
CAEVA: A Customizable and Adaptive Event

Aggregation Framework for Collaborative

Broker Overlays

Jianxia Chen, Lakshmish Ramaswamy

Department of Computer Science
The University of Georgia

Athens, GA 30602

David K. Lowenthal

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

Shivkumar Kalyanaraman

IBM Research India
Bangalore 560071 India

Email: shivkumar-k@in.ibm.com
Email: {chen, laks }@cs.uga.edu Email: dkl@cs.arizona.edu

Abstract-The publish-subscribe (pub-sub) paradigm is
maturing and integrating into community-oriented collab
orative applications. Because of this, pub-sub systems are
faced with an event stream that may potentially contain
large numbers of redundant and partial messages. Most
pub-sub systems view partial and redundant messages as
unique, which wastes resources not only at routers, but also
at possibly resource constrained subscribers.

In this paper, we present Caeva, a customizable and
adaptive event aggregation framework. The design of Caeva
exhibits three novel features. First, the tasks of merging
messages and eliminating redundancies are shared among
multiple, physically distributed brokers called aggregators.
Second, we design a decentralized aggregator placement
scheme that continuously adapts to decrease messaging
overheads in the face of changing event publishing pat
terns. Third, we allow subscribers to choose a notification
schedule that meets their specific needs. Results of extensive
experiments show that Caeva is quite effective in providing
flexibility and efficiency.

I. INTRODUCTION

The publish-subscribe (pub-sub) paradigm has been
well-explored as an asynchronous, loosely-coupled com
munication mechanism for large-scale distributed sys
tems [1], [2], [3], [4], [5], [6], [7], [8], [9]. Recently,
there have been recognizable efforts towards adopting
the pub-sub paradigm into community-oriented applica
tions. Indeed, online social networks such as Digg [10]
and Twitter [11] have incorporated pub-sub-style com
munication mechanisms.

However, the pub-sub substrates of most existing
community-oriented applications are quite rudimentary.
The design of pub-sub substrate should take into account
the unique characteristics of collaborative communities.
One such characteristic is the likelihood of inherently
noisy event streams, including redundant publications,

incomplete event messages, inaccurate event messages,
and even events generated with malicious intent.

This paper describes the design, implementation, and
performance of Caeva, which is a decentralized, dy
namic, and configurable pub-sub system that handles
redundant and partial events. Caeva uses a collaborative
broker overlay to eliminate redundant messages (due to
participants publishing event information that is already
contained in one or more previously published messages)
and merge same-event messages (due to multiple partici
pants publishing messages with partial information about
the same underlying event). By performing this task at
the brokers, Caeva avoids placing this burden on the
subscribers (who may be resource constrained in terms
of power or bandwidth).

To operate effectively at a large scale, Caeva must
address two key problems. First, aggregation must be
decentralized, dynamic, and adaptive to achieve good
performance, and the key to achieving this is developing
an effective algorithm for placing aggregators within the
broker overlay. Second, the ability of subscribers to con
trol the inherent tradeoff between degree of aggregation
and latency of notification is critical for usability.

Specifically, this paper makes three novel contribu
tions.

• We present a collaborative event aggregation and
redundancy elimination technique, in which event
messages are aggregated in mUltiple stages and
at multiple aggregators. Our technique includes
decentralized protocols to coordinate the actions of
various aggregators of an event so that subscribers
receive notifications with low delay.

• We design and implement a distributed aggrega
tor placement algorithm that continuously adapts
to message publication patterns with the aim of

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USACopyright © 2011 ICSTDOI 10.4108/icst.collaboratecom.2010.34

minimizing the message load within the overlay.

• We develop an efficient notification scheme for

supporting subscriber-specified notification cycles.

We study the benefits and overheads of our scalable,

decentralized mechanisms through series of experiments

with particular attention to the broker overlay. The results

demonstrate that the message load in Caeva system can

be over 70% less than Siena, a similar system that does

no message elimination.

The rest of this paper is organized as follows. Sec

tion II discusses the motivation behind our work. Then,

we describe our aggregation scheme, its customization,

and our flexible subscriber notification cycle scheme in

Section III. The results are presented in Section IV.

Finally, Section V describes related work, and Section VI

summarizes the paper.

II. MOTIVATION

Applications such as Twitter [11] incorporate a pub

sub-like substrate, in which the members of a (possibly

ad-hoc) community or social group collaboratively report

and receive events that may be of interest. In such

applications with large user bases, several participants

will likely notice an event simultaneously (or within a

short duration of time) and report it to the system. Such

a system is faced with an event stream with published

messages that may have redundant data as well as partial

event information. For example, in a collaborative traffic

incident report system, different participants may report

different aspects of an accident, with some reporting

event information that has already been through one or

more previous messages.

