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Abstract-The mobile phone technologies are becoming per­
vasive in recent years. These items such as IPhones, IPad and 
AndrOIds are very attractive since they provide relatively good 
resources for a mobile device. Several works aim at integrating 
desktop applications in these tools to make them closer to the 
real computer. However, adapting desktop applications to these 
tools is a challenging problem as they do not have the same 
features. Real time collaborative editors are famous applications 
allowing for several users to edit the same shared document 
simultaneously. Such an application is more and more used not 
only in professional fields but also in a personal context. In this 
work, we extend decentralized collaborative editors to mobile 
devices by conceiving a successful garbage collection scheme 
that optimally manages mobile devices resources. We propose 
a novel design for distributed garbage collection that ensures a 
good behavior of the application through the good measurements 
obtained for different types of mobile phones. 

Keywords: Real-time collaboration, Distributed garbage 

collection, Mobile device based applications. 

I. INTRODUCTION 

Motivations. Mobile Devices such as PDAs and cell phones 

are becoming more and more pervasive. Several works try 

to integrate desktop applications on these devices. Among 

these applications, we are mostly interested on collaborative 

editors (e.g. Google Docs, Abiword) which provide computer 

support for modifying simultaneously shared documents, such 

as articles, wiki pages and programming source code, by dis­

persed users. For instance, researchers may use a collaborative 

editor to edit the same article simultaneously without the need 

of being members of the same organization. In this work, 

we investigate on Real Time Collaborative Editors (RCE) on 

mobile devices. It should be noted that, RCE have specific 

requirements that may not match with those characterizing 

mobile devices, namely: 

• High local responsiveness: the system has to be as 

responsive as its single-user editors [1], [2]; 

• High concurrency: the users must be able to concurrently 

and freely modify any part of the shared document at any 

time [1], [2]; 

• Consistency: as the shared objects are replicated, the users 

must eventually be able to see a converged view of all 

copies [1], [2]; 

• Decentralized coordination: all concurrent updates must 

be synchronized in decentralized fashion in order to avoid 

a single point of failure; 

• Scalability: a group must be dynamic in the sense that 

users may join or leave the group at any time. 

These characteristics pose a significant challenge on the 

design of systems that support collaboration using mobile 

devices. We stress that even though mobile phones offer 

ad hoc communications and are suitable to host distributed 

applications, they are battery-powered so less powerful and 

have limited storage capacities compared to those offered by 

computers. 

Moreover, collaborative editors are based on log usage, as 

it is necessary to store the track of the operations received to 

ensure the convergence of the shared data. The motivation for 

maintaining a log at each site is that a remote operation must 

integrate the effect of all concurrent operations to be executed 

on the receiver site. However, not all operations received by 

a site must be kept in its log. In particular, an operation can 

be safely deleted from a site's log if: (i) it is already received 

in all other sites and (ii) all operations that depend on it are 

received by all sites. 

Deploying RCE based on logs on mobile devices can be 

costly. Indeed, they require lot of memory to manage the 

increasing log size. Consequently, a mechanism of garbage 

collection must be set up to allow for log reset at a given 

time and then to start again the collaboration with empty logs 

what improves the performances and response time of the 

collaborative application. 

The motivation for garbage collection is twofold. Firstly, 

storage capacity is not infinite as in practice memory always 

has limited size. Secondly, with the continuous increase of log 

size, the performances of the system degrade. Hence we need 

to devise a garbage collection technique allowing to delete all 

operations already seen and executed at collaborating sites at a 

given time knowing that logs are not identical in different sites 

as we allow out-of-order execution of operations. Moreover, 

group size in collaboration model is dynamic (churn) which 

complicates the garbage task. 
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Related work. Applying garbage collection on a distributed 

collaborative editor assumes that we have a global view 

of the distributed system state. Chandy and Lamport [10] 

propose an algorithm to determine global states of distributed 

systems by recording a logical (or causal) snapshot of the 

system. This algorithm is based on the hypotheses below: 

(i) no failures which means that all messages arrive intact, 

(ii) the communication channels are unidirectional and FIFO­

ordered and (iii) there is a communication path between every 

process pair. This FIFO communication channels ensures that 

reception order of messages is the same as the emission order 

which is not the case for RCEs. 

The solution proposed in [9], is a protocol that allows 

sites in a replicated data base system to discard old updates 

for maintaining mutual consistency. This protocol use [10] 

to determine the global state of the distributed system and 

timestamps to ensure a total order of update. This solution 

could not meet RCE requirements since it is hard to ensure a 

total order in decentralized fashion with dynamic groups. 

