
Modeling and Planning Collaboration using
Organizational Constraints

Michael Igler∗, Paulo Moura†, Matthias Faerber∗, Michael Zeising∗, Stefan Jablonski∗

∗Chair for Applied Computer Science IV, University of Bayreuth, Germany
{michael.igler, matthias.faerber, michael.zeising, stefan.jablonski}@uni-bayreuth.de

†Dep. of Computer Science, University of Beira Interior, Portugal
Center for Research in Advanced Computing Systems, INESC Porto, Portugal

pmoura@di.ubi.pt

Abstract—Process management systems play an important role
for today’s information systems. They coordinate the work items
among employees and ensure the correct execution of processes.
In this paper we focus on the organizational perspective of
process management systems. This perspective is responsible
for assigning people together with their roles within business
organizations to process execution. A key issue in integrating the
organizational perspective into processes is the strategy for se-
lecting people to execute work steps. This assignment is the basis
for collaboration among the people of an organization within
a process-based application. We implemented our approach in
ESProNa, a Logtalk application running in SWI-Prolog extended
with the Thea library providing direct and complete support for
OWL2 ontologies. The use of these languages allows the definition
of comprehensive organizational constraints. We will cover both,
the definition of these constraints in the process model, and their
interpretation by the process execution engine. Further we will
show how the organizational perspective impacts the order of
process execution, i. e. the way of collaboration between the
assigned people decisively.

I. INTRODUCTION

It is well accepted that processes are an important means
for planning activities in companies [1] [2] [3]. Workflow
or process management systems1 support the definition and
execution of processes. They guide employees in their daily
work [4] [5] [6] by providing them with tasks they are sup-
posed to perform. Especially the coordination of task execution
is an important feature of process management systems as
it ensures that all planned steps are executed in the correct
order. In this paper we will focus on the question, what
aspects of a process affect the execution order of work steps.
In particular we will investigate whether and to what extent
the organizational perspective of processes has an impact
on process execution, i. e. determines how people within a
process-based application are collaborating. This so called
synchronous form of collaboration is investigated in this paper.

1In this paper we do not distinguish between process and workflow man-
agement system. We summarize both under the term “process management
system”. We assume that process management systems support computer
based execution of processes.

We do not consider synchronous collaborative work (e. g.
video conferencing, collaborative editors) in this paper.

According to Perspective Oriented Process Modeling
(POPM) processes can be described by at least five
independent perspectives: the functional perspective (work
steps), the control flow perspective (control flow), the
data-oriented perspective (data flow), the organizational
perspective (people) and the operational perspective (tools)
[7] [8]. At least three of these perspectives determine the
execution order of steps, i. e. the way how assigned people
are collaborating. It is obvious that the control flow aspect
(as its name indicates) has a strong influence on the order of
process execution. Also the data (flow) perspective impacts
the execution order: a certain process step cannot be started
before mandatory input data is available. Besides this, the
organizational perspective also impacts the execution order
of process steps decisively. When a process step is ready
for execution, i. e. the control flow determines its execution
and all necessary input data are available, the organizational
perspective must be evaluated: only if one of the persons
eligible to execute this process step is available, the process
step will be performed. Otherwise the process will not be
executed. In this paper we will focus on this latter issue and
discuss how this kind of collaboration should be enacted in
process management systems.

Many of today’s process management systems – especially
those which focus on the orchestration of web services – con-
sider only four of the five perspectives mentioned above and
almost ignore the organizational component. The BPEL4WS
[9] core language for example does not include syntactic
elements for specifying human interaction; only the extension
BPEL4People considers this aspect. We will also argue in this
paper that the role concept on its own is not sufficient to fill out
the organizational perspective. However much research work
does only focus on the role concept and regards it as sufficient
to model the organizational perspective.

