
On the Design of Autonomic, Decentralized VPN s

David Isaac Wolinsky, Kyungyong Lee, P. Oscar Boykin, Renato Figueiredo
University of Florida

Abstract-Decentralized and P2P (peer-to-peer) VPNs (virtual
private networks) have recently become quite popular for con
necting users in small to medium collaborative environments,

such as academia, businesses, and homes. In the realm of VPNs,
there exist centralized, decentralized, and P2P solutions. Central
ized systems require a single entity to provide and manage VPN
server(s); decentralized approaches allow more than one entity to
share the management responsibility for the VPN infrastructure,
while existing P2P approaches rely on a centralized infrastructure
but allow users to bypass it to form direct low-latency, high
throughput links between peers. In this paper, we describe a
novel VPN architecture that can claim to be both decentralized
and P2P, using methods that lower the entry barrier for V�N
deployment compared to other VPN approaches. Our solution
extends existing work on IP-over-P2P (IPOP) overlay networks to
address challenges of configuration, management, bootstrapping,
and security. We present the first implementation and analysis
of a P2P system secured by DTLS (datagram transport layer
security) along with decentralized techniques for revoking user

access.

I. INTRODUCTION

A Virtual Private Network (VPN) provides the illusion of
a local area network (LAN) spanning a wide area network
(WAN) by creating secure' communication links amongst
participants. Common uses of VPNs include secure access to
enterprise network resources from remote/insecure locations,
connecting distributed resources from multiple sites, and estab
lishing virtual LANs for multiplayer video games and media
sharing over the Internet.

The architecture described in this paper addresses usage sce
narios where VPNs are desired but complexity in deployment
and management limits their applicability. These include col
laborative academic environments linking individuals spanning
multiple institutions, where coordinated configuration of net
work infrastructure across different sites is often impractical.
Similarly, small/medium business (SMB) environments often
desire the ability to securely connect desktops and servers
across distributed sites without incurring the complexity or
management costs of traditional VPNs. Such a VPN could
be used to enable extended families to share media among
themselves, such as family videos and pictures, where existing
VPNs may be too complicated and where hosting by central
ized service may be undesirable for privacy reasons.

The model of a VPN for collaboration considered in this pa
per is motivated from our Archer [1] project. Archer provides
a dynamic and decentralized grid environment for computer
architecture researchers to share and access voluntary compute
cycles with each other. Use of centralized systems would

I For the remainder of this paper, unless explicitly stated otherwise, security
implies encryption and mutual authentication between peers.

limit the scope of Archer and require dedicated administra
tion, whereas existing decentralized solutions require manual
configuration of links between peers, which is beyond the
scope of Archer's target users. Current P2P virtual network
(VN) approaches either lack scalability or proper security
components to be considered VPNs.

We began our original foray into user-friendly VN ap
proaches with IPOP [2]. Previous work on IPOP focused on
the routing mechanisms and address allocation with multi
ple virtual networks (VNs) sharing a single P2P overlay. A
shared overlay has significant drawbacks as misconfigured or
malicious peers could potentially disable the entire overlay,
rendering all VNs useless. Though if security and hence
isolation is important, prior to VN deployment, all nodes
would need to be configured with a security stack than the
P2P infrastructure prior to deploying the VN system in order
to create a VPN, given the complexity many users would
probably reconsider the P2P approache and use a simple
centralized VPN.

To address this challenge, or to make a fully decentralized
P2P VPN, in this paper, we extend the IPOP concept to support
bootstrapping from public infrastructures and overlays into pri
vate and secure P2P overlays whose membership is limited to
an individual VPN user base. Our work is based upon Castro et
al. [3], suggesting that a single overlay can be used to bootstrap
service overlays. We present a practical implementation and
evaluation of this concept. We then consider security in the
overlay and present the first implementation and evaluation
of an overlay with secure communiation both between end
points in the P2P overlay (e.g. VPN nodes) as well as between
nodes connected by overlay edges. Security requires a means
for peer revocation; however, current revocation techniques
rely on centralized systems such as certificate revocation
lists (CRLs). Our proposed approach allows revocation using
scalable techniques provided by the P2P overlay itself. We call
the completed system and the interface used to administrate it
GroupVPN, a novel decentralized P2P VPN.

The rest of this paper is organized as follows. IPOP along
P2P overlays are introduced in Section II. Throughout the
paper, there are two techniques used to evaluate our ap
proaches, simulation and real system deployments, these are
described in Section III. Section IV describes our techniques
that allow users to create their own private overlays from
a shared public overlay in spit of NATs. Use of security
protocols has been assumed in many P2P works though
without consideration of implementation and overheads, we
investigate implementation issues and overheads of security
in P2P with emphasis on P2P VPNs in Section V. Without
revocation, use of security is limited, in decentralized systems,

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USACopyright © 2011 ICSTDOI 10.4108/icst.collaboratecom.2010.43

use of centralized revocation methods do not work, we present

novel mechanisms for decentralized revocation in Section VI.

The complete system, GroupVPN, is presented in Section VII.

Section VIII compares and contrasts our work with related

work. Section IX concludes the paper.

II. BACKGROUND

This section describes the core organization of IPOP, a struc

tured P2P virtual network, including background on structured

overlays, address allocation and discovery, and connectivity.

A. P2P Overlays

The type of P2P overlay chosen for a VPN has an effect

on how easy the VPN is to program, deploy, and secure,

on its efficiency, and on its scalability. The two primary

infrastructures for P2P overlays are unstructured and structured

systems. Unstructured systems use mechanisms such as global

knowledge, broadcasts, or stochastic techniques [4] to search

the overlay. As the system grows, maintaining and searching

typically does not scale. Alternatively, structured approaches

provide guaranteed search times typically with a lower bound

of O(log N), where N is the size of the network. In terms of

complexity, for small systems, unstructured systems may be

easier to implement, but as the system grows it may become

inefficient.