One can consider the garbage collection as a consensus 

problem in distributed systems, in our solution the decided 

value of consensus is the Log. It is impossible to solve con­

sensus problem in asynchronous systems because we cannot 

determine with certainty whether a process has crashed or 

not (it may be slow, or its messages are delayed), the FLP 

model [l1] proposed by Fischer, Lynch and Paterson proved 

that even if at most one process may crash, and all links 

are reliable, it is impossible to achieve consensus. To solve 

this problem, other works propose to enrich the asynchronous 

system with a failure detector. For instance, [12] propose a 

simple OS-based consensus protocol, this protocol uses OS as 

failure detector [13] and requires a majority of correct process. 

It was shown that this protocol never block and terminates. 

It helps to achieve consensus on a common value which is 

decided by the majority of correct processes. The specification 

behind this protocol is simple and allow to decide on the same 

final decision. However, our model is interactive and more 

complicated since we aim to decide on a final value that is 

not necessarily the value proposed by any of the collaborating 

users but may be a new value aggregated from the proposals 

of other users and the system evolution. 

In database area, the work of [7] is of relevance. It proposes 

a pruning technique allowing for the deletion of different 

updates that are no longer needed by the system. However, 

the use of timestamps make it inappropriate in a dynamic 

context. Other works such as [8] have been proposed to focus 

on garbage collection in object oriented databases but interest 

rather in memory management to delete unused objects and 

not in cleaning logs. In our knowledge, the only previous work 

on distributed collaborative editors that proposed a garbage 

collection technique to reduce log size is presented in [2]. 

Unfortunately, this solution is based on the use of state vectors 

thus only meets collaborations with a fixed group size thus 

being inappropriate to RCE requirements. 

Contributions. In this paper, we have based on previous works 

on collaborative editors to extend the collaboration model to 

mobile devices. We design a new approach to ensure garbage 

collection in a decentralized fashion in order to alleviate the 

storage capacity needed by collaborative editors models. We 

also demonstrate a good behavior of our garbage collection 

scheme by the experimental study that we will discuss later. 

Outline. This paper is organized as follows: In Section 2, we 

address garbage collection issues in RCE. In Section 3, we give 

an overview on the coordination model that we use. Section 

4 presents the concept of our garbage collection. Section 

5 illustrates performance study and section 6 summarizes 

contributions and discusses future work. 

II. COORDINATION MODEL 

Real-Time Collaborative Editors (RCE) allows many users 

(or sites) to concurrently update the shared data and next to 

synchronize their divergent replicas in order to obtain the same 

data. The updates of each site are executed on the local replica 

i1ll1llediately without being blocked or delayed, and then are 

propagated to other sites to be executed again. As a long 

established convention in RCE [1], [2], the shared object is a 

finite sequence of elements from any data type. For instance, 

an element may be regarded as a character, a paragraph, 

a page, a slide, an XML node, etc. It is assumed that the 

shared object can only be modified by the following primitive 

operations: (i) I ns(p, e) inserts the element e at position p; 
(ii) Del(p) deletes the element at position p. We shall refer to 

the state of a document by St and to operations that alter 

document state by cooperative operations. A crucial issue 

when designing shared objects with a replicated architecture 

and arbitrary messages communication between sites is the 

consistency maintenance (or convergence) of all replicas. To 

illustrate this problem, consider the group text editor scenario 

shown in Figure 1. There are two users (on two sites) working 

on a shared document represented by a sequence of characters. 

Initially, both copies hold the string" efecte". Site 1 executes 

operation 01 = I ns(l,j) to insert the character f at position 

1. Concurrently, site 2 performs 02 = Del(5) to delete the 

character e at position 5. When 01 is received and executed 

on site 2, it produces the expected string "effect". But, when 

02 is received on site 1, it does not take into account that 01 

has been executed before it and it produces the string "effece". 

The result at site 1 is different from the result of site 2 and it 

apparently violates the intention of 02 since the last character 

e, which was intended to be deleted, is still present in the final 

string. Consequently, we obtain a divergence between sites 1 

and 2. It should be pointed out that even if a serialization 

protocol [1] was used to require that all sites execute 01 and 02 

in the same order (i.e. a global order on concurrent operations) 

to obtain an identical result effece, this identical result is still 

inconsistent with the original intention of 02. 

To maintain consistency of the shared document, we use 

the Operational Transformation (OT) approach which has 

been proposed in [1]. In general, it consists of application­

dependent transformation algorithm, called IT, such that for 



01 = Ins(l, f) 02 = De/(5) 

. � . I "effecte" I I "efect" I 

. / 
. · . · . · . · . 

