
Log Garbage Collector-based Real Time

Collaborative Editor for Mobile Devices

Moulay Driss Mechaourl:, Asma Cherif*t, Abdessamad Imine*§ and Fatima Bendella'
+Mostaghanem University, Algeria

Email: moulaydrissnet@yahoo.fr

*Inria Lorraine and Nancy 2 University, France
tEmail: cheriasm@loria.fr

§Email: imine@loria.fr
'USTO, University of Oran, Algeria

Email: bendella_fatima@yahoo.fr

Abstract-The mobile phone technologies are becoming per­
vasive in recent years. These items such as IPhones, IPad and
AndrOIds are very attractive since they provide relatively good
resources for a mobile device. Several works aim at integrating
desktop applications in these tools to make them closer to the
real computer. However, adapting desktop applications to these
tools is a challenging problem as they do not have the same
features. Real time collaborative editors are famous applications
allowing for several users to edit the same shared document
simultaneously. Such an application is more and more used not
only in professional fields but also in a personal context. In this
work, we extend decentralized collaborative editors to mobile
devices by conceiving a successful garbage collection scheme
that optimally manages mobile devices resources. We propose
a novel design for distributed garbage collection that ensures a
good behavior of the application through the good measurements
obtained for different types of mobile phones.

Keywords: Real-time collaboration, Distributed garbage

collection, Mobile device based applications.

I. INTRODUCTION

Motivations. Mobile Devices such as PDAs and cell phones

are becoming more and more pervasive. Several works try

to integrate desktop applications on these devices. Among

these applications, we are mostly interested on collaborative

editors (e.g. Google Docs, Abiword) which provide computer

support for modifying simultaneously shared documents, such

as articles, wiki pages and programming source code, by dis­

persed users. For instance, researchers may use a collaborative

editor to edit the same article simultaneously without the need

of being members of the same organization. In this work,

we investigate on Real Time Collaborative Editors (RCE) on

mobile devices. It should be noted that, RCE have specific

requirements that may not match with those characterizing

mobile devices, namely:

• High local responsiveness: the system has to be as

responsive as its single-user editors [1], [2];

• High concurrency: the users must be able to concurrently

and freely modify any part of the shared document at any

time [1], [2];

• Consistency: as the shared objects are replicated, the users

must eventually be able to see a converged view of all

copies [1], [2];

• Decentralized coordination: all concurrent updates must

be synchronized in decentralized fashion in order to avoid

a single point of failure;

• Scalability: a group must be dynamic in the sense that

users may join or leave the group at any time.

These characteristics pose a significant challenge on the

design of systems that support collaboration using mobile

devices. We stress that even though mobile phones offer

ad hoc communications and are suitable to host distributed

applications, they are battery-powered so less powerful and

have limited storage capacities compared to those offered by

computers.

Moreover, collaborative editors are based on log usage, as

it is necessary to store the track of the operations received to

ensure the convergence of the shared data. The motivation for

maintaining a log at each site is that a remote operation must

integrate the effect of all concurrent operations to be executed

on the receiver site. However, not all operations received by

a site must be kept in its log. In particular, an operation can

be safely deleted from a site's log if: (i) it is already received

in all other sites and (ii) all operations that depend on it are

received by all sites.

Deploying RCE based on logs on mobile devices can be

costly. Indeed, they require lot of memory to manage the

increasing log size. Consequently, a mechanism of garbage

collection must be set up to allow for log reset at a given

time and then to start again the collaboration with empty logs

what improves the performances and response time of the

collaborative application.

The motivation for garbage collection is twofold. Firstly,

storage capacity is not infinite as in practice memory always

has limited size. Secondly, with the continuous increase of log

size, the performances of the system degrade. Hence we need

to devise a garbage collection technique allowing to delete all

operations already seen and executed at collaborating sites at a

given time knowing that logs are not identical in different sites

as we allow out-of-order execution of operations. Moreover,

group size in collaboration model is dynamic (churn) which

complicates the garbage task.

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.28

lacerda
Typewritten Text

Related work. Applying garbage collection on a distributed

collaborative editor assumes that we have a global view

of the distributed system state. Chandy and Lamport [10]

propose an algorithm to determine global states of distributed

systems by recording a logical (or causal) snapshot of the

system. This algorithm is based on the hypotheses below:

(i) no failures which means that all messages arrive intact,

(ii) the communication channels are unidirectional and FIFO­

ordered and (iii) there is a communication path between every

process pair. This FIFO communication channels ensures that

reception order of messages is the same as the emission order

which is not the case for RCEs.

The solution proposed in [9], is a protocol that allows

sites in a replicated data base system to discard old updates

for maintaining mutual consistency. This protocol use [10]

to determine the global state of the distributed system and

timestamps to ensure a total order of update. This solution

could not meet RCE requirements since it is hard to ensure a

total order in decentralized fashion with dynamic groups.