The simple strategy of relegating the partial and re

dundant message handling responsibilities to subscribers

has several drawbacks, including: (1) useless event mes

sages overwhelming low-end subscribers, which wastes

bandwidth and power; and (2) significant communication

overhead overwhelming the pub-sub system itself, which

limits its scalability and performance. An alternative

would be to perform these operations at centralized

brokers (one broker per event) of the overlay [12].

However, the centralized brokers can quickly become

overloaded. Further, relaying each published message to

a centralized broker causes high messaging overheads

within the overlay. Thus, in order to achieve scalability,

the task of aggregating messages of an event should

be shared by mUltiple brokers, and the set of brokers

involved in aggregation should adapt to message pub

lication patterns. In addition, the subscribers should be

able to choose the degree of consolidation as per their

needs and resource availabilities.

2

III. Caeva

Caeva is a collaborative, distributed-overlay based

pub-sub infrastructure that supports event message ag

gregation and redundancy elimination in addition to

routing messages from publishers to subscribers. Its

design is motivated by Agele [12], which is described

further in Section V. In this section, we first describe the

architecture of Caeva. Then, we discuss decentralized,

adaptive aggregation. Finally, we discuss customizing a

notification schedule at the subscriber.

A. Architecture

Caeva is built upon a distributed overlay of mes

sage brokers (also referred to as nodes), represented as

{bl, b2, ... , bN}. Each broker is logically connected to

a few other brokers such that the network forms a con

nected graph. The set of publishers and set of subscribers

are represented as {PI, P2, ... ,pc} and {8l' 82, ... ,8H}

respectively, with each publisher and subscriber con

nected to one of the brokers.

Caeva's subscription model is similar to type-and

attribute-based pub-sub paradigm [7]. However, the pro

posed architecture as well as the associated techniques

can be adapted to topic-based or content-based pub-sub

systems. Every event in our system is associated with

a topic, which provides a broad context for the event.

For example, a traffic incident in a certain geographical

area would represent a topic. In addition, events have

a set of attributes (fields) that provide details of the

event. The fields of an event eq are represented as

{eq(l), eq(2), ... , eq(V)}. One of these fields (without

loss of generality, the first field) is designated as the

event key. The key field is descriptive, and it can be

used in SUbscription predicates. For instance, the key for

a traffic incident event would be the street intersection at

which it occurs. Within a certain time-window, the key

along with the topic corresponds uniquely to an event.

The number of fields of an event, their types, and the

key are determined by the event's topic. Subscriptions

are specified with respect to the event topic as well as

its fields. A subscription has to necessarily identify the

topic of interest. Additionally, it may specify predicates

involving the fields associated with the topic.

There can be multiple published messages associated

with a single event (represented as {e�, e�, ... , e�} for

event eq) , possibly published by multiple publishers.

Each message contains a subset of fields of the corre

sponding event. The fields of an event message e� are

represented as {e�(l), e�(2), ... ,e�(V)}. According to

key-topic uniqueness assumption, if the first message of

an event is published at time t f' any messages with

an identical key-topic pair generated between t f and
t f + W correspond to the same event. P ublishers may
advertise the types of events they are going to generate.
However, the system can be configured to work without
advertisements, in which case it is assumed that every
publisher can publish all types of events.

Similar to many existing pub-sub systems [2], [3],
routing acyclic graphs (AGs) comprised of brokers from
the overlay form the basis for routing events from
publishers to subscribers. Routing AGs are constructed
in a completely decentralized fashion by peer-to-peer
forwarding of subscriptions and advertisements. The
predicates of subscriptions with the same topic are aggre
gated at brokers using the sUbsumption relationship, and
a more generic subscription is forwarded. While Caeva

maintains a distinct routing AG for each topic, individual
brokers can belong to multiple routing AGs.

B. Decentralized, Adaptive Aggregation

Caeva uses a collaborative, decentralized and adaptive
approach to aggregating events and eliminating redun
dancy. At a high-level, decentralized aggregation has
a resemblance to the operator placement problem in
distributed stream processing systems [13]. The question,
therefore, is whether similar techniques can be used
for the problem at hand. However, as we discuss in
Section V, in a community-based event system, mes
sage publishers (source nodes) of a particular event
are not known before hand, which precludes adopting
heavyweight, plan-based techniques that have been used
for distributed stream processing systems. We need a
lightweight and dynamic scheme that does not need
apriori knowledge of message sources of an individual
event.

In our approach, designated brokers within the routing
AG of a particular event type participate in aggregating
and eliminating events of that type. Such brokers are re
ferred to as aggregators. Each aggregator is autonomous
and maintains a buffer that stores part of an event.