Del(5) Ins(l, f) 

I "effece" I 

Fig. 1. Incorrect integration. 

every possible pair of concurrent operations, the application 

programmer has to specify how to integrate these operations 

regardless of reception order. In Figure 2, we illustrate the 

effect of IT on the previous example. At site 1, 02 needs to 

be transformed in order to include the effects of 01: o� = 
IT((Del(6, e),Ins(2, f)) = Del(7, e). The deletion position 

of 02 is incremented because 01 has inserted a character at 

position 1, which is before the character deleted by 02. 

01 = Ins(l, f) 02 = De/(5) 

l "effecte"�� I "efect" l 
. �  . · . · . · . · . 

IT(02,0I) = Del(6) IT(01,02) = Ins(l,f) 

Fig. 2. Integration with transformation. 

It should be noted that OT enables us to ensure the con­

sistency for any number of concurrent operations which can 

be executed in arbitrary order [3], [4] (i.e. no global order is 

necessary ). 

For managing collaborative editing work in a decentralized 

and scalable fashion, we reuse an OT-based framework that 

owns the following features [5]: (i) It supports an uncon­

strained collaborative editing work (without the necessity of 

central coordination). Using optimistic replication scheme, it 

provides simultaneous access to shared documents. (ii) Instead 

of vector timestamps [1], it uses a simple technique to preserve 

causality relation based on a dependency tree where each oper­

ation has only to store the operation identity whose it directly 

depends on (see Figure 3). This tree-based causality relation 

is independent on the number of users and it provides high 

concurrency in comparison with vector timestamps. (iii) Us­

ing OT approach, reconciliation of divergent copies is done 

automatically in decentralized fashion. (iv) This framework 

can scale naturally thanks to its minimal causality dependency 

relation. In other words, it may be deployed easily in Peer-to­

Peer (P2P) networks. 

To be more general, we define the dependency relation as 

follows: 

Definition 2.1: (Dependency Relation) A cooperative op­

eration 02 depends on another cooperative operation 01, iff 

log 

01 
R 

02 

==>/i\ 03 

04 03 

Deleting an element depends on the operation that has 

inseted this element. So, 03 depends semantically on 01 

and 04 depends on02' There are other dependecy relations 

that we will not discuss here due to space lack. For more 

details the reader can refer to [5]. 
Suppose that 01 and 02 depend on a root R. Then the log 

is seen as the set of leaves {03, 04} . 

Fig. 3. Dependency tree built from log. 

04 

(i) 02 has seen the effect of 01 and, (ii) 01 and 02 alter the 

same element or (iii) 01 and 02 alter different elements but the 

execution of 01 and 02 in different orders on the same state 

results on two different states. 

In this OT-based framework, every site generates operations 

sequentially and stores these operations in a data-structure 

called a log. Two important steps are performed as follows: 

• Generation of local operation: When an operation 0 

is locally generated, it is ilmnediately executed on its 

generation state and next it is stored in the local log. 

Once executed, its dependency is computed in order to 

determine its direct predecessor. After the determination 

of the dependency, this operation is propagated to all sites 

in order to be executed on other copies of the shared 

document. 

• Integration of remote operation: Each site uses a queue to 

store the remote operations coming from other sites. To 

preserve the causality dependency, a remote operation 0 

is extracted from the queue when it is causally-ready (i.e 
if its dependency has been already integrated on receiver 

site). Next, we compute the transformed form 0
' to be 

executed on current state using IT function. Finally 0
'
, 

is executed on the current state and stored in the local 

log. 

Moreover, this framework enables the dynamic groups in the 

sense that users may quit or enter the groups at any time. When 

joining the group, a new user requests the current document 

state and the current log from the nearest user in order to start 

the collaboration with the members of this group. 

A stable state in a RCE is achieved when all generated 

operations have been performed at all sites. So, the following 

criteria should be ensured [5]: 

Definition 2.2: (Consistency Criteria) A RCE is consistent 



iff it satisfies the following properties: 

1) Dependency preservation: if 01 depends on 02 then 01 is 

executed before 02 at all sites. 

2) Convergence: when all sites have performed the same 

set of operations, the copies of the shared document are 

identical. 

At stable state, site logs are not necessarily identical because 

the concurrent operations may be executed in different orders. 

Nevertheless, these logs must be equivalent in the sense that 

they must lead to the same final state. For instance, in the 

scenario presented in Figure 2 the two logs [Ins(l, 1); Del(6)] 
and [Del(5);Ins(l,1)] are not identical but lead to the same 

final state thus they are equivalent. 

Definition 2.3: (Equivalent Logs) Two logs are equivalent 

iff they produce the same state when applied to a given state 

St. 