Second, we think that the organizational perspective is
even more dynamic and unforeseeable than the other two

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.47

perspectives (control flow and data flow). That means, it is
much more difficult to predict whether the organizational
perspective hinders a process step from execution than it is
for one of the other two perspectives. Why do we get to such
a perception? The behavior of the control flow perspective
can easily be described: when the control flow determines a
process A to be executed next, nothing (within the scope of this
perspective) hinders this process step to be executed any more.
The data perspective works similarly: when previous process
steps produced data that form the input for an upcoming
process step A then process step A can be executed (from
the perspective of data flow). The situation changes when
the organizational perspective is considered. Let’s assume that
process step A is considered to be the next step according
to the control flow and the data perspective, i. e. these two
perspectives do not prevent process step A from being executed
anymore. So, the process management system has determined
process step A to be executed next. Process step A is associated
with a valid specification of the organizational perspective.
We assume that process step A must be executed by a “sales
manager”. Now, the following “turbulences” might occur:

• Most of the sales managers (or all of them) assigned to
this process step are temporarily not available (e.g. due
to illness, vacation).

• Most of the sales managers (or all of them) assigned to
this process step are permanently not available since they
got new obligations (i. e. they are not sales manager any
more).

• Still existing sales managers are assigned to other process
steps.

None of the three situations above can be called erroneous.
Sales managers are always principally available. Nevertheless,
the process is hindered from being executed since eligible
process executors momentarily are not available. What could
be done to resolve such an undesired situation?

• Re-assignment: Another person can be assigned to pro-
cess step A. This solution is just a provisional solution
since it does not solve the problem principally. Neverthe-
less, it is very powerful since it can always be applied.
We acknowledge this solution, but do not pursue it further
in this paper, since it is conceptually seen as a modest
issue.

• Planning: The problematic situation is predicted and
therefore avoided (or at least it is made avoidable).
This solution requires a kind of a planning component
which calculates process steps that potentially have to
be performed. Such a component also computes whether
eligible persons for process execution are available. In
case it encounters problems, it advices not to continue
this line of execution. Alternative execution paths should
be pursued or the re-assignment solution should be pro-
posed.

• Re-ordering: Skip this process step and continue with a
step that only depends on this one from an organizational
view. An example (see Figure 1) clarifies this solution:

Agent a org:x
OR

Agent a org:y

Agent org:supervises
 A.executed_by(Agent_A)

BA

Fig. 1. Exemplary process model for re-ordering

Process step B must be executed by the supervisor of
the executor of process step A. There are no more
dependencies defined between the two steps. If person
x is executing A, then X as supervisor of x has to execute
B; if person y has executed A, then Y as supervisor of y
has to execute B; etc.
We assume that the organizational perspective is the only
remaining unresolved dependency for the process steps
A and B. That means the organizational perspective of
process step A must be resolved in order to determine
the executor of process step B. Under the assumption that
the organizational constraint between both process steps
could be inverted, we start with the execution of process
step B. Afterwards process step A could be executed. In
our example this means an inversion of the “is supervisor
of” relationship which is the “is supervised by” rela-
tionship. Here, the assumption holds that this temporal
delay of the execution of process step A and the preferred
execution of process step B leads to the situation that
executors of process step A become available eventually.
So, the overall process can be executed without big delay.
Re-ordering exploits the relationship between (two) pro-
cess steps. Instead of evaluating such a relationship in
the normal forward direction, re-ordering evaluates such
a relationship reversely. This is done by applying the
inverse relationship to a given relationship.
A prerequisite for the application of the re-ordering
technique is that process management systems enable
domain experts to define arbitrary relationships between
elements of their organizational structure. Such relation-
ships cannot be modeled by roles alone [10]. For the re-
ordering technique all the relationships that are reversible
are of major interest.

Now we can summarize the goals of this paper. We aim at
the provision of a powerful concept to model and enact the
organizational perspective of a process management system.
Especially, we want to provide a method that supports both
• planning and
• re-ordering.
Both concepts are applied in order to support efficient pro-

cess execution. A prerequisite of our approach is that process
management systems base their organizational perspective on
a powerful concept that enables the definition of arbitrary, in
many cases reversible relationships between elements of the
organizational structure.

Our approach, called ESProNa, provides maximum flexi-
bility with respect to the organizational perspective. Flexibility

here means that the organizational perspective will be ex-
hausted to a maximum in order to support efficient processing
without delay. We propose an approach based on a formal
logic (first order logic) that allows us to specify powerful
organizational constraints. The approach fosters the prediction
of undesired situations and allows determining “alternative”
process executions. Our approach both comprises a modeling
and an execution component.

The paper is organized as follows. The next section dis-
cusses related work. Section III introduces our process mod-
eling concept. Section IV presents an overview of our system
architecture. Section V clarifies the formal definitions for our
research. Section VI shows how the previously mentioned
objectives are achieved.