One can consider the garbage collection as a consensus

problem in distributed systems, in our solution the decided

value of consensus is the Log. It is impossible to solve con­

sensus problem in asynchronous systems because we cannot

determine with certainty whether a process has crashed or

not (it may be slow, or its messages are delayed), the FLP

model [l1] proposed by Fischer, Lynch and Paterson proved

that even if at most one process may crash, and all links

are reliable, it is impossible to achieve consensus. To solve

this problem, other works propose to enrich the asynchronous

system with a failure detector. For instance, [12] propose a

simple OS-based consensus protocol, this protocol uses OS as

failure detector [13] and requires a majority of correct process.

It was shown that this protocol never block and terminates.

It helps to achieve consensus on a common value which is

decided by the majority of correct processes. The specification

behind this protocol is simple and allow to decide on the same

final decision. However, our model is interactive and more

complicated since we aim to decide on a final value that is

not necessarily the value proposed by any of the collaborating

users but may be a new value aggregated from the proposals

of other users and the system evolution.

In database area, the work of [7] is of relevance. It proposes

a pruning technique allowing for the deletion of different

updates that are no longer needed by the system. However,

the use of timestamps make it inappropriate in a dynamic

context. Other works such as [8] have been proposed to focus

on garbage collection in object oriented databases but interest

rather in memory management to delete unused objects and

not in cleaning logs. In our knowledge, the only previous work

on distributed collaborative editors that proposed a garbage

collection technique to reduce log size is presented in [2].

Unfortunately, this solution is based on the use of state vectors

thus only meets collaborations with a fixed group size thus

being inappropriate to RCE requirements.

Contributions. In this paper, we have based on previous works

on collaborative editors to extend the collaboration model to

mobile devices. We design a new approach to ensure garbage

collection in a decentralized fashion in order to alleviate the

storage capacity needed by collaborative editors models. We

also demonstrate a good behavior of our garbage collection

scheme by the experimental study that we will discuss later.

Outline. This paper is organized as follows: In Section 2, we

address garbage collection issues in RCE. In Section 3, we give

an overview on the coordination model that we use. Section

4 presents the concept of our garbage collection. Section

5 illustrates performance study and section 6 summarizes

contributions and discusses future work.

II. COORDINATION MODEL

Real-Time Collaborative Editors (RCE) allows many users

(or sites) to concurrently update the shared data and next to

synchronize their divergent replicas in order to obtain the same

data. The updates of each site are executed on the local replica

i1ll1llediately without being blocked or delayed, and then are

propagated to other sites to be executed again. As a long

established convention in RCE [1], [2], the shared object is a

finite sequence of elements from any data type. For instance,

an element may be regarded as a character, a paragraph,

a page, a slide, an XML node, etc. It is assumed that the

shared object can only be modified by the following primitive

operations: (i) I ns(p, e) inserts the element e at position p;
(ii) Del(p) deletes the element at position p. We shall refer to

the state of a document by St and to operations that alter

document state by cooperative operations. A crucial issue

when designing shared objects with a replicated architecture

and arbitrary messages communication between sites is the

consistency maintenance (or convergence) of all replicas. To

illustrate this problem, consider the group text editor scenario

shown in Figure 1. There are two users (on two sites) working

on a shared document represented by a sequence of characters.

Initially, both copies hold the string" efecte". Site 1 executes

operation 01 = I ns(l,j) to insert the character f at position

1. Concurrently, site 2 performs 02 = Del(5) to delete the

character e at position 5. When 01 is received and executed

on site 2, it produces the expected string "effect". But, when

02 is received on site 1, it does not take into account that 01

has been executed before it and it produces the string "effece".

The result at site 1 is different from the result of site 2 and it

apparently violates the intention of 02 since the last character

e, which was intended to be deleted, is still present in the final

string. Consequently, we obtain a divergence between sites 1

and 2. It should be pointed out that even if a serialization

protocol [1] was used to require that all sites execute 01 and 02

in the same order (i.e. a global order on concurrent operations)

to obtain an identical result effece, this identical result is still

inconsistent with the original intention of 02.

To maintain consistency of the shared document, we use

the Operational Transformation (OT) approach which has

been proposed in [1]. In general, it consists of application­

dependent transformation algorithm, called IT, such that for

01 = Ins(l, f) 02 = De/(5)

. � . I "effecte" I I "efect" I

. /
. · . · . · . · .

Del(5) Ins(l, f)

I "effece" I

Fig. 1. Incorrect integration.

every possible pair of concurrent operations, the application

programmer has to specify how to integrate these operations

regardless of reception order. In Figure 2, we illustrate the

effect of IT on the previous example. At site 1, 02 needs to

be transformed in order to include the effects of 01: o� =
IT((Del(6, e),Ins(2, f)) = Del(7, e). The deletion position

of 02 is incremented because 01 has inserted a character at

position 1, which is before the character deleted by 02.