Our objective here is to develop on the top of this framework 

a garbage collection layer for managing the memory resources 

allowed to the log sites while preserving the consistency 

criteria of RCE (see Definition 2.2). Of course, this garbage 

collection-based RCE will be well suited for mobile devices. 

III. GARBAGE COLLECTION ISSUES 

We have already shown the importance of garbage collection 

in RCEs dedicated to mobile devices. Unfortunately, the 

garbage collection is really a hard task under the requirements 

discussed before as it must address the following issues: 

First Issue. Since logs are equivalent and not identical from 

one site to another due to out of order execution of operations, 

the log removal operation may be executed on different con­

texts from one site to another. In such situation, collaborative 

editing after the garbage collection procedure inevitably leads 

to divergence cases as it is shown in the scenario of Figure 

4. In this scenario, we consider two users that begin the 

collaboration with the same initial state "eact". Site 1 generates 

01 = ins(l, r ) to insert the character r at position 1 and gets 

the state "react". The second site removes the character "e" at 

position 1 with the operation 02 = del (1) and then gets the 

state "act". Concurrently, the site 1 initiates garbage collection, 

cleans his log and propagates the removal order to the site 

2. The latter receives the garbage collection order before the 

operation 01. Hence, when he receives 01 = ins(l, r ) , he 

executes it in its received form since IT function has no impact 

on 01 (the log is empty). Consequently, the final state at site 

2 is "ract". Now, site 1 receives 02 = del(l) and executes it 

also in its reception form as his log is empty and then derives 

the state "eact" which is different from the state of site 2. 

It should be pointed out that an operation may also loose its 

dependency and remains eternally unready if logs are removed 

in arbitrary fashion. 

Accordingly, cleaning process requires a global view of the 

collaboration state in order to ensure that log removal will 

be executed at the same context in all collaborating sites. In 

other words, we must be able to deduce whether an operation 

was received by all users or not, and whether it is needed 

01 = Ins(l,r) 02 = Del(l) 

I "a�t" I 
arbageC ollection 

Fig. 4. Divergence caused by garbage collection applied on different contexts 

by an other operation for an integration process. If it is the 

case, then the operation could be safely removed from the log. 

Otherwise, replicas will diverge. 

To overcome this problem, it is necessary to draw a global 

view on the state of each user in order to decide about 

the portion of log that could be deleted without leading 

to divergence. This is possible to achieve through request­

response messages before log removal. The question that arises 

here: is global view possible in a dynamic and distributed 

collaboration? 

Second Issue. Suppose that the garbage collection only begins 

when all users are ready to clean their logs. To know if a user 

is able to remove his log or not, we must wait for his answer. 

However in a peer-to-peer context, a user may leave the group 

at any time and thus never responds to the garbage request. A 

user can also crash down and be prevented to respond. In both 

cases, it is difficult to take the correct garbage decision while 

preserving consistency criteria (see Definition 2.2). Because 

of message asynchrony, a user has no safe means to know 

whether another user has or has not crash. Even the timeout 

approach has many inconveniences. For instance, a user may 

respond just after the timeout expiration. Moreover, even the 

timeout itself is difficult to define. 

The solution proposed in [2] relies on state vectors to draw 

a state view for each user. Every silent user has to send 

periodically the value of its state vector to other users. State 

vectors of active sites are deduced from the operations they 

perform. These vectors are used to calculate a minimal state 

vector allowing for garbage decisions. However, this approach 

is limited to static groups and could not be used in the case 

of dynamic groups because of failure impact on the garbage 

procedure i.e. when a site is absent or silent, its state vector 

remains unchanged, then other users could no more delete 

operations from their logs. 

Third Issue. Another issue that could be faced when trying to 

garbage logs in RCE is when the garbage process is disturbed 

by the join of a new user. It is known that in peer-to-peer 

context, a new user can join the group at any time. When a new 

peer tries to join the group while its members are processing 

a garbage collection procedure, we may diverge if that user 

receives the current log before its deletion by all the members 

of the group. Hence, the new user is able to generate new 

operations based on a context completely different from other 



user contexts. Consequently, we inevitably diverge according 

to the scenario presented in Figure 4. 

To illustrate this, let us consider the scenario in Figure 5 in 

which we have 3 sites collaborating together in order to edit 

the same document. The initial group is only composed of 

users 81 and 82. Then site 83 decides to join the collaboration. 

Site 83 requests the log and the state from site 82. Concur­

rently, the site 81 initiates a garbage collection and propagates 

the request to site 82. The latter sends the log and the state to 

83 before receiving the request of the former. Then he decides 

to empty his log as well as site 81 does. When 83 is ready 

to join the group, he has a non empty log while others have 

empty ones. It is obvious that the context of 83 is different 

from that of 81 and 82 which leads to divergence. 