II. RELATED WORK

During the last years several articles were published on
the organizational perspective in process management systems.
[11] proposes both a life-cycle and a meta-model for organi-
zational issues in process management systems. The workflow
life-cycle describes the different phases of a process:
• Goal Specification and Environment analysis: Organiza-

tional Analysis
• Process Design: Resource and Assignment Specification
• Process Implementation: Resource Integration
• Process Enactment: Resource Utilization and Mainte-

nance
• Process Monitoring: Resource Monitoring
• Process Evaluation: Resource Evaluation
• Animation, Simulation: Capacity Planning
The concept described in that paper concerns mostly the

phases “process design” with the specification and the as-
signment of resources to a process and “process enactment”.
The paper also proposes a meta-model for specifying the
organizational structure in process management applications.
The authors introduce the concept of a “role” which forms
the link between a process step and an organizational unit (i.
e. the employee). Roles can be divided into two subclasses:
“privileges” and “capabilities”. A privilege is a property of
a resource that is connected with the resource’s position in
the company; in contrast a capability is a direct property of
a resource, independent of a company. We will use a similar
meta-model and both interpretations of the “role” to assign
people to processes. In [10] a meta-model for specifying the
organizational structure is developed. This model is more
general than the one described in [11] and allows the specifi-
cation of domain-specific models. The domain-specific models
can be obtained by instantiating an abstract organizational
model. In order to query this organization model, a query
language is described. The assignment of people to tasks
is accomplished by “assignment rules” and “synchronization
rules”. However, planning and re-assignment are not dealt with
by this approach.

BPEL4People [12] and WS-HumanTask [13] are extensions
to the BPEL [14] process execution language and provide
support for including human interaction into a BPEL process.

The language adds so called “people activities” to processes.
Once a people activity is reached in a process, a task is entered
into the user’s work list. Users can select tasks that they want
to execute from this list. The identification of the user who has
to execute a certain step is made by querying an organization
repository. BPEL4People describes some interaction patterns
(Four-eye principle, escalation etc.). The aim of the approach
is to provide seamless integration between automated and hu-
man tasks. However, as BPEL4People uses the same execution
order as BPEL, a process is stopped if a certain employee is
not available. Again, planning and re-assignment are not dealt
with by this approach.

As a summary it can be stated that both [10] and [11]
provide a meta-model for the definition of an organizational
structure in process management systems. While the one
presented in [10] is more generic and can be better adapted
to specific domains, both models are sufficient for storing an
organizational model. However all approaches do not enforce
the organizational perspective during process execution. While
this might not be a big issue for the approach [11] [10], it must
be an important issue for BPEL.

[15] presents a formal language for the specification and
enforcement of authorization constraints in workflow man-
agement systems. This formal framework mainly deals with
the formalization of logical rules to represent authorization
patterns. Furthermore, algorithms are provided to check the
consistency of constraints and assign users to tasks. The
planning component of [15] is able to evaluate a modified and
partially violated workflow. User assignments are generated in
order to make a process step valid. Our approach uses logic
in a completely different manner. In particular, we are not
viewing planning as theorem proving. In our approach we use
logic solely to express search control knowledge. We utilize
traditional planning representations for actions and states and
we generate plans by search. As [15] does not plan on process
states but on workflows it differs from our work: our goal is
to offer the process executor a kind of navigation system that
supports him during the execution phase (Section VI) which
can be achieved by planning on states.

[16] shows an approach based on rules and patterns making
workflows capable of adapting themselves effectively when
exceptional situations occur during process execution. In order
to separate this research from our work it is important to clarify
the difference between unpredictable exceptions and (possibly)
predictable exceptions which can be included during the
design phase of a workflow. The first ones are not predictable
– neither for the process modeler nor the process executor.
The latter ones may (eventually) be predicted by the process
modeler and must be included during the definition of the
process model. Otherwise the process executor has no chance
of reacting on a “deviation” during the execution phase. In
our approach we mainly concentrate on the latter approach of
modeling flexibility and controlled deviations.