01 = Ins(l, f) 02 = De/(5)

l "effecte"�� I "efect" l
. � . · . · . · . · .

IT(02,0I) = Del(6) IT(01,02) = Ins(l,f)

Fig. 2. Integration with transformation.

It should be noted that OT enables us to ensure the con­

sistency for any number of concurrent operations which can

be executed in arbitrary order [3], [4] (i.e. no global order is

necessary).

For managing collaborative editing work in a decentralized

and scalable fashion, we reuse an OT-based framework that

owns the following features [5]: (i) It supports an uncon­

strained collaborative editing work (without the necessity of

central coordination). Using optimistic replication scheme, it

provides simultaneous access to shared documents. (ii) Instead

of vector timestamps [1], it uses a simple technique to preserve

causality relation based on a dependency tree where each oper­

ation has only to store the operation identity whose it directly

depends on (see Figure 3). This tree-based causality relation

is independent on the number of users and it provides high

concurrency in comparison with vector timestamps. (iii) Us­

ing OT approach, reconciliation of divergent copies is done

automatically in decentralized fashion. (iv) This framework

can scale naturally thanks to its minimal causality dependency

relation. In other words, it may be deployed easily in Peer-to­

Peer (P2P) networks.

To be more general, we define the dependency relation as

follows:

Definition 2.1: (Dependency Relation) A cooperative op­

eration 02 depends on another cooperative operation 01, iff

log

01
R

02

==>/i\ 03

04 03

Deleting an element depends on the operation that has

inseted this element. So, 03 depends semantically on 01

and 04 depends on02' There are other dependecy relations

that we will not discuss here due to space lack. For more

details the reader can refer to [5].
Suppose that 01 and 02 depend on a root R. Then the log

is seen as the set of leaves {03, 04} .

Fig. 3. Dependency tree built from log.

04

(i) 02 has seen the effect of 01 and, (ii) 01 and 02 alter the

same element or (iii) 01 and 02 alter different elements but the

execution of 01 and 02 in different orders on the same state

results on two different states.

In this OT-based framework, every site generates operations

sequentially and stores these operations in a data-structure

called a log. Two important steps are performed as follows:

• Generation of local operation: When an operation 0

is locally generated, it is ilmnediately executed on its

generation state and next it is stored in the local log.

Once executed, its dependency is computed in order to

determine its direct predecessor. After the determination

of the dependency, this operation is propagated to all sites

in order to be executed on other copies of the shared

document.

• Integration of remote operation: Each site uses a queue to

store the remote operations coming from other sites. To

preserve the causality dependency, a remote operation 0

is extracted from the queue when it is causally-ready (i.e
if its dependency has been already integrated on receiver

site). Next, we compute the transformed form 0
' to be

executed on current state using IT function. Finally 0
'
,

is executed on the current state and stored in the local

log.

Moreover, this framework enables the dynamic groups in the

sense that users may quit or enter the groups at any time. When

joining the group, a new user requests the current document

state and the current log from the nearest user in order to start

the collaboration with the members of this group.

A stable state in a RCE is achieved when all generated

operations have been performed at all sites. So, the following

criteria should be ensured [5]:

Definition 2.2: (Consistency Criteria) A RCE is consistent

iff it satisfies the following properties:

1) Dependency preservation: if 01 depends on 02 then 01 is

executed before 02 at all sites.

2) Convergence: when all sites have performed the same

set of operations, the copies of the shared document are

identical.

At stable state, site logs are not necessarily identical because

the concurrent operations may be executed in different orders.

Nevertheless, these logs must be equivalent in the sense that

they must lead to the same final state. For instance, in the

scenario presented in Figure 2 the two logs [Ins(l, 1); Del(6)]
and [Del(5);Ins(l,1)] are not identical but lead to the same

final state thus they are equivalent.

Definition 2.3: (Equivalent Logs) Two logs are equivalent

iff they produce the same state when applied to a given state

St.

Our objective here is to develop on the top of this framework

a garbage collection layer for managing the memory resources

allowed to the log sites while preserving the consistency

criteria of RCE (see Definition 2.2). Of course, this garbage

collection-based RCE will be well suited for mobile devices.

III. GARBAGE COLLECTION ISSUES

We have already shown the importance of garbage collection

in RCEs dedicated to mobile devices. Unfortunately, the

garbage collection is really a hard task under the requirements

discussed before as it must address the following issues:

First Issue. Since logs are equivalent and not identical from

one site to another due to out of order execution of operations,

the log removal operation may be executed on different con­

texts from one site to another. In such situation, collaborative

editing after the garbage collection procedure inevitably leads

to divergence cases as it is shown in the scenario of Figure

4. In this scenario, we consider two users that begin the

collaboration with the same initial state "eact". Site 1 generates

01 = ins(l, r) to insert the character r at position 1 and gets

the state "react". The second site removes the character "e" at

position 1 with the operation 02 = del (1) and then gets the

state "act". Concurrently, the site 1 initiates garbage collection,

cleans his log and propagates the removal order to the site

2. The latter receives the garbage collection order before the

operation 01. Hence, when he receives 01 = ins(l, r) , he

executes it in its received form since IT function has no impact

on 01 (the log is empty). Consequently, the final state at site

2 is "ract". Now, site 1 receives 02 = del(l) and executes it

also in its reception form as his log is empty and then derives

the state "eact" which is different from the state of site 2.