Initiate garbage collection 

End g�rbage 
and delete log 

Request state 
. and log from 82 

.� 

. � 

. End gkrbage begin the cbllaboration 
: and delete log with non ¢mpty log 

.�I 

Fig. S. Divergence caused by a new user joining the group. 

IV. OUR GARBAGE COLLECTION SCHEME 

A. Garbage Collection Algorithm 

In this section, we will discuss the concept of garbage and 

devise solutions for garbage collection. Each site maintains 

its own log which can be seen as a dependency tree using the 

semantical dependency relations (see Figure 3). The leaves of 

this tree represent a sUlmnary about what a site has received 

since an operation is causally ready only when its dependency 

is already executed. Let 12 be the set of leaves maintained 

by each site 8. For instance, in the example of Figure 3, 12 = 

{03, 04 } . Consequently, two sites having the same set of leaves 

means that they have executed the same set of operations and 

hence they have equivalent logs. This set of leaves is updated 

each time a local operation is generated or a distant one is 

received by replacing old leaves by new ones. The root of 

the dependency tree noted R represents the identity of the 

site that performed the last the garbage collection procedure. 

The root has no effect on the state but rather serves as a break 

point indicating a garbage collection initiation. We assume that 

initially every site begins with an empty root. 

It is obvious that the tree structure helps to draw the 

set of leaves and thus facilitates the comparison between 

different user logs. Consequently we reduce the size of parsed 

operations to decide whether the garbage procedure is allowed 

or not since we only compare the set of leaves rather than the 

entire logs. The tree structure allowing for leaves comparison 

is used in order to check whether all users have the same 

context or not thus we overcome the First Issue presented in 

Section III. 

To proceed garbage collection, the collaborating sites ex­

change some garbage messages to decide whether it is possible 

to clean logs or not. In fact, it is not always possible to 

delete operations from the log. For instance, two sites having 

different sets of leaves are unable to clean their logs since 

we can deduce that there are operations in network not yet 

received by all sites. To do so, collaborating sites have to 

exchange the following messages in order to decide about the 

garbage: 

• Garbage collection initiation (GCI): is a message sent by 

the site initiating the garbage collection procedure; the 

GCI contains the site identity as well as the set of leaves 

L. 

• Acquirement (ACK): when a site receives the GCI mes­

sage, he computes the difference between his set of leaves 

12 and that received in the GCI, then sends the result to 

the initiator. 

• Garbage collection order (GCO): this message contains 

the root of the new empty tree that will replace the old 

one. Thus, when it is received from the initiator, it leads 

to the removal of the log. 

A user can have different three states according to the 

collaboration state: blocked, active and passive. He is blocked 

when a garbage collection procedure is processing and as soon 

as the garbage ends he turns to the active state. Otherwise, the 

user is passive (this is the state when a user joins the group). 

In Algorithm 1, we give all the steps of the control con­

currency algorithm taking into account the garbage collection 

messages. 

When a user generates a local operation, he invokes 

the function that will integrate remote operations (lNTE­
GRATE_LOCAL_OPERATION) discussed in section II. When 

a user decides to initiate a garbage collection, he processes 

the LUNCH_GC procedure. Now, when he receives a garbage 

collection message, he calls the RECEIVE_GCCMESSAGE 
(m) procedure detailed in Algorithm 2 where we can see that 

according to the type of the received message (GCI, ACK 

or GCO) the user will apply the corresponding processing. 

If the message received is a GCI, the user invokes the 

RECEIVE_GCCMESSAGE (m) procedure. To summarize, the 

garbage collection scheme proceeds in five steps: 

1) The garbage collection initiating site stops the local 

generation of the operations to turn into blocked state, 

and sends the GCI message to the rest of the group. At 

the mean time, the initiator continues the integration of 

remote operations. 

2) When receiving a GCI message, each site stops the local 

generation of operations, and checks if the operations 



1: Main: 
2: JOIN 

3: INITIALIZATION 

4: while not aborted do 
5: if there is an input message m then 
6: GENERATE_MESSAGE(m) 

7: else 
8: RECEIVE_MESSAGE 

9: end if 
10: end while 

11: INITIALIZATION: 

12: state f- active 
13: R f-"" 
14: W f- 0 
15: L f- 0 
16: sf-Identification of local user 
17: initiator f- false 

18: GENERATE_MESSAGE(m): 

19: if m is an operation then 
20: INTEGRATE_LOCAL_OPERATION 

21: else 
22: if m is a GCI then 
23: LUNCH_GCO 

24: end if 
25: end if 

26: RECEIVE_MESSAGE: 