DECLARE [17] is a constraint-based system, developed
at the University of Eindhoven, that is focused on modeling
constraints between processes. DECLARE uses the ConDec

[18] modeling language. Modeled constraints in ConDec are
translated to a Linear Temporal Logic (LTL) formula. An
automaton is generated for every specific constraint in order to
verify it. Furthermore, a second automaton is generated over
all constraints. The support for the organizational perspective
in DECLARE is, however, limited as hierarchical organiza-
tional structures cannot be modeled. A planning component
that can be consulted for advice during execution phase is
also absent. This is because of the fact that LTL does not
allow to express the effect in a state space that results from
a state transition. Therefore it is not evident how to express a
goal state in LTL nor to construct automata for planning an
execution scenario in order to reach a certain goal state [19].

[20] presents a survey for specifying workflows based on
three different approaches: Temporal Logic, Event Algebra
and Concurrent Transaction Logic (CTR). The main difference
between these research papers and our framework is that
we support the formalization of organizational facts, such as
roles, individuals, supervising behavior, etc., through OWL2
ontologies [21] which can be loaded into our system ESProNa.
Through an OWL2 parser [22] we can access these information
very efficiently. As already mentioned in the comparison with
[17] a Temporal Logic (LTL) prevents the possibility for
planning on process models.

EM-BrA2CE (Enterprise Modeling using Business Rules,
Agents, Activities, Concepts and Events) is a framework for
unifying vocabulary and execution models for declarative pro-
cess modeling [23]. The vocabulary is described in terms of the
Semantics for Business Vocabulary and Rules (SBVR) stan-
dard and the execution model is presented as a Colored Petri
Net (CP-Net). EM-BrA2CE also follows the same concept we
use in this paper to specify a state space transition relation
based on rules. Every process must be described in the form
of the mentioned Business Vocabulary. In our opinion this
concept slows down re-reading of process models by different
users or the process modeler itself after some period of time.
EM-BrA2CE supports the organizational perspective through
“Activity Authorization Constraints” which are assigned to a
process. We could not derive from [23] how the underlying
organizational informations (see Section IV-A) are stored.

III. PROCESS MODELING

This section illustrates how processes are modeled in
ESProNa. In this paper we concentrate on the functional,
behavioral, and organizational perspective of the POPM ap-
proach (Sections III-A to III-C). In particular, we show how
dependencies between processes, which impact their execution
order, are modeled.

A. Functional Perspective

A process is represented as a rectangle (Figure 2). In the
upper part the name of the process is written. A PID (process
identification) identifies a process uniquely. The lower part
of a process rectangle contains constraints which refer to the
perspectives of a POPM process model. The clipboard icon

refers to the functional perspective. It determines how often a
process can be executed. Two different notations are offered:

• The min..max notation expresses the range how often
a process must/can be executed; it must be executed at
least min times and can be executed at most max times.

• The #= notation specifies the exact number of executions
of a process.

Both the min..max and the #= notation normally refer
to constant numbers (positive integers). However, it is also
possible to refer to executions of other (related) processes. This
means that the number of executions of a process is related to
the number of executions of another (related) process. Table I
provides an overview on the spectrum of specifications:

Notation Expression Meaning

min

INT
Execute minimum as often as

Integer value encodes

0
Optional

(does not have to be performed)
> 0 Mandatory

#(PID)
At least as often as process PID

was / will be executed

max

INT
Execute maximum as often as

Integer value encodes
* Arbitrary times

> 0 Mandatory

#(PID)
At most as often as process PID

was / will be executed

#=

INT
Execute exactly as often as

Integer value encodes

#(PID)
Exactly as often as process PID

was / will be executed

#(arith(PID,INT))
Arithmetic operation(+, -, /, *)

applied on PID with value
encoded in INT (prefix notation)

TABLE I
DIFFERENT NOTATIONS OF QUANTIFICATION

B. Behavioral Perspective

The behavioral perspective is identified by a graph icon
(similar to the USB icon) in the lower part of a process
rectangle. In Figure 3 the process “Acknowledge Surgery Plan”
includes a behavioral constraint stating that process PID 1

must be marked as done in order to start the execution of
process PID 2. done forms an execution state of a process;
execution states are explained in Section V. Nevertheless, we
already can say that done refers to the completion of a process
execution.

Alternatively, the behavioral perspective can be expressed
through a solid arrow connecting two processes. It can be
modeled in this way as long as the execution of a subsequent
process depends on the completion of a former one. Figure
2 depicts this equivalent notation of a behavioral constraint.
Since users are accustomed to this notation, we allow to
apply it. Of course, the notation using the graph icon is more
powerful since it can reference arbitrary states of a process
(beyond done).