IPOP uses a structured P2P framework named Brunet [5],

which is based upon Symphony [6], a one-dimensional ring

with a harmonic distribution of shortcuts to far nodes. Struc

tured systems are able to provide bounds on routing and

lookup operations by self-organizing into well-defined topolo

gies, such as a one-dimensional ring or a hypercube. Links in

the overlay can be made to guarantee efficient lookup and/or

routing times (e.g. Brunet automatically creates links between

peers that communicate often to achieve efficiency in IP -over

P2P communication).

A key component of most structured overlays is support

for decentralized storagelretrieval of information such as a

distributed hash table (DHT). The DHT builds upon the

existence of a P2P address space. All peers in a structured

system have a unique, uniformly distributed P2P address. A

DHT maps look up values or keys (usually by a hashing

function) into the P2P address space. While there are various

forms of fault tolerance, a minimalist DHT stores values at the

node whose address is closest to the value's key. DHTs can

be used to coordinate organization and discovery of resources,

making them attractive for self-configuration and organization

in decentralized collaborative environments. As explained in

the next section, IPOP, uses a DHT to coordinate decentralized

organization.

B. Connecting to the VPN

To connect to IPOP, a peer needs only to connect to an

existing Brunet infrastructure. Many IPOP systems can coexist

sharing a single overlay. The motivation for doing so is that

bootstrapping a P2P system can be challenging, requiring users

to have access to public IP addressable nodes or being able to

configure a router or firewall to enable inbound connections.

A peer connected to IPOP's P2P infrastructure can take

advantage of its support for NAT traversal through hole punch

ing [7]. When performing hole punching, peers first obtain

mappings of their private IP address and port to their public

IP address and port and then exchange them over a shared

medium, in this case the P2P overlay. The peers attempt to si

multaneously form connections with each other, tricking NATs

and firewalls into allowing inbound connections, because the

NAT believed an outbound flow already exists, thus allowing

two machines behind two different NATs direct connectivity.

In case peers cannot establish direct connectivity, messages

can be relayed through the P2P overlay to each other albeit

with added latency and reduced throughput.

This approach enables peers behind NATs and firewalls to

seamlessly connect to each other, without requiring peers to

host their own bootstrap servers. The requirements for a a

bootstrap server include a public IP and the ability to exchange

that with users of the system. Though the system should be

redundant because if a server in a single bootstrap server

system goes offline new nodes will be unable to join the

overlay.

C. Network Corifiguration

In the context of VPNs, structured overlays can handle

organization of the network space, address allocation and

discovery, decentrally through the use of a DHT. Approaches

along these lines have been proposed in [8], [9]. Membership

in the VPN includes a matching membership in the structured

overlay, thus all VPN peers have a P2P address. To address

the challenges of having mUltiple VPNs in the same over

lay, each IPOP group has its own namespace, reducing the

likelihood of overlap. To enable scalable and decentralized

address allocation and discovery, peers store mappings of

IP address to P2P address into the DHT, typically of the

form hash(namespace + IP) = P2Paddress. Thus a peer

attempting to allocate an address will insert this (key, value)

pair into the overlay. The first peer to do this will be the owner

of the IP address allocation. Therefore the DHT must support

atomic writes.

Mechanisms to self-configure the IP address and network

parameters of the local system can be provided by DHCP (de

centralized host configuration protocol), manually configuring

the IP address, or the VPN hooking into O/S AP Is. Address

discovery is initiated when an outgoing packet for a remote

peer arrives at the VPN software. At which point, the VPN will

query the DHT with the IP address to obtain the owner's P2P

address and forward the packet to the destination. Discussion

on both these topics is covered in more depth in our previous

work [10].

III. EXPERIMENTAL ENVIRONMENT

Throughout this paper, our quantitative evaluation environ

ment uses both real deployments on P lanetLab and simulation.

The evaluation requirements dictate the environment used.

When the perspective of a single node is useful, P lanetLab

provides good results, though when attempting to measure

Overlay Link --

Public I Private

Overlay Mapping

Overlay

Communication

-
-

-
-

-
-

-

-
-

-

-
-

Fig. I. Bootstrapping a private overlay using Brunet

detailed behavior of the entire system using PlanetLab can independent IPOP systems. While users were able to easily

result in significant noise. join the shared overlay, similar attempts to construct their own

IPOP uses Brunet as the underlying P2P infrastructure were hindered and ultimately only successful after receiving

for connectivity. Brunet has been in active development for feedback from us.

the past 5 years and is routinely run on PlanetLab [11] for Bootstrapping a P2P system requires expertise in network

experiments and tests. PlanetLab consists of of nearly 1,000 administration. To enable users to bootstrap their own pri

resources distributed across Earth. In practical applications, vate overlays, we previously investigated means by which a

though, roughly 40% of the resources are unavailable at any public overlay could be used to bootstrap a private overlay.

given time and the remaining behave somewhat unpredictably. Our approach for bootstrapping private systems requires an

PlanetLab deployment takes approximately 15 minutes for overlay to support methods for peers to discover each other,

all resources to have Brunet installed and connect to the relay messages, and obtain their public address mapping

overlay and then much more time to observe certain behav- as described in [12]. Examples of other potential bootstrap

iors, making regression and verification tests complicated. To overlays include popular and well established P2P systems,

address this, we have extended Brunet to support a simu- such as Gnutella, Skype, and Kademlia. Our initial work

lation mode. The simulator inherits all of the Brunet P2P supports bootstrapping from XMPP (Jabber) systems and our

overlay logic but uses simulated virtual time based upon own P2P overlay, Brunet. In this paper, we focus on user

an event-driven scheduler instead of real time. Furthermore, perceptions of these technologies with emphasis on bootstrap

the simulation framework uses a specialized transport layer times and performance overheads, unlike our previous work,

to avoid the overhead of using TCP or UDP on the host which verified its utility for bootstrapping private overlays.