In Caeva, we coordinate the activities of the various
aggregators of an event. This ensures that subscribers
receive event information available in one composite
message at the end of each notification cycle. A sub
set of aggregators, called active aggregators (AAs),
additionally perform coordination. One of the active
aggregators, the coordinator, coordinates the final round
of aggregation and routes the aggregated message to
subscribers. We denote all non-active aggregators as
passive aggregators (PAs). The key to Caeva is that the

aggregators are chosen dynamically, and then are moved

adaptively when necessary.

3

In the next two subsections we explain the operations
of active and passive aggregators and the coordinator. In
turn, we discuss the dynamic aggregation within Caeva,

its coordination algorithm for the active aggregator,
and then how aggregators are placed within the broker
overlay and moved adaptively.

In this discussion, we focus on the routing AG of
a single event type. However, multiple routing AGs
can simultaneously exist in Caeva, and the techniques
and mechanisms discussed below apply to the routing
AGs within the broker overlay. For now, we assume all
subscribers have the same notification cycle duration; the
next section relaxes this assumption.

Notationally, the set of passive aggregators is denoted
PvSet = {PVl,pV2, ... ,pVF} and its active aggregator
set AvSet = {avl,av2, ... ,avc}. The coordinator of
the event eq is represented as Cq.

Dynamic Aggregation: When the event message e�
reaches a passive aggregator pv f' there are three possible
cases: (1) pVf has a message corresponding to the event
eq in its buffer, and that message is a superset of all the
fields contained in e�. In this scenario, e� is redundant
and therefore dropped. (2) pVf has a message pertaining
to event eq in its buffer, but that message does not
have all the fields contained in e�. In this case ,e�
is merged with the buffered message. (3) e� is the
first message of event eq. Here, pv f inserts it into its
buffer, but also passes it to its upstream neighbor; it
will eventually reach an active aggregator. PA pv f will
eventually get a reply back from the active aggregator
indicating the coordinator and notification cycle. pv f
sends the (partially) aggregated message in its buffer to
Cq just before the end of every notification cycle (the
manner in which pVf discovers Cq and the duration of
eq 's notification cycle is discussed later).

An active aggregator (say avg), upon receiving an
event message e�, behaves identically to a passive aggre
gator except in case 3. In that case, it first checks whether
another active aggregator is already designated as the
coordinator of eq. If so, it just inserts e� into its buffer as
the first message of eq. AA aVg will eventually finds out
the notification cycle details from eq 's coordinator (if it
does not know already). If aVg is not aware of any other
node claiming the coordinator-hood of eq, it executes
the coordinator establishment protocol described in the
next sub-section. In all three scenarios, if e� was sent to
aVg by a passive aggregator, aVg informs the passive
aggregator about the coordinator and the notification
cycle details of eq.

The coordinator performs all the aggregation-related
duties described above. In addition, at the end of every
notification cycle, it receives partially aggregated mes-

sages from passive and active aggregators. These mes
sages are merged and any redundancies are eliminated.
The merged message is then sent to the subscribers.

� Coordinator

• Active Aggregator
ca Passive Aggregator
® Broker Node

�/' ffi Publisher , & Subscriber

Fig. I: Distributed Message Aggregation in Caeva

Figure I depicts the multi-stage merging at the pas
sive/active aggregators and the coordinator.

Dynamic Coordination: When an active aggregator
aVg receives a message of an event eq with no established
coordinator, aVg attempts to become the coordinator. It
sends a message to all other active aggregators. An active
aggregator aVh receiving such a message from aVg con
sents to avg's claim if aVh has not attempted to become
the coordinator of eq• Ties are broken in decreasing
order of broker ID; the "winner" sends a denial message
to the "loser", who consents. Once the coordinator is
established, it determines the duration of the notification
cycle and the start time of the first cycle. The coordinator
sends its identity and the notification cycle to the relevant
set of aggregators; these aggregators in turn forward
partially aggregated messages to the coordinator "just in
time" (before the end of the notification cycle) to avoid
additional latency.

Dynamic and Adaptive Aggregator Placement: We
now describe our adaptive passive aggregator placement
algorithm. This algorithm adapts the placement of the
passive aggregators based upon the patterns of published
event messages. This algorithm executes continuously in
the background, and at the conclusion of each event,
it decides whether to alter the positions of the passive
aggregators or to maintain the current placement. When
altering the PA placement, the PAs are moved by only
one hop at each step. In other words, at the end of
an event, the algorithm decides one of three things: (1)
maintain the current PA placement; (2) move the PAs one
hop away from the active aggregators (towards the edge
of the routing AG); or (3) move the PAs one hop towards
the center of the routing AG. The decision is based on
the estimated costs and benefits of each option.