C. Organizational Perspective

The organizational perspective is represented by a person
shape in the lower part of a process rectangle. It has to be
defined, which persons are eligible to start, to finish, etc. a
process step. Although we shortly discuss process states in
Section V we do not detail this aspect in this paper. Here, we
always assume that persons that are selected are eligible to
perform all operations of a process step.

The key word Agent is used to define a set of agents who
are eligible to execute a certain process. This key word is
followed by a set definition. Sets can be combined by the usual
set operators (union, difference, intersection). To determine
these sets an organizational structure (including population)
must be defined. Figure 4 depicts an example organization.
Organizations are described using an ontology; they consist
of two basic elements: sets and relationships. In the fig-
ure, three sets are defined: Role, Person, and Department.
Also not directly shown in the figure but indicated through
the dotted rectangles, instances are assigned to these sets.
Instances of the same or different sets are related through
relationships. All notions are borrowed from certain names-
paces (e.g. org:, clinic:). The ontology-based definition
of organizational structures is most flexible and enables the
specification of arbitrary organizations.

Two issues must be mentioned here. First, Figure 4 shows
clearly that ”Role” is just one out of many concepts needed
to define an organizational structure. Second, relationships
are optional for the definition of organizations, too. Thus,
approaches that are merely based upon the “role concept” are
not sufficient to represent arbitrary organizational structures.
In Figure 2 the process “Record Radiogram” must be executed
by either an MTA (Medical Technical Assistant) or by an
“Assistant Doctor”. Process step “Analyze Radiogram” must
be performed by the “Assistant Medical Director” or by the
“Medical Superintendent”. We want to mention here that no
relationship between the two process steps concerning the
executors is given.

While the organizational constraints in the example of
Figure 2 do not imply any dependencies between the two
process steps, the organizational constraints in Figure 3 very
well impose a dependency. The specification of PID 2 in
process step ”Acknowledge Surgery Plan” references the ex-
ecutor of PID 1; thus, an inter-process dependency is defined
which significantly determines the execution order of process
steps. In principle, the executor of PID 2 can only be de-
termined when the executor of PID 1 has been evaluated
executed_by(...). We say that the starting point (open
variables) for the determination of a set of eligible agents
must be provided. In this case, the executor of PID 1 is that
starting point. Then, eligible agents are found by traversing the
relationship supervises. It is worth to mention here that such
type of dependencies between process steps, caused by the
organizational perspective, are starting points for our concept
”re-ordering” which is discussed in Section VI-B.

At the end of this sub-section we shortly want to assess

Record RadiogramPID: 1

#= 1

Analyze RadiogramPID: 2

Agent org:plays
 clinic:MTA
 OR
Agent org:plays
 clinic:Assistant Doctor

Agent org:plays
 clinic:Assistant Medical
 Director
 OR
Agent org:plays
 clinic:Medical Superintendent

#= 1

Fig. 2. Clinical example model

Prepare Surgery Plan Acknowledge Surgery Plan

PID_1.done

PID: 1

Agent org:plays
 clinic:Assistant Doctor

PID: 2

Agent org:supervises
 PID_1.executed_by(Agent_PID1)

#= 1#= 1

Fig. 3. Clinical example model with organizational dependencies

the capability of our implementation of the organizational
perspective. On this account, we chose to design our first
use case scenario (Figure 2) similar to Workflow Pattern
No. 4 taken from the Workflow Patterns Initiative [24]. The
pattern is called “Authorization” and consists of two process
steps that have to be executed by two, totally independent
sets of agents with specific properties. The evaluation of
this pattern [25] shows that the majority of current process
management systems cannot facilitate this pattern; only the
languages FLOWer [26] and COSA [27] provide support. The
same evaluation shows that commonly used languages and
industry standards like BPEL or BPMN [28] do not support
this pattern at all. The ESProNa approach is able to represent
this pattern completely and in a generic way.

The process model from Figure 3 is similar to the Work-
flow Pattern No. 10 (Organizational Distribution). Within this
model a relationship between the persons executing the two
process steps is established: the executor of step PID 2 must
be the supervisor of the person who executed process step
PID 1. The evaluation of this pattern [25] shows again that
only two systems provide support for this pattern: COSA [27]
and WebSphere MQ Workflow [29]. Again, our approach does
support this pattern in a very general way, and therefore its
capabilities are proven.