It should be pointed out that an operation may also loose its

dependency and remains eternally unready if logs are removed

in arbitrary fashion.

Accordingly, cleaning process requires a global view of the

collaboration state in order to ensure that log removal will

be executed at the same context in all collaborating sites. In

other words, we must be able to deduce whether an operation

was received by all users or not, and whether it is needed

01 = Ins(l,r) 02 = Del(l)

I "a�t" I
arbageC ollection

Fig. 4. Divergence caused by garbage collection applied on different contexts

by an other operation for an integration process. If it is the

case, then the operation could be safely removed from the log.

Otherwise, replicas will diverge.

To overcome this problem, it is necessary to draw a global

view on the state of each user in order to decide about

the portion of log that could be deleted without leading

to divergence. This is possible to achieve through request­

response messages before log removal. The question that arises

here: is global view possible in a dynamic and distributed

collaboration?

Second Issue. Suppose that the garbage collection only begins

when all users are ready to clean their logs. To know if a user

is able to remove his log or not, we must wait for his answer.

However in a peer-to-peer context, a user may leave the group

at any time and thus never responds to the garbage request. A

user can also crash down and be prevented to respond. In both

cases, it is difficult to take the correct garbage decision while

preserving consistency criteria (see Definition 2.2). Because

of message asynchrony, a user has no safe means to know

whether another user has or has not crash. Even the timeout

approach has many inconveniences. For instance, a user may

respond just after the timeout expiration. Moreover, even the

timeout itself is difficult to define.

The solution proposed in [2] relies on state vectors to draw

a state view for each user. Every silent user has to send

periodically the value of its state vector to other users. State

vectors of active sites are deduced from the operations they

perform. These vectors are used to calculate a minimal state

vector allowing for garbage decisions. However, this approach

is limited to static groups and could not be used in the case

of dynamic groups because of failure impact on the garbage

procedure i.e. when a site is absent or silent, its state vector

remains unchanged, then other users could no more delete

operations from their logs.

Third Issue. Another issue that could be faced when trying to

garbage logs in RCE is when the garbage process is disturbed

by the join of a new user. It is known that in peer-to-peer

context, a new user can join the group at any time. When a new

peer tries to join the group while its members are processing

a garbage collection procedure, we may diverge if that user

receives the current log before its deletion by all the members

of the group. Hence, the new user is able to generate new

operations based on a context completely different from other

user contexts. Consequently, we inevitably diverge according

to the scenario presented in Figure 4.

To illustrate this, let us consider the scenario in Figure 5 in

which we have 3 sites collaborating together in order to edit

the same document. The initial group is only composed of

users 81 and 82. Then site 83 decides to join the collaboration.

Site 83 requests the log and the state from site 82. Concur­

rently, the site 81 initiates a garbage collection and propagates

the request to site 82. The latter sends the log and the state to

83 before receiving the request of the former. Then he decides

to empty his log as well as site 81 does. When 83 is ready

to join the group, he has a non empty log while others have

empty ones. It is obvious that the context of 83 is different

from that of 81 and 82 which leads to divergence.

Initiate garbage collection

End g�rbage
and delete log

Request state
. and log from 82

.�

. �

. End gkrbage begin the cbllaboration
: and delete log with non ¢mpty log

.�I

Fig. S. Divergence caused by a new user joining the group.

IV. OUR GARBAGE COLLECTION SCHEME

A. Garbage Collection Algorithm

In this section, we will discuss the concept of garbage and

devise solutions for garbage collection. Each site maintains

its own log which can be seen as a dependency tree using the

semantical dependency relations (see Figure 3). The leaves of

this tree represent a sUlmnary about what a site has received

since an operation is causally ready only when its dependency

is already executed. Let 12 be the set of leaves maintained

by each site 8. For instance, in the example of Figure 3, 12 =

{03, 04 } . Consequently, two sites having the same set of leaves

means that they have executed the same set of operations and

hence they have equivalent logs. This set of leaves is updated

each time a local operation is generated or a distant one is

received by replacing old leaves by new ones. The root of

the dependency tree noted R represents the identity of the

site that performed the last the garbage collection procedure.

The root has no effect on the state but rather serves as a break

point indicating a garbage collection initiation. We assume that

initially every site begins with an empty root.