system, both of which are limited resources and can hamper To bootstrap from an existing Brunet overlay, peers first in

the ability to simulate large systems. The specialized transport sert their public overlay node address into the key represented

uses datagrams to pass messages between nodes, thus from by hash($PrivateOverlayN amespace) and continue to do

the node's perspective, it is very similar to a UDP transport so regularly until they disconnect, so as to not let the entry

and can simulate both latency and packet dropping. Latency become stale and disappear. Peers attempting to bootstrap into

between all node pairs is set to 100 ms. the private overlay can then query this key and obtain a list

Both simulation and real system evaluation provide unique of public overlay nodes that are currently acting as proxies

advantages. Simulations allow faster than real time execution into the private overlay. By using the public overlay as a

of reasonable sized networks (up to a few thousand) using a transport, similar to UDP or TCP, the private overlay node

single resource, while enabling easy debugging. In contrast, forms bootstrapping connections via the public overlay. At

deployment on real systems, in particular PlanetLab, presents which point, overlay bootstrapping proceeds as normal. The

opportunities to add non-deterministic, dynamic behavior into entire process is represented in Figure 1.

the system which can be difficult to replicate, such as network In a small private overlay, there is a possibility that none

glitches and long CPU delays on processing. of the members have a public address, making it difficult to

IV. TOWARDS PRIVATE OVERLAYS

Many users of IPOP begin by using our shared overlay and,

once comfortable, move towards hosting their own infrastruc

ture. Some are successful without assistance from us, while a

majority are not. Network configuration issues tend to be the

most common issue preventing users from hosting their own

provide overlay based NAT traversal. Rather than having a

special case for NAT traversal for private overlays, our model

has the private overlay share TCP and UDP sockets with the

public overlay. This mechanism, referred to as "pathing",

allows multiplexing a single UDP socket and listening TCP

socket by many overlays. This is only possible due to the

generic transports library of the Brunet P2P overlay, which

does not differentiate UDP, TCP, or even relayed links. Pathing

works as a proxy, intercepting a link creation request from a

local entity, mapping that to a path, and then requesting from

the remote entity a link for that path. The underlying link

is then wrapped by pathing and given to the correct overlay

node, resulting in a completely transparent multiplexing of a

TCP and UDP sockets, thereby enabling the NAT traversal

in one overlay to benefit the other. Once a link has been

established, the pathing information is irrelevant, limiting the

overhead into the system to a single message exchange during

link establishment.

A. Time to Bootstrap a Private Overlay

This experiment focuses on the overheads in bootstrapping a

private overlay using our techniques mentioned in the previous

section. The time to bootstrap can be derived analytically by

considering the minimum steps for a node to join the public

overlay, obtain private overlay peers from the public overlay

DHT, and then connect to the private overlay. In Brunet, peers

begin by forming leaf or bootstrapping connections and use

these to communicate with the neighbor or peer in the P2P

network nearest to their P2P address. The process to form a

connection can be done in as few as 4 messages and up to 6,

if the peers only know each other's P2P address, which is the

case for neighbor connections.

Assuming a peer already has IP address information for

another, a connection can be initiated by the peer sending

a message to the remote peer expressing the desire for a

connection. The remote node responds by either rejecting the

request or committing to the connection. In the next exchange,

the initiating peer commits to forming the connection and the

remote peer acknowledges. The two phase commit process

is used to handle the complexity that ensues when multiple

simultaneous connection attempts occur in parallel. All these

messages take 1 hop, since they are direct links between peers.

When peers only have each other's P2P address and/or the

initiating peer is behind a NAT, it may take fifth and sometimes

a sixth message. These messages are requests for the remote

peer's IP addresses as well as asking the peer to connect with

the initiating peer, addressing the case where the remote peer

is behind a NAT and cannot handle inbound messages. These

messages are routed over the overlay taking 10g(N) hops,

where N is the network size of the public overlay.

Private overlay bootstrapping follows a similar process,

though, first, the peer acquires P2P addresses of other partici

pants through the public DHT, an operation taking 2 * log(N)
hops. In the private overlay, the leaf connections do not

communicate directly; rather, they use the public overlay,

causing some of the 1 hop operations above to take 10g(N)
hops. Finally, the finding the nearest remote peer in the private

overlay takes 10g(N) + log(n), where n is the network size

of the private overlay.

Given this model, each operation takes the following hop

counts: public overlay bootstrapping = > 8 + 10g(N), DHT

operations = > 2 * 10g(N), and private overlay bootstrapping

= > 4 + 5 * 10g(N) + log(n). The cumulative operation takes

12 + 8 * log(N) + log(n) hops. The dominating overhead

in bootstrapping the private overlay is the time it takes to

perform overlay operations on the public overlay (log(N)).
For instance, assuming a network size of 512 public and 8

private, a node should be connected within 87 hops.

To evaluate our implementation for GroupVPN, we use both

PlanetLab and the simulator. lOO tests were run for various

network sizes. Though due to difficulty in controlling network

sizes in PlanetLab, we set each PlanetLab node to randomly

decide if it would connect to the private overlay. The network

sizes were then used in the simulator and the analytical model.

The average public network size for each of these tests was

600. Our results are presented in Figure 2 2.
1.01,-----------.",...,-------,;vr------,

u..
o
u

0.8

0.6

0.4

0.2

• • planetlab.68

planetlab.147

simulator.68

simulator.147

10' 102
Time in seconds

10'

Fig. 2. CDF of the time to bootstrap a private overlay node in a private
overlay of the size stated in the legend using a public overlay consisting of
600 nodes. Using a 100 ms delay like the simulator results in 9.2 and 9.3
seconds for the analytical model for private network sizes of 68 and 147,
respectively.