Three types of brokers are involved in executing the
algorithm, namely, the current set of PAs, the imme-

4

diate upstream brokers of the current PAs (parents of
current PAs) and the active aggregator of the event
under consideration. Each parent broker estimates the
benefits and costs of moving the PA functionality from
its children to itself (i.e., moving its downstream PAs
one hop closer to the center), while each PA estimates
the costs and benefits of moving the PA functionality
to its children brokers (i.e., moving PAs one hop away
from the center). The estimates from all PAs and parent
brokers are consolidated at the active aggregator, which
computes the cumulative costs and benefits of the three
options and adapts the PA placement accordingly.

Now we discuss the formulations for estimating the
costs and benefits for moving PAs one hop closer and
one hop away from the center of the routing AG. First,
we explain the cost and benefit formulae for moving
PAs one hop closer to the center. Each parent broker
uses these formulae to calculate the costs and benefits
of moving PA functionality from its children to itself.
Consider one such parent node ptx. Let CH(ptx) =

{pVl' PV2, . . . pvy} be its children brokers (note that
these nodes are a subset of the current PvSet). Let H
denote the distance between the active aggregator and
the current PvSet. For any broker bi of the overlay, let
Pm(bi) denote the number of messages of an individual
event eq published directly at bi (i.e., published by
publishers directly connected to bi), Fm(bi) denote
the number of messages of the same event forwarded
by its downstream neighbors, and Rm(bi) represent
the sum of Pm(bi) and Fm(bi). Let Nc denote the
number of notification cycles for which the event eq lasts

(N c = d�::q), where dn(eq) denotes the total duration
for which the messages pertaining to eq are published
and tm denotes the length of the notification cycle.

We now formulate the benefits of moving the PA
functionality from {PVl,pV2, . . . pvy} to ptx. If ptx
were to assume the PA functionality, it would send
one aggregated message to the coordinator at the end
of each notification cycle instead of PVl, PV2, . . . pVy
individually sending an aggregated message at the end
of each notification cycle. Furthermore, the aggregated
message from ptx would need to travel one hop fewer
than the messages from the aggregated messages from
the current PAs. Thus, the number of message hops
saved over the entire duration is N c x (H x Y -
(H - 1)). Also, if ptx assumes the PA functionality,
the messages published directly at ptx would be ag
gregated/eliminated immediately, thereby avoiding the
need for these messages to individually travel until the
coordinator. Therefore the benefits of moving the PA
functionality to ptx is BN(ptx) = Nc x (H x Y -

(H - 1)) + Pm(ptx) x (H - 1). However, there are

also costs associated with moving the PA functionality

to ptx. Notice that if ptx becomes the PA, all the

messages received at PVl, PV2, ... pVy have to travel one

extra hop before being aggregated. Therefore, the extra

overheads involved in moving PA functionality to ptx is

CN(ptx) = L.pvyECH(Pt
.
x) Rm(pvy). Th�s, th

.
e relative

savings obtained by movmg the PA functlOnalIty to ptx
is SN(ptx) = BN(ptx) - CN(ptx).

Through a similar reasoning, we can compute the costs

(CF(PVi)) and benefits (BF(pVi)) of moving the PA

functionality from an arbitrary passive aggregator PVi to

its Z child brokers {CPl,CP2,' " ,cpz}, respectively, as

CF(PVi) = NC x ((H + 1) x Z - H) + Pm(pvi) x H
and BF(pVi) = Fm(pvi)' Thus, the savings obtained

by transferring PA functionality to child brokers of PVi
is SF(PVi) = BF(pVi) - CF(PVi). Note that SN and

SF can acquire negative values.

At the end of culmination of an event, the coordinator

obtains the SF values from each current passive aggre

gator and S N values from each parent broker of current

passive aggregators. It then sums up the various SN
values to obtain the cumulative SN (CSN) value, and it

computes the cumulative SF (C S F) value as the sum of

various SF values. These values are used in adjusting

the PA placement as follows. If CSF ?: 0 then PAs are

moved one hop away from the center. If on the other

hand, CSN ?: 0 then PAs are moved one hop closer

to the center. If neither condition holds, then PAs are

maintained at their current positions.

One issue that still need to be addressed is that

of preventing thrashing (PAs continuously alternating

between two positions). We achieve this by introducing

an extra condition. The PA adaptation direction can be

reversed only when the estimated savings are higher than

the savings in the previous adaptation that brought PAs

to their current position. Concretely, suppose in the last

adaptation the PAs moved one hop closer to the center

and the estimated cumulative savings (CSN) was f.L. The

PAs move back to their earlier positions (one hop away

from the center) only if the estimated savings (CSF)
of the current adaptation is higher than f.L. Otherwise the

PAs are maintained at their current positions even though

CSF?: o. An analogous strategy is adopted for moving

the PAs closer to the center when they had moved away

in the last adaptation.