It is obvious that the tree structure helps to draw the

set of leaves and thus facilitates the comparison between

different user logs. Consequently we reduce the size of parsed

operations to decide whether the garbage procedure is allowed

or not since we only compare the set of leaves rather than the

entire logs. The tree structure allowing for leaves comparison

is used in order to check whether all users have the same

context or not thus we overcome the First Issue presented in

Section III.

To proceed garbage collection, the collaborating sites ex­

change some garbage messages to decide whether it is possible

to clean logs or not. In fact, it is not always possible to

delete operations from the log. For instance, two sites having

different sets of leaves are unable to clean their logs since

we can deduce that there are operations in network not yet

received by all sites. To do so, collaborating sites have to

exchange the following messages in order to decide about the

garbage:

• Garbage collection initiation (GCI): is a message sent by

the site initiating the garbage collection procedure; the

GCI contains the site identity as well as the set of leaves

L.

• Acquirement (ACK): when a site receives the GCI mes­

sage, he computes the difference between his set of leaves

12 and that received in the GCI, then sends the result to

the initiator.

• Garbage collection order (GCO): this message contains

the root of the new empty tree that will replace the old

one. Thus, when it is received from the initiator, it leads

to the removal of the log.

A user can have different three states according to the

collaboration state: blocked, active and passive. He is blocked

when a garbage collection procedure is processing and as soon

as the garbage ends he turns to the active state. Otherwise, the

user is passive (this is the state when a user joins the group).

In Algorithm 1, we give all the steps of the control con­

currency algorithm taking into account the garbage collection

messages.

When a user generates a local operation, he invokes

the function that will integrate remote operations (lNTE­
GRATE_LOCAL_OPERATION) discussed in section II. When

a user decides to initiate a garbage collection, he processes

the LUNCH_GC procedure. Now, when he receives a garbage

collection message, he calls the RECEIVE_GCCMESSAGE
(m) procedure detailed in Algorithm 2 where we can see that

according to the type of the received message (GCI, ACK

or GCO) the user will apply the corresponding processing.

If the message received is a GCI, the user invokes the

RECEIVE_GCCMESSAGE (m) procedure. To summarize, the

garbage collection scheme proceeds in five steps:

1) The garbage collection initiating site stops the local

generation of the operations to turn into blocked state,

and sends the GCI message to the rest of the group. At

the mean time, the initiator continues the integration of

remote operations.

2) When receiving a GCI message, each site stops the local

generation of operations, and checks if the operations

1: Main:
2: JOIN

3: INITIALIZATION

4: while not aborted do
5: if there is an input message m then
6: GENERATE_MESSAGE(m)

7: else
8: RECEIVE_MESSAGE

9: end if
10: end while

11: INITIALIZATION:

12: state f- active
13: R f-""
14: W f- 0
15: L f- 0
16: sf-Identification of local user
17: initiator f- false

18: GENERATE_MESSAGE(m):

19: if m is an operation then
20: INTEGRATE_LOCAL_OPERATION

21: else
22: if m is a GCI then
23: LUNCH_GCO

24: end if
25: end if

26: RECEIVE_MESSAGE:

27: if m is an operation then
28: if mEW then
29: W f- W-m
30: end if
31: INTEGRATE_REMOTE_OPERATION

32: else
33: if m is a log request then
34: if state=active then
35: SEND_LOG

36: end if
37: end if
38: else
39: RECEIVE_GCCMESSAGE (m)

40: end if

41: JOIN:

42: state f-passive
43: wait ()
44: send a request log message
45: wait until receiving log
46: for all operation in the log do
47: INTEGRATE_REMOTE_OPERATION

48: end for

Algorithm 1: Control Concurrency Algorithm with Garbage

Collection scheme

contained in the GCI leaves have already been executed

or not. To check it, we simply compute the difference

between the receiver set of leaves and the GCI one.

The resulting set is returned to the initiator in an ACK

message. The difference represents the leaves executed

by the site and not yet seen by the initiator site.

3) Each time the initiator receives an ACK message, he

stores the difference locally in his own list of waited

operations W. This list is updated every time he receives

one of the waited operations by extracting this operation

from the set. In other words, an ACK message is causally

ready when all leaves it contains are locally executed.

4) The initiator remains blocked until all ACK are received

and all waited operations are executed locally. Note that

waited ACK concerns only connected peers that were

discovered initially by the initiator and are continuing

the collaboration. New peers or disconnected peers are

ignored. Thus we ensure that the initiator will not wait

indefinitely for ACKs and overcome the Second Issue.

When all waited ACK are received and W = 0, the

initiator destroys his log and sends the garbage order

GCO to all the group (see Algorithm 3).