Based upon the results presented in Figure 2, the boot

strapping time for the implementation performs better than

the analytical model, due to the simplicity of the analytical

model and the small network sizes. It is of interest that while

the simulator results tend to be in a well defined range, the

PlanetLab results have a few outliers with long bootstrap

times. Some of the expected causes for this are churn in the

system and state machine timeouts in Brunet, though we have

not considered this in this in much depth in this work.

B. Overhead of Pathing

Much like the previous experiment, this verifies that the

pathing technique has negligible overheads for VPN usage.

To determine the overheads, two GroupVPNs are deployed

on resources on the same gigabit LAN. To measure latency

and throughput, netperf experiments are run for 30 seconds,

5 times each on an unutilized network switch. Other speci

fications of the machine are ignored as the system without

pathing is used as the baseline. The results, Table I, indicate

that the use of pathing presents negligible overhead for both

throughput and latency, justifying the use of this approach to

transparently deal with NAT and firewall traversal.

2 We perfonned measurements for many more private network sizes, but all
the results were so similar that it did not introduce anything of interest and
are omitted from our plots to improve clarity.

II Latency (ms)

Standard

II :��� Pathing
TABLE I

Throughput (Mbitls)

225.27

224.36

PATHING OVERHEADS

V. SECURIT Y FOR THE OVERL AY AND THE VPN

Structured overlays are difficult to secure and a private

overlay is not secure if it provides no means to limit access to

the system. Malicious users can pollute the DHT, send bogus

messages, and even prevent the overlay from functioning,

rendering the VPN useless. To address this in means that

make sense for VPNs and common users, we have employed

a public key infrastructure (PKI) to encrypt and authenticate

both communication between peers as well as communication

across the overlay, called point-to-point (PtP) and end-to-end

(EtE) communication, respectively.

Use of a PKI motivates from the ability to authenticate with

out a third party, ideal for P2P use, unlike a key distribution

centers (KDC) used by other VPNs. A PKI can use either pre

exchange public keys or a certificate authority (CA) to sign

public keys, i.e., certificates. Thus peers can exchange keys

and certificates without requiring a third-party to be online.

The reasons for securing PtP and EtE are different. Secur

ing PtP communication prevents unauthorized access to the

�verlay, as peers must authenticate with each other for every

lmk created. Though once authenticated, a peer can perform

malicious acts and since the overlay allows for routing over

it, the peer can disguise the origination of the malicious acts.

By also employing EtE security, the authenticity of messages

transferred through an overlay can be verified. Though EtE

security by itself, will not prevent unauthorized access into

the overlay. By employing both PtP and EtE, overlays can

be secured from uninvited guests from the outside and can

identify malicious users on the inside. Implementing both

leads to important questions: what mechanisms can be used to

implement both and what are the effects of both on an overlay

and to a VPN on an overlay.

A. implementing Overlay Security

There are various types of PtP links; for example, there

are TCP and UDP sockets, and relays across nodes and

overlays. EtE communication is datagram-oriented in IPOP.

Traditional approaches of securing communication such as

IPsec are not convenient due to complexity, i.e., operating

system specific, portability constraints, and lack of common

APIs. Security protocols that rely on reliable connections,

such as SSL or TLS are undesirable as well as they would

require a userpace implementation of reliable streams (akin to

TCP). As such, we have implemented an abstraction akin to a

security filter as presented in Figure 3, which enables nearly

transparent use of security libraries and protocols. To this

date, we have implemented both a DTLS [13] filter using the

OpenSSL implementation of DTLS as well as a protocol that

reuses cryptographic libraries provided by .NET that behaves

similarly to IPsec.

A security filter has two components: the manager, and

individual sessions or filters. While the individual sessions

could act as filters by themselves, by combining with a

manager, they can be configured for a common purpose and

security credentials. This approach enables the use of security

to be transparent to the other components of the system as the

manager handles session establishment, garbage collection of

expired sessions, and revocation of peers.
Sender

UserName: Alice
NodeAddress: ABCDEF
Edge IP: 10.227.56.77

Chat Message

Security Packet

Overlay Packet

Physical IP Packet

,----=--:---�

Fig. 3. An example of the abstraction of senders and receivers using a EtE
secured chat application. Each receiver and sender use the same abstracted
modd and thus the chat application requires only high-level changes, such as
venfYmg the certIficate used is Alice's and Bob's, to support security.

Certificate embed identity of the owner, thus a signed cer

tificate states that the signer trusts that the identity is accurate.

In network systems, the certificate uses the domain name to

uniquely identify and limit the use of a certificate. When a CA

signs the certificate, by including the domain name, it ensures

that users can trust that a certificate is valid, while used to

secure traffic to that domain. Communication with another

domain using the same certificate will raise a flag and will

result in the user not trusting the certificate. In environments

with NATs, dynamic IP addresses, or portable devices, typical

of P2P systems, assigning a certificate to a domain name

will be a hassle as it constrains mobility and the type of

users in the system. Furthermore, most users are unaware of

their IP address and changes to it. Instead, a certificate is

signed against the user's P2P address and unique user name

as delegated by the CA. The purpose of the former is for

efficiency of revocation as discussed in Section VI. During

the formation of PtP links or while parsing EtE messages,

the two nodes discover each other's P2P addresses. If the

addresses do not match the address on the verified certificate

the communication need not proceed further.
'

Prior to trusting the security filter, the core software or the

security filter must ensure that the P2P address of the remote

entity matches that of the certificate. In our system, we did

this by means of a callback, which presents the underlying

sending mechanism, EtE or PtP, and the overlay address stored

in the certificate. The receiver of the callback can attempt to

cast it into known objects. If successful, it will compare the

overlay address with the sender type. If unsuccessful, it ignores

the request. If any callbacks return that the sender does not

match the identifier, the session is immediately closed. Thus

the security filter need not understand the sending mechanism

and the sending mechanism need not understand the security

filter.