C. Subscriber-Customized Notification Cycle

Finally, we describe how Caeva allows each sub

scriber to choose its notification cycle duration. In the

Caeva prototype, a subscriber can choose its notification

5

cycle duration in integer multiples of minimum noti

fication duration (md). As mentioned before, a client

specifies this at SUbscription time. A simple and naive

way of implementing a customized notification cycle

would be to hoard the notification messages sent out by

the coordinator at the broker that is directly connected

to an arbitrary subscriber Si. The broker would send

out notification messages to Si at appropriate instances

of time. However, this leads to unnecessary messaging

within the overlay.

Instead, Caeva sends a notification through a path of

the routing AG only if there is a subscriber downstream

that should receive the notification at current instance.

This is achieved by a combination of upward propaga
tion of subscriber preferences and selective downward
dissemination of notifications.

Upward Preference Propagation: The subscriber

chooses its notification cycle duration in integer mul

tiples of md. An arbitrary leaf broker of a routing AG,

say bk, may have multiple subscribers with different

notification cycle durations. The edge broker calculates

the highest common factor (HCF) of the notification

cycle durations of the subscribers directly attached to

it. This value indicates the period at which bk should

receive notification from its upstream node. Broker bk
sends this value to its upstream neighbor. A non-leaf

broker, say bj, calculates the HCF of the values sent

by its downstream neighbors and the notification cycle

durations of the subscribers directly attached to it, and

propagates to its upstream neighbor. This is the period at

which bj should receive notification from its upstream

neighbor. This process culminates at the graph center,

which performs the same computation. The result is the

HCF of the notification cycle durations of all subscribers

being served by the routing AG. This value is maintained

at the center and is used by the coordinator as the cycle

duration for issuing aggregated messages. Figure 2(a)

illustrates the upward preference propagation mechanism

on a routing AG with 13 brokers. The HCF of the noti

fication durations of all subscribers is 8, which is used

as the cycle duration for issuing aggregated messages.

Selective Notification Dissemination: As described in

Section III-B, at the end of each cycle the coordina

tor obtains partially aggregated messages from various

aggregators and merges them to create a notification

message. However, the aggregated message at the end

of a particular cycle needs to be sent only if sub

scribers depend upon their notification cycle preferences.

Thus, instead of blindly sending the aggregated message

through the routing AG, the coordinator checks which

of its neighbors should receive notification at the current

� Coordinator
CD Active Aggregator
@Center
o Broker Node

(a) Upward Preference Propagation

TlME=16

CD Active Aggregator
@center
o Broker Node

(b) Selective Notification Dissemination

Fig. 2: Illustration of Customized Notification Scheme

time and sends the aggregated message only to them. The

intermediate brokers and the leaf brokers also work in a

similar fashion. When a broker bj receives an aggregated

message from its upstream neighbor, it sends the mes

sage to only those downstream neighbors (if any) and

subscribers (if any) that are due to receive the message

at the current time. If the message is not sent to at least

one downstream neighbor or subscriber, bj maintains the

message in a temporary buffer. While sending a message

to a downstream broker, say bk, bj sends all those fields

that have not been sent to bk but are available currently

at bj. The exact same process is followed when sending

messages to subscribers. Figure 2(b) demonstrates the

selective notification dissemination technique at time 16.

Notice that aV2 sends the aggregated message to b4 and

b5, but not to b6.

IV. EXPERIMENTAL RESULTS

Caeva has been implemented on top of the Siena
pub-sub infrastructure [3]. We have performed several

experiments to study the performance of Caeva.

A. Setup

Our experiments were set up as follows. In all cases

we use a random graph topology. Each complete event

in our experiments consists of 20 fields, including the

6

event key. In published messages, the number of fields

that holds valid data varies from 1 to 10. The number of

messages pertaining to an individual event can vary, and

they are generated in the following manner. Each pub

lisher of a particular event generates messages pertaining

to that event according to a Poisson process. The event

duration is chosen to be a maximum of 100 time units. In

our experiments, all nodes subscribe once and for any

event. The particular event and associated field names

are selected according to a uniform random distribution.

In our experiments, we use a merge threshold (denoted

Tm) and a redundancy threshold (denoted Tr, and this

value is fixed in our experiments). T m is the notification

cycle (defined in the Section III-C), Tr is the amount of

time messages are buffered at broker nodes in an attempt

to discard later redundant messages.

Overall, an experiment is defined by its spatial locality

for publishers, redundancy ratio for messages, and values

for Tm and Tr. Spatial locality can be defined using

the median distance between all pairs of publishers.

However, in practice, it is difficult to set these distances

in Caeva (due to limitations in Siena). Therefore, we

vary the spatial locality between three configurations:

(1) completely local, where all publishers reside at the

same point in the graph; (2) partially local, where there

are a few clusters of publishers, and (3) non-local, where

all publishers are at different points in the graph.