5) When receiving the GCO message, a site executes il when

it is causally ready. A GCO message is causally ready

when all operations in its leaves set are already executed

at the receiver site. Otherwise, the GCO is not ready and

thus the log removal could not be executed. When the

GCO message is causally ready, we verify whether the

set of leaves that it contains is equal to the local set of

leaves. If not, the user is ignored and considered as a new

user in the group (he must request the log from other

users). Otherwise, the site deletes its local log and start

again the local generation with an empty log containing

the same root received in the GCO.

1: RECEIVE_GC_MESSAGE (m)

2: if m = CCl(s', L�) then
3: if s < s' and initiator = true then
4: initiator f- false {Abort garbage collection initiation}
5: end if
6: state f- blocked
7: Lr f-L \ L8
8: send ACK(Lr)
9: else

10: if m = ACK(L', s') and initiator = true then
11: Wf-WUL'
12: V f- V\ {s'}
13: end if
14: else
15: if m = CCO(s', L') then
16: if GCO is causally ready and L' = L
17: clean log
18: R f- s'
19: state f- active
20: end if
21: end if

Algorithm 2: Receive garbage message procedure

Note that each collaborating site can generate a garbage

collection at any time. Hence, it is possible, that two or

more users initiate two garbage procedures concurrently. To

address this case, we associate a unique identifier that is

randomly generated in order to ensure fairness and offer to

all users the same opportunities to initiate a garbage collection

procedure. We assume that these identifiers are totally ordered

according to their priorities. The initiator identifier is sent

in the GCI. If an initiator receives a remote GCI, he just

compares his identifier to that received in the GCI message

(see Algorithm 2). If he has the high priority, he continues his

garbage otherwise, he stops the local garbage procedure and

respond to the initiator by an ACK messages as normal users

(see Algorithm 3).

1: LUNCH_GCO
2: initiator +- true
3: state +- blocked
4: V +- OnlinePeersO
5: send GCI(s,£)
6: wait until V n OnlinePeersO = 0 and W = 0
7: send GCO(s,£)
8: initiator +- false
9: clean log

10: state +- active

Algorithm 3: Lunch garbage collection procedure

As our algorithm meets peer-to peer networks, users can join

the group at any time. The question that arises here is: what to

do when a new user joins the group during a garbage collection

procedure? In fact, as discussed in Section III, this situation

can lead to replicas divergence if the user that receives the

new one request for log and state has not yet received the GCI

message. To avoid the Third Issue mentioned in section III,

we simply force the new peer to wait e time before requesting

the log from the nearest peer. The time e corresponds to the

maximal bound needed by a message to traverse the network

from any sender to its receiver. In our model, we consider

that e is a parameter depending on network configurations.

Consequently, the new users should follow the following steps.

First, he sets his state to passive and waits e time then sends a

request to the nearest peer in order to get the log and the state.

If the user who receives this request is in a blocked state, then

the requestor must wait until the requested user is unblocked.

If it is not the case (i.e the requested peer is in active state) he

sends his log and state to the requestor. Otherwise, he waits

the reception of the GCO message and then responds (see

Algorithm 1).

B. Illustrating Examples

Example 1. To illustrate the garbage collection scheme, con­

sider the scenario in Figure 6. In this Figure, we consider

three collaborating sites 81, 82 and 83 where 81 decides to

initiate a garbage collection. The set of leaves of each site

are referred to as L81, L82 and L83 respectively. To initiate

the garbage collection, site 81 stops the local generation

of operations, and sends to other sites a garbage collection

message GCI(81, L8J containing his set of leaves LSI' When

the GCI message arrives at sites 82 and 83, each site computes

the difference between the received set of leaves LSI and the

local one (L82 for 82 and L83 for 83)' Then the resulting set

is sent to the initiator of GCI (81) through the acquirement

message ACK. The set of leaves sent in ACK message by 82
and 83 are added to the set of waited operations (W) by site 81.
This list is updated every time a remote operation is received

(by removing the received operation from W). The group still

blocked until all ACK messages are received by 81 and his

W is empty (i.e. all waited operations are locally executed).

Then 81 cleans the log, adds his identity as the root the new

root of the dependency tree, and sends the GCO containing

the cleaning order to other sites of the group (81 and 82)' After

the reception of the GCO message, the three sites starts again

the local generation with empty logs.

while (recei�e remote 0)
W<-W\{o}

,«W '" ''''>'')'''''' GCO(� �

Clean Log

Fig. 6. Garbage collection scenario 1.