The last consideration comes in the case of EtE communi

cation that provides an abstraction layer. For example, in the

case of VPNs, where a P2P packet contains an IP packet and

thus a P2P address maps to a VPN IP address, a malicious

peer may establish a trusted link, but then hijack another users

IP session. As such, the application must verify that the IP

address in the IP packet matches the P2P address of the sender

of the P2P packet. In general, an application address should

be matched against a P2P address, consider chat programs, for

example.

B. Overheads of Overlay Security

When applying an additional layer to a P2P system, there

are overheads in terms of time to connect with the overlay.

Other less obvious effects will be throughput, latency, and

processing overheads, assuming that the P2P system will be

used over a wide area network, where the latency and through

put limitations between two points will make the overhead

of security negligible. Though bootstrapping will be affected

due to additional round trip messages used for forming secure

connections.

I Client Hello I

I Client Hello I

ClientKeyExchange
[ChangeCipherSpec]
Finished

I HelloVerifyRequest I

ServerHelio

Certificate
ServerHelloDone

[ChangeCipherSpec]
Finished

Fig. 4. DTLS handshake

The DTLS handshake as presented in Figure 4, which

consists of 6 messages or 3 round trips. PtP security may very

well have an effect on the duration of overlay bootstrapping.

There even exists a possibility that with more messages during

bootstrap, the probability one drops is higher, which could, in

turn, also have an effect, though possibly negligible, on time to

connect. To evaluate these concerns, we have employed both

simulation and real system experiments.

The following experiments use both simulation and Plan

etLab deployment to evaluate time to connect a new node to

an existing resource. Then another experiment is performed to

evaluate how long it takes to bootstrap various sized overlays

if all nodes join at the same time. This experiment is only

feasible via simulation as attempting to reproduce in a real

system is extremely difficult due to how quickly the operations

complete.

1) Adding a Single Node: This experiment determines how

long it takes a single node to join an existing overlay with and

without DTLS security. The experiment is performed using

both simulation and PlanetLab. After deploying a set of nodes

without security and with security on PlanetLab, the network

is crawled to determine the size of the network. In both cases,

the overlay maintained an average size of around 600 nodes.

At which point, we connected a node 1,000, each time using

a new, randomly generated P2P address, thus connecting to

a different point in the overlay. The experiment concludes as

soon as the node has connected to the peers in the P2P overlay

immediately before and after it in the P2P address space.

In the simulation, a new overlay is created and afterward a

new node joins, this is repeated 100 times. The cumulative

distribution functions obtained from the different experiments

are presented in Figure 5.

u..
o
U

1.01,-----------.--=�_---____,

0.8

0.6

0.4

0.2

• • plab.nosec

plab.dtls
x x sim.nosec

100 101
Time in seconds

sim.dtls

10'

Fig. 5. Time in seconds for a single node to join a secure (dtls) and insecure
(nosec) structured overlay, using both PlanetLab (plab) and the Simulator
(sim).

2) Bootstrapping an Overlay: The purpose of this exper

iment is to determine how quickly an overlay using DTLS

can bootstrap in comparison to one that does not given that

there are no existing participants. Nodes in this evaluation are

randomly given information about 5 different nodes in the

overlay and then all attempt to connect with each other at the

same time. The evaluation completes after the entire overlay

has all nodes connected and in their proper position. For each

network size, the test is performed 100 times and the average

result is presented in Figure 6.
10�--------------,

80

III
"0
c:
0 60 u
OJ
III

.=
OJ 40
E
i=

20

00 50 100 150 200 250 300
Network size

Fig. 6. Time in seconds for a secure (dtls) and insecure (nosec) structured
overlay to bootstrap, given that all nodes bootstrap simulataneously.

C. Discussion

Both evaluations show that the overhead in using security

is practically negligible, when an overlay is small. In the case

of adding a single node, it is clear that the simulation and

deployment results agree, as the difference between bootstrap

ping into an overlay with and without security remains nearly

the same. Clearly this motivates the use of security if time to
connect is the most pressing question.

The time to bootstrap a secure overlay was not significantly
more than that of an insecure overlay. What we realized is that
complex connection handshaking, as implemented in Brunet,
seems to dominate connection establishment time. For exam
ple, in Brunet, two peers must communicate via the overlay
prior to forming a connection, and the system differentiates
between bootstrapping connections and overlay connections.
Thus even though a peer may have a bootstrapping connection,
it will need to go through the entire process to form an overlay
connection with a peer. While this may lead to inefficiencies,
this simplification keeps the software more maintainable and
easier to understand.

VI. HANDLING USER REVOCATION

Unlike decentralized systems that use shared secrets, in
which the creator of the overlay becomes powerless to control
malicious users, PKIs enable their creators to effectively
remove malicious users. Typical PKIs either use a certificate
revocation list (CRL) or online certificate verification protocols
such as Online Certificate Status Protocol (OCSP). These
approaches are orthogonal to decentralized systems as they
require a dedicated service provider. If the service provider is
offline, an application can only rely on historical information
to make a decision on whether or not to trust a link. In a
decentralized system, these features can be enhanced so not
to rely on a single provider. In this section, we present two
mechanisms of doing so: storing revocations in the DHT and
performing overlay broadcast based revocations.

A. DHT Revocation

A DHT can be used to provide revocation similar to that
of OCSP or CRLs. Revocations, a hash of the certificate and
a time stamp signed by the CA, are stored are stored in the
DHT at the key formed by the hashing of the certificate. In
doing so, revocations will be uniformly distributed across the
overlay, not relying on any single entity.

The problem with the DHT approach is that it does not
provide an event notification for members currently commu
nicating with the peer. While peers could continue to poll
the DHT to determine a revocation, doing so is inefficient.
Furthermore, a malicious peer, who has a valid but revoked
certificate could force every member in the overlay to query
the DHT, negatively affecting the DHT nodes storing the
revocation.