27: if m is an operation then 
28: if mEW then 
29: W f- W-m 
30: end if 
31: INTEGRATE_REMOTE_OPERATION 

32: else 
33: if m is a log request then 
34: if state=active then 
35: SEND_LOG 

36: end if 
37: end if 
38: else 
39: RECEIVE_GCCMESSAGE (m) 

40: end if 

41: JOIN: 

42: state f-passive 
43: wait () 
44: send a request log message 
45: wait until receiving log 
46: for all operation in the log do 
47: INTEGRATE_REMOTE_OPERATION 

48: end for 

Algorithm 1: Control Concurrency Algorithm with Garbage 

Collection scheme 

contained in the GCI leaves have already been executed 

or not. To check it, we simply compute the difference 

between the receiver set of leaves and the GCI one. 

The resulting set is returned to the initiator in an ACK 

message. The difference represents the leaves executed 

by the site and not yet seen by the initiator site. 

3) Each time the initiator receives an ACK message, he 

stores the difference locally in his own list of waited 

operations W. This list is updated every time he receives 

one of the waited operations by extracting this operation 

from the set. In other words, an ACK message is causally 

ready when all leaves it contains are locally executed. 

4) The initiator remains blocked until all ACK are received 

and all waited operations are executed locally. Note that 

waited ACK concerns only connected peers that were 

discovered initially by the initiator and are continuing 

the collaboration. New peers or disconnected peers are 

ignored. Thus we ensure that the initiator will not wait 

indefinitely for ACKs and overcome the Second Issue. 

When all waited ACK are received and W = 0, the 

initiator destroys his log and sends the garbage order 

GCO to all the group (see Algorithm 3). 

5) When receiving the GCO message, a site executes il when 

it is causally ready. A GCO message is causally ready 

when all operations in its leaves set are already executed 

at the receiver site. Otherwise, the GCO is not ready and 

thus the log removal could not be executed. When the 

GCO message is causally ready, we verify whether the 

set of leaves that it contains is equal to the local set of 

leaves. If not, the user is ignored and considered as a new 

user in the group (he must request the log from other 

users). Otherwise, the site deletes its local log and start 

again the local generation with an empty log containing 

the same root received in the GCO. 

1: RECEIVE_GC_MESSAGE (m) 

2: if m = CCl(s', L�) then 
3: if s < s' and initiator = true then 
4: initiator f- false {Abort garbage collection initiation} 
5: end if 
6: state f- blocked 
7: Lr f-L \ L8 
8: send ACK(Lr) 
9: else 

10: if m = ACK(L', s') and initiator = true then 
11: Wf-WUL' 
12: V f- V\ {s'} 
13: end if 
14: else 
15: if m = CCO( s', L') then 
16: if GCO is causally ready and L' = L 
17: clean log 
18: R f- s' 
19: state f- active 
20: end if 
21: end if 

Algorithm 2: Receive garbage message procedure 

Note that each collaborating site can generate a garbage 

collection at any time. Hence, it is possible, that two or 

more users initiate two garbage procedures concurrently. To 

address this case, we associate a unique identifier that is 

randomly generated in order to ensure fairness and offer to 

all users the same opportunities to initiate a garbage collection 

procedure. We assume that these identifiers are totally ordered 

according to their priorities. The initiator identifier is sent 

in the GCI. If an initiator receives a remote GCI, he just 

compares his identifier to that received in the GCI message 

(see Algorithm 2). If he has the high priority, he continues his 



garbage otherwise, he stops the local garbage procedure and 

respond to the initiator by an ACK messages as normal users 

(see Algorithm 3). 

1: LUNCH_GCO 
2: initiator +- true 
3: state +- blocked 
4: V +- OnlinePeersO 
5: send GCI(s,£) 
6: wait until V n OnlinePeersO = 0 and W = 0 
7: send GCO(s,£) 
8: initiator +- false 
9: clean log 

10: state +- active 

Algorithm 3: Lunch garbage collection procedure 

As our algorithm meets peer-to peer networks, users can join 

the group at any time. The question that arises here is: what to 

do when a new user joins the group during a garbage collection 

procedure? In fact, as discussed in Section III, this situation 

can lead to replicas divergence if the user that receives the 

new one request for log and state has not yet received the GCI 

message. To avoid the Third Issue mentioned in section III, 

we simply force the new peer to wait e time before requesting 

the log from the nearest peer. The time e corresponds to the 

maximal bound needed by a message to traverse the network 

from any sender to its receiver. In our model, we consider 

that e is a parameter depending on network configurations. 

Consequently, the new users should follow the following steps. 