Log

Example 2. To illustrate how we proceed garbage collection

in the case of slow or non responding peers, let us consider

the scenario illustrated in Figure 7 where we have three

collaborating sites 81, 82 and 83· Let L81' L82 and L83 be

the set of leaves of 81, 82 and 83 respectively. Suppose that

site 81 initiates the garbage collection. So, he stops the local

generation of operations, and sends to other sites a garbage

collection message GCI(81, L81) containing his set of leaves

L81. When the GCI message arrives at sites 82 and 83, each

site computes the difference between the received set of leaves

LSI and the local one (LS2 for 82 and L83 for 83). Suppose

that LSI = 0 which means that 82 has the same set of leaves

as 81 and that L83 -I- 0. Moreover, 83 is a slow peer, thus

his ACK is not received by 81. When 81 receives 82'S ACK,

he rediscovers connected peers and finds that 83 does not

respond. Consequently, he only consider the ACK of 82. Since

W = 0, 81 sends the GCO message. When received by 82,
he deletes his log since L1 = L2. However, at site 83, the

log removal is not executed until all 81 leaves are executed at

site 83 and L83 = L81 to be sure that all operations seen at

site 81 when initiating the GC are received by 83. It should be

noted that if site 83 has generated an operation concurrently to

the garbage collection procedure (L83 -I- LSI)' this operation

will be lost since the set of leaves is different from that of

the initiator. Consequently, the user will be rejected from the

garbage collection procedure and considered as a new user

who joins the group thus needing to request the log and the

state after the garbage ends. This issue does not concern local

networks since the loss of messages is not frequent but may

be faced in large networks such as Internet.

ACK(S2,0)

ACK(s3,L2)

Slow: peer

if GCO is causally re�dy and LS3 = 1281

Clean Log Clean Log

Fig. 7. Garbage collection scenario 2 (case of a slow peer).

V. IMPLEMENTATION AND PERFORMANCE MEASUREMENT

To validate our model, we have implemented a prototype

based on the model discussed before using Java Platform,

Micro Edition (Java ME) [14] which provides a robust and

flexible environment for the embedded applications, and pro­

poses two configurations to simulate mobile environments:

CDC (Connected Device Configuration) [IS] specifies an

environment for terminals connected where memory is usually

greater than S12 Kb such as tablets screen phones, digital

television and cell phones as Nokia 9S00, Sony Ericsson P990i

and Samsung C6620. CLDC (Connected Limited Device Con­

figuration) [16] target devices with limited or low resources

such as mobile phones, PDAs, or light wireless peripheral. For

example, BlackBerry, Nokia (6600,E73,N93, ...), Motorola

(iS60,i730, ...) and Sumsung (A 737 ,DSOO, ...) offer CLDC

environment. The realized prototype was developed with net­

beans 6.8 under Windows operating system. In Figure 8, we

see different screen shots of the main windows on the CLDC

environment while in Figure 9), we illustrate a screen shot of

our prototype implemented for CDC environment.

A. Response Time

For our evaluation performance, we consider the following

times (see Figure 10) used to calculate the response time of

our model:

• tg is the time required to generate a local operation;

• ti is the time to integrate a remote operation;

...... ---"'==----,. '
tft � CoIcb:rativl? Elite.- Configur,atiDn

P Proxy: £'o.7828.131

Fig. 8. Screen shots of the CLDC prototype.

/

.�
myfirstte5t

I
I Save I
I Carbage Collection I
I Peer list I
I Disconnect I

�.�
.

li= � '1

1 2 3
4 5 �
7 8 r--g-

0 r----
* #

Fig. 9. Screen shot of the CDC prototype.

• tc is the time required to communicate an operation to a

peer through network;

• tT is the response time, we can obviously see that tT =

tg + ti + tc·

In general, it is established that the OT-based collaborative

editors must provide tT < lOOms [6]. The lower the response

time is the better the collaboration is. As a matter of fact,

the user is able to see different updates made on the shared

documents instantly.

To investigate the performance of our prototype realized

for mobile phones, we did experimental tests for the behavior

of the two developed models (CDC and CLDC). The first

experiment consists of calculating the response time in the

worst case. Note that the worst case occurs when the log

contains 100% delete operations(see [S]). Then we measured

the time required to generate an insertion and integrate it at a

remote site.

Fig. 10. Response time.

Figure 11 shows the response time for different log size

values for the CDC environment. These measurements reflect

the times tg, ti and their sum tr. The execution time falls

within lOOms for all IHI ::; 27500. Figure 12 shows the

response time for different log size values for the CLDC

environment. In this case, the execution time falls within

lOOms for all IHI ::; 14000.

"'
.§.
Q)

E
i=

,OO�

140
----+- Ti

- -Tr

120

100

80

60

40

20

0
0 0.5 1.5

Log size

Fig. 11. Response Time for CDC mobile phone.

We conclude that beyond 27500 (respc. 14000) for the CDC

(respc. CLDC) environment, logs should be cleaned through

garbage collection mechanism. This result is encouraging

since it allows for a large number of operations that users

can exchange before reaching the maximal born defined for

response time (and thus a lower quality for collaboration).

When reaching given sizes, all users will start again the

collaboration with empty logs which makes the collaboration

more and more efficient.

160

140

120

100

i
80 Q)

E
i=

60

40

20

0
0 0.5 1.5 2

Log size x 104

Fig. 12. Response Time for CLDC mobile phone.