B. Broadcast Revocation

Broadcast revocation can be used to address the deficiencies
of DHT revocation. As a topic of previous research works [14],

[15], structured overlays can be used without additional state
to perform efficient broadcasts from any point in the overlay
to the entire overlay. The form of broadcast can be used
to perform to notify the entire overlay immediately about a
new revocation. In these papers, analysis and simulations have
shown that the approach can be completed in 0(1og2 n) time.

Fig. 7. Broadcast performing a complete overlay broadcast

Our modified algorithm as illustrated in Figure 7 utilizes
the organization of a structured system with a circular address
space that requires peers be connected to those whose node
addresses are the closest to their own, features typical of
one-dimensional structured overlays including Chord [16],

Pastry [17], and Symphony. Using such an organization, it
is possible to do perform a broadcast with no additional state.
To perform a broadcast, each node performs the following
recursive algorithm:

BROADCAST(start, end, message):

RECEIVE(message)
for i in length(connections) do

n_start +- ADDRESS(connections[i])
if n_start � [start, end) then

continue
end if

n3nd +- ADDRESS(connections[i + 1])
if n_end � [start, end) then

n_end +- end
end if

msg +- (BROADCAST, n_start, n_end, message)
SEND(connections[i], msg)

end for

with "connections" as a circular list of connections in non
decreasing order from the perspective of the node performing
the current recursive, broadcast step.

In this algorithm, the broadcast initiator uses its own address
as the start and end, thus the broadcast will span the entire
overlay after completing recursive calls at each connected
node. A recursive end, "n_end", must be inside the region
between "start" and "end", thus if the connection following
the current sending connection, "connections[i + 1]", is not
in that region, it will only broadcast up to "end" and not the
address specified by that connection. Finally, nodes, who have
a connection to the malicious peer, will end the connection
prior to accidentally forwarding the message to the peer by
receiving and acting upon the revocation prior to forwarding
the message. To summarize, the overlay is recursively parti
tioned amongst the nodes at each hop in the broadcast. By
doing so, all nodes receive the broadcast without receiving
duplicate broadcast messages.

C. Evaluation of Broadcast

We performed an evaluation on the broadcast using the
simulation to determine how quickly peers in the overlay
would receive the message. The tested network sizes ranged
from 2 to 256 in powers of 2. The tests were evaluations
were performed 100 times for each network size. The CDF

of hops for each node are presented in Figure 8. The results

make it quite clear that the broadcast can efficiently distribute

a revocation much more quickly than 10g(N) time.
1.01,----,-----.---:;...----;;=---="...--,=-�����

D. Discussion

· ·

· ·

· ·

4 6 8 10 12 14
Hoo count

Fig. 8. Overlay broadcast time CDF.

2

4

16

32

64

128

256

16 18

In contrast to the DHT solution, broadcast revocation occur

only once and leave no state behind. Thus the broadcast is not

a complete solution, as new peers connected to the overlay

or those who missed the broadcast message will be unaware

of a revocation. Furthermore, if an overlay is shared by many

VPNs, it may prevent overlay broadcasting or itself may be

inefficient.

The DHT solution by itself may also not sufficient as

revocations may be lost over time as the entries must have

their leases renewed in the DHT. To address this condition,

each peer maintains a local CRL and the owner of the overlay

can occasionally send updates to the CRL through an out of

band medium, such as e-mail. A better long term solution may

be the use of a gossip protocols so that peers can share their

lists with each other during bootstrapping phases.

A key assumption in using these is that a Sybil [18], or

collusion attack, is difficult in the secured overlay. If a Sybil

attack is successful, both a DHT and broadcast revocation

may be unsuccessful, though peers could fix this problem by

obtaining the CRL out of band. In addition, previous work [19]

has described decentralized techniques to limit the probability

of such attacks from occurring. In our approach, the use of

central authority to review certificate requests can be used to

limit a single user from obtaining too many certificates as well

as ensuring uniform distribution of that user's P2P addresses,

further hampering the likelihood of a Sybil attack. The ability

to automate this is left as future work.

One way to mitigate sybil attacks using the broadcast ap

proach is to bundle colluding offenders into a single revocation

message. That would prevent those from colluding together

to prevent each other's revocations. Furthermore, while not

emphasized above, revocation in our system revokes by user

name and not individual certificates. Combined these two

components limit sybil attacks against broadcast.

VII. MANAGING AND CONFIGURING THE VPN

While the PKI model applies to P2P overlays, actual de

ployment and maintenance of security credentials can be too

complex to manage, particularly for non-experts. Most PKI

enabled systems require the use of command-line utilities and

lack methods for assisting in the deployment of certificates and

policing users. Our solution to facilitate use of PKIs for non

experts is a partially-automated PKI reliant on a group-based

Web interface distributable in forms of Joomla add-ons as well

as a virtual machine appliance. In this environment, groups can

share a common Web site, while each group has their own

unique CA. Although this does not preclude other methods of

CA interaction, experience has shown that it provides a model

that is satisfactory for many use cases.

Group-based Web 2.0 sites enable low overhead configu

ration of collaborative environments. The roles in a group

environment can be divided into administrators and users.

Users have the ability to join and create groups; whereas

administrators define network parameters, can accept or deny

join requests, remove users, and promote other users to admin

istrators. By applying this to a VPN, the group environment

provides a simple to use wrapper around PKI, where the

administrators of the group act as the CA and the members

have the ability to obtain signed certificates.

Elaborating further, when a user joins a group, the admin

istrator can enable automatic signing of certificates or require

prior review; and when peers have overstayed their welcome,

an administrator can revoke their certificate by removing them

from the group. Revocations are handled as described in

Section VI. In the context of GroupVPN systems, a user

revocation list as opposed to a CRL simplifies revocation, since

users and not individual certificates will be revoked.