First, he sets his state to passive and waits e time then sends a 

request to the nearest peer in order to get the log and the state. 

If the user who receives this request is in a blocked state, then 

the requestor must wait until the requested user is unblocked. 

If it is not the case (i.e the requested peer is in active state) he 

sends his log and state to the requestor. Otherwise, he waits 

the reception of the GCO message and then responds (see 

Algorithm 1). 

B. Illustrating Examples 

Example 1. To illustrate the garbage collection scheme, con­

sider the scenario in Figure 6. In this Figure, we consider 

three collaborating sites 81, 82 and 83 where 81 decides to 

initiate a garbage collection. The set of leaves of each site 

are referred to as L81, L82 and L83 respectively. To initiate 

the garbage collection, site 81 stops the local generation 

of operations, and sends to other sites a garbage collection 

message GCI(81, L8J containing his set of leaves LSI' When 

the GCI message arrives at sites 82 and 83, each site computes 

the difference between the received set of leaves LSI and the 

local one (L82 for 82 and L83 for 83)' Then the resulting set 

is sent to the initiator of GCI (81) through the acquirement 

message ACK. The set of leaves sent in ACK message by 82 
and 83 are added to the set of waited operations (W) by site 81. 
This list is updated every time a remote operation is received 

(by removing the received operation from W). The group still 

blocked until all ACK messages are received by 81 and his 

W is empty (i.e. all waited operations are locally executed). 

Then 81 cleans the log, adds his identity as the root the new 

root of the dependency tree, and sends the GCO containing 

the cleaning order to other sites of the group (81 and 82)' After 

the reception of the GCO message, the three sites starts again 

the local generation with empty logs. 

while (recei�e remote 0) 
W<-W\{o} 

,«W '" ''''>'')'''''' GCO(� � 

Clean Log 

Fig. 6. Garbage collection scenario 1. 

Log 

Example 2. To illustrate how we proceed garbage collection 

in the case of slow or non responding peers, let us consider 

the scenario illustrated in Figure 7 where we have three 

collaborating sites 81, 82 and 83· Let L81' L82 and L83 be 

the set of leaves of 81, 82 and 83 respectively. Suppose that 

site 81 initiates the garbage collection. So, he stops the local 

generation of operations, and sends to other sites a garbage 

collection message GCI(81, L81) containing his set of leaves 

L81. When the GCI message arrives at sites 82 and 83, each 

site computes the difference between the received set of leaves 

LSI and the local one (LS2 for 82 and L83 for 83). Suppose 

that LSI = 0 which means that 82 has the same set of leaves 

as 81 and that L83 -I- 0. Moreover, 83 is a slow peer, thus 

his ACK is not received by 81. When 81 receives 82'S ACK, 

he rediscovers connected peers and finds that 83 does not 

respond. Consequently, he only consider the ACK of 82. Since 

W = 0, 81 sends the GCO message. When received by 82, 
he deletes his log since L1 = L2. However, at site 83, the 

log removal is not executed until all 81 leaves are executed at 

site 83 and L83 = L81 to be sure that all operations seen at 

site 81 when initiating the GC are received by 83. It should be 

noted that if site 83 has generated an operation concurrently to 

the garbage collection procedure (L83 -I- LSI)' this operation 

will be lost since the set of leaves is different from that of 

the initiator. Consequently, the user will be rejected from the 

garbage collection procedure and considered as a new user 



who joins the group thus needing to request the log and the 

state after the garbage ends. This issue does not concern local 

networks since the loss of messages is not frequent but may 

be faced in large networks such as Internet. 

ACK(S2,0) 

ACK(s3,L2) 

Slow: peer 

if GCO is causally re�dy and LS3 = 1281 

Clean Log Clean Log 

Fig. 7. Garbage collection scenario 2 (case of a slow peer). 

V. IMPLEMENTATION AND PERFORMANCE MEASUREMENT 

To validate our model, we have implemented a prototype 

based on the model discussed before using Java Platform, 

Micro Edition (Java ME) [14] which provides a robust and 

flexible environment for the embedded applications, and pro­

poses two configurations to simulate mobile environments: 

CDC (Connected Device Configuration) [IS] specifies an 

environment for terminals connected where memory is usually 

greater than S12 Kb such as tablets screen phones, digital 

television and cell phones as Nokia 9S00, Sony Ericsson P990i 

and Samsung C6620. CLDC (Connected Limited Device Con­

figuration) [16] target devices with limited or low resources 

such as mobile phones, PDAs, or light wireless peripheral. For 

example, BlackBerry, Nokia (6600,E73,N93, ... ), Motorola 

(iS60,i730, ... ) and Sumsung (A 737 ,DSOO, ... ) offer CLDC 

environment. The realized prototype was developed with net­

beans 6.8 under Windows operating system. In Figure 8, we 

see different screen shots of the main windows on the CLDC 

environment while in Figure 9), we illustrate a screen shot of 

our prototype implemented for CDC environment. 