In addition, the messages sent by the publishers for

a given event can vary in their redundancy. We define

the redundancy ratio for an event as Fr / Mt, where

Fr denotes the number of messages whose fields are

a subset of the fields previously sent, and Mt is the total

number of messages sent. In our experiments, both Tm
and Tr ranged between 0 and 10 simulated time units,

such that Tm � Tr.
In the experiments below, we generally measure three

different implementations. Siena provides the baseline.

Agele is our previous system [12], on which Caeva is

based; Agele is centralized, static, and uses one center

node for aggregation, while Caeva is distributed and

adaptive. Generally, we examine three important metrics:

(1) percentage of the messages that are suppressed (by

merging or duplicate elimination), (2) extra time that is

added due to buffering at aggregators (measured by when

the complete event is received), and (3) complete events

and amount of data that subscribers receive.

B. Effect on Broker Overlay

We begin by investigating the effect that Siena, Agele,
and Caeva have on the broker overlay. Here, we are

interested in the total messages in the system. For this

experiment, we use a random topology, low spatial

100 100

0 0 0 80 80 0
0 0 0 * *

0 * *
0 *

60 60 0 * *
*

40
*

40
*

20 2q til til til

0 � D �
0

0 6 10 12 0
T

m

til 11! m III III

6
T

m

til III

� D Caeva

10 12

100

80

60

40 0

0
20

0
0

000 0 0
0 ** 0 ***

0 **
*

*

*

� D Caeva

10 15 20
% Time Increase

Fig. 3: When Tm varies, percentage of messages in broker overlay suppressed (left); time increase (center). On the

right, tradeoff between delay and percentage of messages eliminated.

locality, and the medium redundancy ratio. For Agele

and Caeva, we vary T m in the experiments. All results

are relative to Siena.

Figure 3 shows the results. Because Siena does not

handle redundant and partial event messages, it incurs

more messages than either Agele or Caeva. In particular,

Caeva eliminates up to 80% of the messages in the

overlay. Comparing Caeva to Agele shows that the

former suppresses more messages as T m increases. This

is because Caeva eliminates messages at the passive ag

gregators, which are closer to the publisher. This has two

beneficial effects: (1) it takes additional message load

off of broker nodes in between the passive aggregators

and the coordinator, and (2) it can, in some situations,

take additional message load off of brokers in between

the coordinator and the subscribers. The latter point is

somewhat subtle: if a message is not eliminated at the

passive aggregator, then it proceeds to the coordinator.

The coordinator may eliminate it, but it is possible that

T m is sufficiently small that it is not eliminated.

The center graph in the figure shows a time increase

(for completed events) for both Caeva and Agele. Addi

tionally, as expected, the relative time increase is larger

with larger T m. One item to note is that Caeva and Agele

have essentially the same overhead. This is by design

the passive aggregators flush their buffered messages

such that they reach the coordinator just in time to

be flushed to the subscriber. (The small difference is

because the coordinator in Caeva is a different broker

node than the center in Agele.) The right graph shows

similar information to the left and center graphs, but

specifically shows the tradeoff between increased latency
and the number of messages eliminated.

Next, we study the effect on the broker overlay when

the spatial locality of the publishers as well as the

redundancy ratio vary. We used the spatial localities and

redundancy ratios specified above. In the graph, the first

letter refers to the spatial locality; "H" for completely

7

I
Publishers Static

Min I Max I
Adaptive

3 101,796 125,714 102,583

7 147,913 220,126 150,239

31 181,189 232,420 197,141

255 203,241 227,747 211,375

TABLE I: Number of messages for different numbers of

publishers for both static and adaptive algorithm

local, "M" for partially local, and "L" for non-local. The

second letter refers to the redundancy ratio; "H" for a

redundancy ratio of 85%, "M" for 50%, and "L" for

20%. In these tests, Tm and Tr are both lO. Figure 4

shows the results. We see that as the spatial locality

of the publishers increases, the advantage of Caeva

increases over Agele, in terms of message load in the

broker overlay. This is because more of the published

messages are directed to the same passive aggregator,

which eliminates some of them.

We note that many scenarios of publisher locality and

redundancy ratio are possible. For example, a news bul

letin occurring at night would potentially lead to widely
distributed publishers, whereas an accident during rush

hour would likely lead to mostly localized publishers.

Caeva is actually the best choice for all of these cases,

though its advantage increases with more locality in

space and time. The one disadvantage of Caeva relative

to Agele is that it is more complex and involves more

broker-broker communication.