B. Garbage Collection Time

The following experiment is realized to measure the block­

age time needed by the group in order to perform garbage

collection and collaborate again. The experiment measures

this time for different values of the leaves set owned by the

initiator. According to the results shown in Figure 13, we

deduce that the blockage time is acceptable till the size 10000,
where users have to wait only 5 seconds to start again their

collaboration. It should be noted that 10000 does not represent

the log size but rather the set of leaves size which means that

the log could contains more than this number of operations.

X 10
4

3.5,----,-----,-----,-----,-------,

3

2.5

Ui' 2

.s
Q)
E
i= 1.5

0.5

o�---�---�---�---�--�
o 2 3 4

Leaves set size

Fig. 13. Garbage collection time variation with leaves set size.

VI. CONCLUSION

5

X 10
4

In this work we proposed a garbage collection scheme

for real time collaborative editor based on OT approach and

built upon peer-to-peer networks. The main objective of this

scheme is to extend decentralized collaborative editors to

mobile devices as mobile phones, PDA, etc. Compared to

other OT-based collaborative editors, our editor proposes a

novel design for distributed garbage collection.

Our garbage collection scheme allows the integration of

collaborative editors in mobile devices, it preserves the data

convergence, and optimizes the editor log size, and hence

offers better performances. The most important income is

that our solution is well suited to dynamic groups. However,

it is limited by blocking the collaboration during garbage

collection process since all users who receive GCI message

block the local generation of operations until the end of the

garbage collection process. Moreover, slow sites may lose

their operations when receiving the garbage order. In such

situation, our garbage collection scheme enforces these slow

peers to be considered as new peers joining the group in

order to recover correct log and shared state from peers who

have successfully completed the garbage collection procedure.

Consequently, despite of the loss of operations for slow peers,

the data convergence is still ensured. Note that the loss of

operations does not occur in small networks, but only for wide

connections (e.g Internet).

In future work, we plan to improve our garbage collec­

tion scheme by avoiding blocking garbage collection scheme

and integrating off line work. We will also investigate in

developing a security design that meets collaborative work

requirements for mobile devices.

REFERENCES

[1] Clarence A. Ellis and Simon J. Gibbs (1989): Concurrency Control in
Groupware Systems. SIGMOD Conference 18, pp. 399-407.

[2] C. Sun (1998): Achieving Convergence, Causality-preservation, and

Intention-preservation in Real-time Cooperative Editing Systems. ACM
Transactions on Computer-Human Interaction 5, pp. 63-108.

[3] Matthias Ressel and Doris Nitsche-Ruhland and Rul Gunzenhauser
(November 1996): An Integrating, Transformation-Oriented Approach

to Concurrency Control and Undo in Group Editors. ACM CSCW'96",
Boston, USA. pp. 288-297.

[4] Brad Lushman and Gordon Y. Cormack (2003): Proof of correctness of

Ressel's adOPTed algorithm, Information Processing Letters 86,
pp. 303-310, Eiseiver B.y.

[5] A. Imine (2009) Coordination Model for Real-Time Collaborative
Editors. COORDINATION, pp. 225-246.

[6] Du Li and Rui Li (2008), An Operational Transformation Algorithm and
Petformance Evaluation 17, Computer Supported Cooperative Work,
pp. 469-508.

[7] P. Samarati and P. Ammann and S. Jajodia (1996): Maintaining replicated

authorizations in distributed database systems. Data & Knowledge
Engineeringjournall8, pp. 55-84.

[8] P. Roy and S. Seshadri and A. Silberschatz and S. Sudarshan and
S. Ashwin (1997). Garbage collection in object oriented databases using
transactional cyclic reference counting, In VLDB'97, Proceedings of
23rd International Conference on Very Large Data Bases, pp. 366-375.

[9] Sunil Sarin and Nancy Lynch and A. Lynch (1987), Discard Obsolete

Iriformation In A Replicated Database System. IEEE Transaction on
Software Engineering, Vol. SE-13, No. I, pp. 39-47.

[10] K. M, Chandy and L. Lamport (1985). Distributed snapshots: Determin­
ing Global States of Distributed System, vol 3, No.1. ACM Transactions
on Computer Systems, pp. 63-75.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson (1985): Impossibility
of distributed consensus with one faulty process. Journal of the ACM,
32(2), pp.374-382.

[12] A. Mostfaoui and M. Raynal (1999): Solving Consensus Using Chandra­
Touegs Unreliable Failure Detectors: A General Quorum-Based Ap­

proach, Springer Velag LNCS 1693, pp. 49-63.
[13] M. Raynal (2005): Short Introduction to Failure Detectors for Asyn­

chronous , ACM SIGACT News, Distr. Computing Column, 36(1), pp.
53-70.

[14] http: //java.sun.com/javame/index.jsp.
[15] http: //java.sun.com/javame/technology/cdc/.
[16] http://java.sun.com/products/cJdc/.