A. Response Time 

For our evaluation performance, we consider the following 

times (see Figure 10) used to calculate the response time of 

our model: 

• tg is the time required to generate a local operation; 

• ti is the time to integrate a remote operation; 

...... ---"'==----,. ' 
tft � CoIcb:rativl? Elite.- Configur,atiDn 

P Proxy: £'o.7828.131 

Fig. 8. Screen shots of the CLDC prototype. 

/ 

.� 
myfirstte5t 

I 
I Save I 
I Carbage Collection I 
I Peer list I 
I Disconnect I 

�.� 
. 

li= � '1 

1 2 3 
4 5 � 
7 8 r--g-

0 r----
* # 

Fig. 9. Screen shot of the CDC prototype. 

• tc is the time required to communicate an operation to a 

peer through network; 

• tT is the response time, we can obviously see that tT = 

tg + ti + tc· 

In general, it is established that the OT-based collaborative 

editors must provide tT < lOOms [6]. The lower the response 

time is the better the collaboration is. As a matter of fact, 

the user is able to see different updates made on the shared 

documents instantly. 

To investigate the performance of our prototype realized 

for mobile phones, we did experimental tests for the behavior 

of the two developed models (CDC and CLDC). The first 

experiment consists of calculating the response time in the 

worst case. Note that the worst case occurs when the log 

contains 100% delete operations(see [S]). Then we measured 

the time required to generate an insertion and integrate it at a 

remote site. 



Fig. 10. Response time. 

Figure 11 shows the response time for different log size 

values for the CDC environment. These measurements reflect 

the times tg, ti and their sum tr. The execution time falls 

within lOOms for all IHI ::; 27500. Figure 12 shows the 

response time for different log size values for the CLDC 

environment. In this case, the execution time falls within 

lOOms for all IHI ::; 14000. 
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Fig. 11. Response Time for CDC mobile phone. 

We conclude that beyond 27500 (respc. 14000) for the CDC 

(respc. CLDC) environment, logs should be cleaned through 

garbage collection mechanism. This result is encouraging 

since it allows for a large number of operations that users 

can exchange before reaching the maximal born defined for 

response time (and thus a lower quality for collaboration). 

When reaching given sizes, all users will start again the 

collaboration with empty logs which makes the collaboration 

more and more efficient. 
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Fig. 12. Response Time for CLDC mobile phone. 

B. Garbage Collection Time 

The following experiment is realized to measure the block­

age time needed by the group in order to perform garbage 

collection and collaborate again. The experiment measures 

this time for different values of the leaves set owned by the 

initiator. According to the results shown in Figure 13, we 

deduce that the blockage time is acceptable till the size 10000, 
where users have to wait only 5 seconds to start again their 

collaboration. It should be noted that 10000 does not represent 

the log size but rather the set of leaves size which means that 

the log could contains more than this number of operations. 
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Fig. 13. Garbage collection time variation with leaves set size. 

VI. CONCLUSION 

5 
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4 

In this work we proposed a garbage collection scheme 

for real time collaborative editor based on OT approach and 



built upon peer-to-peer networks. The main objective of this 

scheme is to extend decentralized collaborative editors to 

mobile devices as mobile phones, PDA, etc. Compared to 

other OT-based collaborative editors, our editor proposes a 

novel design for distributed garbage collection. 

Our garbage collection scheme allows the integration of 

collaborative editors in mobile devices, it preserves the data 

convergence, and optimizes the editor log size, and hence 

offers better performances. The most important income is 

that our solution is well suited to dynamic groups. However, 

it is limited by blocking the collaboration during garbage 

collection process since all users who receive GCI message 

block the local generation of operations until the end of the 

garbage collection process. Moreover, slow sites may lose 

their operations when receiving the garbage order. In such 

situation, our garbage collection scheme enforces these slow 

peers to be considered as new peers joining the group in 

order to recover correct log and shared state from peers who 

have successfully completed the garbage collection procedure. 

Consequently, despite of the loss of operations for slow peers, 

the data convergence is still ensured. Note that the loss of 

operations does not occur in small networks, but only for wide 

connections (e.g Internet). 

In future work, we plan to improve our garbage collec­

tion scheme by avoiding blocking garbage collection scheme 

and integrating off line work. We will also investigate in 

developing a security design that meets collaborative work 

requirements for mobile devices. 
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