D. Executing Process Models

At the end of this section we want to briefly demonstrate
how processes are interpreted for execution. In principle, a
process can be executed when its constraints (lower part of the
process rectangle) all evaluate to true. That means in detail:

• The functional perspective allows for (another) execution
of the process.

• The behavioral perspective evaluates to true.

• The data perspective evaluates to true, i. e. all input data
are available (not shown in this paper)

• The organizational perspective evaluates to true.
The discussion of the organizational perspective will be

stated precisely. When does it evaluate to true? Two conditions
must be fulfilled: First, all (open) variables that are needed for
evaluation are set (in the example of Figure 2, the executor of
process ”Prepare Surgery Plan” must be determined). Second,
there are eligible agents available. These two prerequisites are
starting points for the two main contributions of this paper.
Our aim is to improve process execution, i. e. to prevent
process execution from being halted. From the viewpoint of
the organizational perspective a process execution delay might
be caused by missing variables which are not determined yet.
This issue is mitigated through the introduction of the new
concept of re-ordering (Section VI-B). A second cause for a
delay is that not enough eligible agents are available. Such a
situation could be avoided by applying our second innovative
concept: planning (Section VI-C). This analysis splendidly
shows that and how our contributions enhance the flexibility
and efficiency of process execution.

IV. SYSTEM ARCHITECTURE

ESProNa implements a three-tier system architecture con-
sisting of a data tier (representing organizational informations),
a logic tier (deduction on processes and states) and a presen-
tation tier (front end for process execution). In this paper we
will concentrate on the description of the data and logic tier;
details on the presentation tier can be found in [30] and [31].
The purpose of the discussion in this section is to show that
ESProNa is capable to model any organizational structure and
is also capable to implement any perspective of the POPM
process model.

A. Data Tier: Representing Organizational Informations

We will first have a look on the data tier where the
structure of an organization (with respect to agents, relation-
ships between agents, roles of agents, etc.) is stored. It must
be guaranteed that arbitrary relations between organizational
entities can be modeled. We decided to implement the data
structure on the basis of OWL2 ontologies. This is not a
general prerequisite as other kinds of data structures (e. g. a
relational database) would also be feasible. Nevertheless, the
OWL2 data model, combined with the reasoner (Section IV-B)
enables both the representation of any organizational structure
and an efficient interpretation of the POPM process model.

In the two use cases (Figure 2, Figure 3) several orga-
nizational elements are referenced. We shortly discuss the
main concepts which are needed to model the organizational
structures needed in the two examples.

First of all, agents (individuals) have to be defined (see
[10]). In our organizational structure (Figure 4) a couple of
persons (e. g. Charles, John, Jack) are defined. Agents are
usually the entities that are executing process steps. Agents
belong to different sets. In our example organizational struc-
ture, the persons belong to the set ”Person”.

Besides agents, so called non-agents are part of an organiza-
tional structure (see [10]). In our example, there are a couple
of non-agents defined: “XRayDepartment”, “AssistantDoctor”,
etc. Non-agents are grouping and characterizing agents; non-
agents cannot usually execute process steps. Only the agents
that are related to them can finally perform process steps. In
Figure 4 we see that some non-agents are of type role (e.g.
“AssistantDoctor”, “MTA”); other non-agents are of type ”De-
partment” (e.g. “CardiologyDepartment”). Here, it becomes
obvious that roles are not sufficient to model organizational
structure. Concepts that – for example – model the structure
of an organization are also required.

The third concept of our organizational modeling approach
are relationships. Relationships can connect agents and non-
agents arbitrarily. They may represent various facts of a real-
world organization, e. g.:
• An agent belongs to a certain department (i. e. non-agent).
• An agent plays a certain role (i. e. non-agent).
• An agent is “the supervisor” of another agents.
This listing is not complete but just shows some important

practical modeling scenarios. Refer to [10] for more details
on the modeling of organizational structures. We just want to
summarize here, that our approach is capable of modeling all
the organizational elements that are defined in [10] which is to
the best of our knowledge one of the most powerful approaches
in that area.