Registered users who create groups become administrators

of their own groups. When a user has been accepted into a

group by its administrator, they are able to download VPN

configuration data from the Web site. Configuration data is

loaded by the GroupVPN during its configuration process to

specify IP address range, namespace, and security options. The

configuration data also stores a shared secret, which uniquely

identifies the user, enabling the Web site to automatically sign

the certificate (or enqueue it form manual signing, depending

on the group's policy). Certificate requests consist of sending

a public key and a shared secret over an HTTPS connection

to the web server. Upon receiving the signed certificate,

peers are able to join the private overlay and GroupVPN,

enabling secure communication amongst the VPN peers. The

entire bootstrapping process, including address resolution and

communication with a peer, is illustrated in Figure 9.

There are many ways of implementing and hosting the Web

site. For example, Google offers free hosting of Python web

applications through Google Apps, an option available if the

user owns a domain. Alternatively, the user could host the

group site on a public virtual network. In this case, peers

interacting with the GroupVPN would need to connect with

the public virtual network in order to create an account, get the

configuration data, and retrieve a signed certificate, at which

point they could disconnect from it. This does not preclude

the use of other social mediums nor a central site dedicated

to the formation of many GroupVPNs. Many GroupVPNs can

P2P Node 0
VPN _

DHTEntry �
Message

Fig. 9. Process in bootstrapping a new GroupVPN instance.

share a single site, so long as the group members trust the site for improved latency and throughput reasons, thus members

to host the CA private key. acting as routes in the overlay incur the price of acting as

VIII. RELATED WORK

A. VPNs

Hamachi [20] is a centralized P2P VPN provider using the

web site for authentication, peer discovery, and connection

establishment. While the Hamachi protocol claims to support

various types of security [21], the implementation appears

to only support the key distribution center (KDC) requiring

that all peers establish trusted relationship through the central

website. The Hamachi approach makes it easy for users to

deploy their own services, but places limitations on network

size, uses a proprietary security stack, and does not allow

independent VPN deployments. In contrast, our approach

presents a completely decoupled environment allowing peers

to start using our shared system to bootstrap private overlays

and migrate away without cost if need be. Furthermore our

approach relies only on a central server to obtain the certificate

otherwise, it is decentralized. In Hamachi, if the central server

goes offline, no new peers can join the VPN.

Campagnol VPN [22] provides similar features to Hamachi:

a P2P VPN that relies on a central server for rendezvous or

discovery of peers. The key differences between Hamachi and

Campagnol is that Campagnol is free and does not provide

a service; users msut deploy their own rendezvous service.

The authors of Campagnol also state that the current approach

limits the total number of peers sharing a VPN to 100 so not to

overload the rendezvous service. The current implementation

does not support a set of rendezvous nodes, though doing so

would make the approach much more like ours. In addition,

the system relies on traditional distribution of a CRL to handle

revocation.

Tinc [23] is a decentralized VPN requiring users to manually

organize an overlay with support for finding optimal paths.

In comparison to our approach, Tinc does not automatically

handle chum in the VPN. If a node connecting two separate

pieces of the VPN overlay goes offline, the VPN will be

partitioned until a user manually creates a link connecting the

pieces. Furthermore, Tinc does not form direct connections

packet forwarders.

The last VPN, we discuss is the most similar like ours, its

called N2N [24]. N2N uses unstructured p2p techniques to

form an Ethernet based VPN. While their approach, like ours,

has built-in NAT traversal, it requires that users deploy their

own bootstrap and limits security to a single pre-shared key

for the entire VPN, thus users cannot be revoked. Since N2N

provides Ethernet, users must provide their own mechanism

for IP address allocation, while discovery utilizes overlay

broadcasting. Thus there are concerns that as systems get

larger, N2N may not be very efficient.

B. P2P Systems

BitTorrent [25], a P2P data sharing service, supports stream

encryption between peers sharing files. The purpose of Bit

Torrent security is to obfuscate packets to prevent traffic

shaping due to packet sniffing. Thus BitTorrent security uses

a weak stream cipher, RC4, and lacks peer authentication

as symmetric keys are exchanged through an unauthenticated

Diffie-Hellman process.

Skype [26] provides decentralized audio and video commu

nication to over a million concurrent users. While Skype does

not provide documentation detailing the security of its system,

researchers [27], [28] have discovered that Skype supports

both EtE and PtP security. Though similar to Hamachi, Skype

uses a KDC and does not let users setup their own systems.

A s of December 2009, the FreePastry group released an SSL

enabled FreePastry [17]. Though relatively little is published

regarding their security implementation, the use of SSL pre

vents its application for use in the overlay and for overlay

links that do not use TCP, such as relays and UDP. Thus

their approach is limited to securing environments that are

not behind NATs and firewalls that would prevent direct TCP

links from forming between peers.

IX. CONCLUSIONS

This paper overviews the architecture implementation of

GroupVPN, a system that is the first to demonstrate the

practical feasibility of using structured overlays as a basis

for easy-to-use, group-oriented, P2P VPNs. Explicitly, we

have taken common structured overlays and explored orga

nization, public overlays for connectivity, and private over

lays for security and then described our GroupVPN which

binds them the components together to create collaborative

environments for configuration and management of VPNs.

This paper extends upon the IPOP virtual network to support

user-friendly approaches for users to create and manage their

own virtual private networks. To accomplish this, each IPOP

system bootstraps into its own unique, secure P2P overlay.

This approach not only enables secure communications in

IPOP deployments but also enables for more efficient overlay

multicast and broadcast.

The use of service overlays significantly improves perfor

mance and maintenance. Peers can easily control member

ship in the overlay and it presents unique opportunities for

decentralized revocation. A DHT approach allows results to

be stored on the overlay instead of using centralized CRLs

and broadcast to immediately notify active participants of a

revocation. Ongoing work include investigating slow bootstrap

times and determining security concerns of the decentralized

revocation techniques. Furthermore, we plan on investigating

the use of overlay broadcasting for IP broadcasting and mul

ticasting, though the current approach places an unfair burden

on the first few hops of a broadcast.