C. Adaptive PA Placement

Table I shows the number of messages for different

numbers of publishers for both the static and adaptive

algorithms. For the static algorithm, the passive aggrega

tors can reside at several different places; we show both

the minimum and the maximum. This experiment uses

publishers with similar characteristics. The key point is

O--�L�/L�� L�/M�- Ll�H�M�/� L�M� /M�- M/�H�H�/� L�H�/M�- H/LH��

Spatial Locality/Redundancy Ratio

Fig. 4: Percentage of messages in broker overlay sup

pressed when spatial locality and redundancy ratio vary;

the first letter indicates the locality, and the second the

redundancy ratio

Varying Static Adaptive

Publishers Min Max

Uniform 153,847 203,474 153,385

Nonuniform 293,265 361,287 266,722

TABLE II: Number of messages for different num bers of

publishers for both static and adaptive algorithm when

publishers have nonuniform characteristics

that the adaptive algorithm is always close to as good as

the minimum and avoids the large penalty of choosing

the maximum. Keep in mind that the static algorithm

requires a single placement, and without application

specific knowledge, it is possible that a bad placement

might be chosen.

Next, Table II shows the same attributes, but compares

the uniform and nonuniform publisher case. It is clear

that for nonuniform publishers, the adaptive algorithm

is significantly (10%) better. This is because when

publisher characteristics change, the static algorithm

cannot change. On the other hand, the adaptive algorithm

changes based on these characteristics.

V. RELATED WORK

Over the past decade, various aspects of pub-sub

systems have been widely studied including subscription

mechanisms, architectures, quality-of-service, mobility,

and reliability [6], [14], [2], [3], [15], [16], [17], [9],

[18], [19], [7], [20]. Surprisingly, the issue of redundant

and partial event messages, which are very common

8

in settings with human participants, has received little

research attention. A few researchers have considered the

problem of exact duplicate elimination [20], [21], [22].

However, most solutions are simplistic with performing

duplicate elimination at the subscribers being the most

common approach [20]. The XTreeNet system [21] uses

an in-network duplicate elimination scheme. However,

this technique is not effective in reducing message traffic

due to duplicates originating from different regions of

the overlay. In addition, an event-message is cached

at each node in its path from publisher to subscribers

with very little coordination among these nodes. Thus,

the system is not able to provide any guarantees to the

subscribers or offer them flexibility with respect to the

degree of duplicate elimination or the notification times.

To the best our knowledge, our previous work with Agele

[12] was the first system to consider incomplete (partial)

event messages aggregation. Agele is a centralized sys

tem that uses a center node to aggregate all messages;

i.e. there is one, fixed active aggregator and no passive

aggregators. In addition, Agele is static; the notification

cycle is fixed over the entire system. Caeva is much

different; it is distributed and therefore scalable, it allows

flexible, adaptive placement of passive aggregators as

well as a flexible choice of the notification cycle for

each subscriber.

The area of distributed stream processing [23], [24],

[25], [26], [13] has similarities to event aggregation in

decentralized pub-sub systems. In both these cases, data

originating from the nodes of an overlay needs to be

processed and delivered to a set of recipient nodes. How

ever, there are also crucial differences between the two.

First, in stream processing systems, the source nodes

of various data streams are generally known when the

query plan is evolved. Second, the data streams last for

relatively long durations of time, and so do the data pro

cessing operators defined on these streams. Third, many

of the stream processing systems assume a global view

of the overlay topology. These characteristics justify

and permit the heavy-weight, optimization-based query

planning, operator placement, and adjustment strategies

used by stream processing applications. The pub-sub

environment, especially in community-oriented applica

tions, is much more ad-hoc -- publishers generate event

messages in a non-continuous manner and at arbitrary

points in time. Furthermore, each event is active for

short duration of time, in the sense that the messages

pertaining an event are published in a short time window.

Thus, the heavy-weight operator placement strategies are

not appropriate for Caeva.

Complex event detection [23] also bears similarities

to event aggregation. However, most of the current

approaches to complex event detection rely upon a priori

planning which assumes that the event sources are known

before hand.

In contrast to these systems, Caeva does not require

a priori knowledge of event message sources, and its

protocols and techniques are lightweight and dynamic.

VI. CONCLUSION

The pub-sub substrates of many community-oriented

applications are faced with event streams that have

various kinds of noise, including partial and redundant

event messages. Effective handling of of this kind of

noise is critical to the success of these applications;

yet, it is challenging, especially in decentralized pub-sub

systems.

The work presented in this paper describes the design

and implementation of Caeva, which is a decentralized,

scalable system for eliminating redundant and partial

event messages. Scalability is achieved by aggregating

events at mUltiple broker nodes, as the event messages

are propagated from publishers to subscribers. In ad

dition, Caeva has flexible and adaptive algorithms for

placing aggregators and choosing notification cycles for

subscribers. Results showed that Caeva is effective in

terms of eliminating messages, limiting the increase in

event latency, and adapting to changing event publication

patterns.

