The People, For The People". Communications of the

ACM. September 2009. Vol 52, No 9.

[8] Zakharian, Z, Mishra, M and Chandramohan, S. "Cars 2.0".

Masters Thesis, San Jose State University, December 2008.

[9] Syeda-Mahmood, T, Wang, F, Beymer, D, Amir, A, Richmond,

M, and Hashmi SN. Multimodal mining for cardiac decision

support. In Computers in Cardiology, pages 209-212, 2007.

[10] Health Level Seven Inc., “HL7 Standard”. http://www.hl7.org/

Accessed October 15, 2009.

[11] Rigby, MJ, Robins, SC. "Building healthcare delivery and

management systems centred on information about the human

aspects". Computer Methods and Programs in Biomedicine,

Volume 54, Issue 2, Pages 93-99.

[12] Gilhooly, K. "Rx for better health care: interoperable electronic

health records promise to streamline health care delivery,

improve quality and help contain costs. But financing, a lack of

standards and the scope of implementation stand in the way".

ComputerWorld, January 31, 2005.

[13] Sarkar, D. “NHIN save lives reduce costs E-records vital to

health strategy,” Federal Computer Week, August 2, 2004