Without the functionality of GroupVPN, projects like the

Grid Appliances and its flagship application, Archer [1], would

be impractical. Archer consists of over 500 resources from 5

different universities, including University of Florida, Florida

State University, Northeastern University, University of Min

nesota, and University of Texas. In the past year, since Archer

came online, over 100 unique users have contributed and

taken advantage of the voluntary computing cycles. The use of

existing decentralized VPNs in Archer and the Grid Appliance

would be severely limiting. In the case of N2N, at least one

peer would have to maintain the bootstrap service and address

allocations for the VPN. Tinc would require users to manually

configure their networking overlays. While Compagnol and

Hamachi require the use of well known centralized peers.

The GroupVPN has been used as the virtual network for the

Grid Appliance, enabling the creation of decentralized, collab

orative environments for computing grids. Recently, grids at La

Jolla Institute for Allergy and Immunology and two in Eastern

Europe went live using Group VPN without receiving any

technical support from us. Researchers at Clemson University

and Purdue have opted for this approach over centralized

VPNs as the basis of their future distributed compute clusters

and have actively tested networks of over 700 nodes.

ACKNOWLEDGMEN TS

We thank the anonymous reviewers as well as Pierre St.

Juste for their useful comments and feedback. This research

is sponsored by the National Science Foundation under grants

IIP-0758596 and CNS/CRI collaborative awards 0751112,

0750847, 0750851, 0750852, 0750860, 0750868, 0750884,

and 0751091. Any opmIOns, findings and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the NSF.

REFERENCES

[I] R. J. Figueiredo, et aI., "Archer: A community distributed computing
infrastructure for computer architecture research and education," in
CollaborateCom, November 2008.

[2] A. Ganguly, A. Agrawal, O. P. Boykin, and R. Figueiredo, "IP over
P 2P : Enabling self-configuring virtual IP networks for grid computing,"
in International Parallel and Distributed Processing Symposium, 2006.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, "One ring
to rule them all: Service discover and binding in structured peer-to-peer
overlay networks," in SIGOPS European Workshop, 2002.

[4] M. Castro, M. Costa, and A. Rowstron, "Debunking some myths about
structured and unstructured overlays," in Proceedings of Symposium on
Networked Systems Design & Implementation, 2005.

[5] P. O. Boykin, et aI., "A symphony conducted by brunet," http://arxiv.
org/abs/0709.4048, 2007.

[6] G. S. Manku, M. Bawa, and P. Raghavan, "Symphony: distributed
hashing in a small world," in USITS, 2003.

[7] J. Rosenberg, "Interactive connectivity establishment (ICE): A protocol
for network address translator (NAT) traversal for offer/answer proto
cols," http://tools.ietf.org/hlrnl/draft-ietf-mmusic-ice-19, October 2008.

[8] A. Ganguly, D. Wolinsky, P. Boykin, and R. Figueiredo, "Decentralized
dynamic host configuration in wide-area overlays of virtual worksta
tions," in international Parallel and Distributed Processing Symposium,

March 2007.
[9] l. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, "Internet in

direction infrastructure," IEEEIACM Transactions on Networking, 2004.
[10] D. I. Wolinsky, Y. Liu, P. S. Juste, G. Venkatasubramanian, and

R. Figueiredo, "On the design of scalable, self-configuring virtual
networks," in IEEEIACM Supercomputing, November 2009.

[II] B. Chun, et aI., "P lanetiab: an overlay testbed for broad-coverage
services," SiGCOMM Comput. Commun. Rev., 2003.

[12] D. I. Wolinsky, P. St. Juste, P. O. Boykin, and R. Figueiredo, "Addressing
the P 2P bootstrap problem for small overlay networks," in 10th IEEE
International Conference on Peer-to-Peer Computing, 2010.

[13] E. Rescorla and N. Modadugu. (2006, April) RFC 4347 datagram
transport layer security.

[14] S. EI-Ansary, L. Alima, P. Brand, and S. Haridi, "Efficient broadcast
in structured p2p networks," in 2nd International Workshop on Peer-to
Peer Systems, 2003.

[15] V. Vishnevsky, et aI., "Scalable blind search and broadcasting over
distributed hash tables," in Computer Communications, vol. 31, no. 2,
2008.

[16] I. Stoica, et aI., "Chord: a scalable peer-to-peer lookup protocol for
internet applications," vol. II, no. I, 2003.

[17] A. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object lo
cation and routing for large-scale peer-to-peer systems," in International
Conference on Distributed Systems Platforms, November 2001.

[18] J. R. Douceur, 'The sybil attack," in iPTPS '01: Revised Papers from the
First International Workshop on Peer-to-Peer Systems. Springer-Verlag,
2002, pp. 251-260.

[19] M. Castro, et aI., "Security for structured peer-to-peer overlay networks,"
in Symposium on Operating Systems Design and Implementaion, Decem
ber 2002.

[20] LogMeln. (2009) Hamachi. https:llsecure.logmein.com/products/
hamachi2/.

[21] LogMeIn, Inc. (2009) LogMeIn hamachi2 security.
[22] F. Bondoux, "Campagnol : distributed vpn over udp/dtis," http://

campagnol.sourceforge.net, 2010.
[23] G. Sliepen. (2009, September) tinc. http://www.tinc-vpn.orgl.
[24] L. Deri and R. Andrews, "N2N: A layer two peer-to-peer vpn," in In

the international conference on Autonomous infrastructure, Management
and Security, 2008.

[25] (2007, December) Message stream encryption. http://www.azureuswiki.
com/index.phplMessage_Stream_Encryption.

[26] S. Limited. Skype. http://www.skype.com.
[27] D. Fabrice. (2005, November) Skype uncovered. http://www.ossir.org/

windows/supports/2005/2005-11-07 IEADS-CCR_ Fabrice_Skype. pdf.
[28] S. Guha, N. Daswani, and R. Jain, "An experimental study of the skype

peer-to-peer voip system," in IPTPS'06, 2006.