ACKNOW LEDGMENT

This work was partially supported by the NSF grant

CNS-0716357. Any opinions, findings, and conclusions

or recommendations expressed in this material are those

of the authors and do not necessarily reflect the views

of the National Science Foundation.

REFERENCES

[I] R. Baldoni, C. Marchetti, A. Virgillito, and R. Vi ten berg,
"Content-based Publish-Subscribe over Structured Overlay Net
works," in Proceedings ICDCS, 2005.

[2] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E.
Strom, and D. C. Sturman., "An Efficient Multicast Protocol for
Content-Based Publish-Subscribe Systems," in ICDCS, 1999.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design
and evaluation of a wide-area event notification service," ACM
Transactions on Computer Systems, vol. 19, no. 3, pp. 332-383,
2001.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron,
"SCRIBE: A Large-Scale and Decentralised Application-level
Multicast Infrastructure," iEEE Journal on Selected Areas in
Communications (JSAC), 2002.

[5] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps,
"Content Based Routing with Elvin4," in AUUG2k, 2000.

[6] "TIE/Rendezvous," White paper, 1999.
[7] P. Pietzuch and J. Bacon, "Hermes: A Distributed Event-Based

Middleware Architecture," in Proceedings DEBS, 2002.

9

[8] S. Voulgaris, E. Riviere, A.-M. Kermarrec, and M. van Steen,
"Sub-2-Sub: Self-Organizing Content-Based Publish Subscribe
for Dynamic Large Scale Collaborative Networks," in Proceed
ings of IPTPS, Feb 2006.

[9] P. T. P. Felber, R. Guerraoui, and A.-M. Kermarrec, "The Many
Faces of Publish/Subscribe," ACM Computing Surveys, vol. 35,
no. 2, 2003.

[10] "Digg (http://digg.com).''
[11] "Twitter (http://twitter.com).''
[12] J. Chen, L. Ramaswamy, and D. K. Lowenthal, "Towards efficient

event aggregation in a decentralized publish-subscribe system,"
in Proceedings of DEBS, 2009.

[13] P. R. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. L Seltzer, "Network-Aware Operator Place
ment for Stream-Processing Systems," in Proceedings of ICDE,
2006.

[14] r. Aekaterinidis and P. Triantafillou, "Pastry Strings: A Com
prehensive Content-Based Publish/Subscribe DHT Network," in
ICDCS, 2006.

[15] B. Chandramouli, J. M. Phillips, and 1. Yang, "Value-Based No
tification Conditions in Large-Scale Publish/Subscribe Systems,"
in Proceedings of VLDB, 2007.

[16] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola, "Epidemic
Algorithms for Reliable Content-Based Publish-Subscribe: An
Evaluation," in Proceedings of iCDCS, 2004.

[17] G. Cugola and L. Mottola, "A Self-Repairing Tree Overlay
Enabling Content-based Routing in Mobile Ad Hoc Networks,"
IEEE Transactions on Mobile Computing, 2008.

[18] G. Li, S. Hou, and H.-A. Jacobsen, "A Unified Approach to
Routing, Covering and Merging in Publish/Subscribe Systems
Based on Modified Binary Decision Diagrams," in iCDCS, 2005.

[19] J. P. Loyall, M. Gillen, and P. Sharma, "QoS Allocation Algo
rithms for Publ ish-S ubscribe Information Space M iddleware," in
MiDDLEWARE,2008.

[20] Y. Huang and H. Garcia-Molina, "Publish/subscribe in a mobile
environment," Wireless Networks, vol. 10, no. 6, 2004.

[21] W. Fenner, M. Rabinovich, K. K. Ramakrishnan, D. Srivastava,
and Y. Zhang, "XTreeNet: scalable overlay networks for XML
content dissemination and querying," in Proceedings WCW,2005.

[22] M. Srivatsa and L. Liu, "Securing Publish-Subscribe Overlay
Services With EventGuard," in Proceedings of ACM-CCS, 2005.

[23] M. Akdere, U. <;:etintemel, and N. Tatbul, "Plan-based complex
event detection across distributed sources," in Proceedings of
VLDB,2008.

[24] M. Branson, F. Douglis, B. Fawcett, Z. Liu, A. Riabov, and
F. Ye, "CLASP: Collaborating, Autonomous Stream Processing
Systems," in Proceedings of MiDDLEWARE, 2007.

[25] B. Chandramouli and 1. Yang, "End-to-End Support for Joins
in Large-Scale Publish/Subscribe Systems," in Proceedings of
VLDB,2008.

[26] V. Kumar, B. F. Cooper, Z. Cai, G. Eisenhauer, and K. Schwan,
"Resource-Aware Distributed Stream Management Using Dy
namic Overlays," in ICDCS, 2005.