To offer this powerful modeling capability is one of the
key features of ESProNa. The challenge now is to set up the
logical tier in such a way that these powerful concepts can be
evaluated.

B. Logic Tier: Deduction on Processes and States
The basic design rationale of ESProNa is the separation of

process model, process state and reasoner. The process model,
which represents the constraints on all processes, is loaded into
ESProNa. Further is the organizational model (Figure 4) (the
organizational constraints of the loaded process model refer to
this data structure) loaded as an OWL2 instance separated from
the process model. Through this strict separation of process
model and organizational model the following advantages can
be achieved:
• The Logic Tier is independent of the relationships defined

in the organizational model. In case new relationships
between agents or non-agents are to be modeled, these
additional informations can be added to the organizational
model and automatically will be included and evaluated
during execution phase.

• Only the process model needs to be updated in case
additional information are to be referenced inside the
organizational perspectives of the processes. This leads
to a very modular design of our different components
resulting in a very flexible and easily adaptable system.

The logic tier contains two main components: The reasoner
module (RM), which is responsible for computing the next
executable steps in the process model and a session adminis-
tration module (SAM), which manages the different instances

clinic:CardiologyDepartment

:Jacob

:Hugo

:Jack

:Kate

org:supervises

org:supervises

org:Role org:Person org:Department

org:supervises

org:plays

org:plays

org:plays

org:plays

:Charles

:Peter

:John

:Claire

org:Personorg:Department

org:plays

org:plays

org:plays

org:plays

o
rg
:m

em
b
er

o
rg
:m

em
b
er

clinic:MedicalSuperintendent

clinic:AssistantMedicalDirector

clinic:AssistantDoctor

clinic:MTA

clinic:XRayDepartment

Fig. 4. Extract from a clinical organization representing among others the transitive supervising behavior

of a process (through process states) and communicates with
the data and presentation tier. Process execution starts with
the loading of the process model from the data tier and the
initialization of the processes (the process state is set up) in
the SAM. For every loaded process model, a so called process
state is managed, which represents all available information
about all process instances at a certain time. The reasoner eval-
uates this state and computes the next executable process steps
by evaluating all constraints that are defined for a process step.
Since these constraints are classified by the perspectives of a
process, the RM evaluates for each perspective whether the
process is executable from the viewpoint of the corresponding
perspective. For each process that comes into consideration,
the conjunction of all evaluations (of the perspectives) is
calculated. The state of a process to be executable may change
during execution: in the process model shown in Figure 3 the
process step “Acknowledge Surgery Plan” cannot be executed
in the initial state (this state represents the situation when no
process has been executed yet). The behavioral perspective
(visualized by the graph icon) of process PID 2 constraints
that it is required that process step PID 1 is completed
(marked as done). Therefore the evaluation of process step
PID 2 fails in the initial state (only PID 1 is executable in the
initial state). In a state where process step PID 1 is marked as
done (process step PID 1 has been executed) the evaluation
of process step PID 2 returns “true”, because the behavioral
perspective evaluates to “true” in this state.
The interesting issue here is that the RM could be extended
by further perspectives included into a process model. As
already mentioned, each perspective is evaluated individually.
The evaluation of the organizational perspective is done by a
separated OWL2 reasoner [22]. Therefore arbitrary organiza-
tional structures can be evaluated by the RM.

V. FORMAL DEFINITIONS

In this section we will generalize our approach to specify
organizational constraints and establish a formal definition
which we developed prior to the implementation of the system.
It serves as a formal foundation in order to be able to proof
the correctness of our reasoning system RM. We implemented

the reasoner in Logtalk [32], an object-oriented logic program-
ming language. As already mentioned in Section IV-B the state
of each process is stored in a global state object. It contains the
PID of a process, its execution history (what actions have been
performed on it and who performed it) and a boolean variable
indicating whether the process is completed or not. Formally
this state object can be recursively defined as followed:
• A global state is a list of tuples of the form:
(PID, HL, SC) (for every process such a triple is stored
inside the global state)

• PID represents the global and unique process identifier
• The history list HL is set up of compound terms of the

form A-P:
• A represents the action that was performed on the process
• P is the person who performed that action A

• The status code SC is a boolean variable indicating
whether a process is completed or not

The execution state of a process results from the combined
states of its process steps. A set of actions (start, finish and
abort) are defined that change the state of a process. For
example, when a process is started, this information together
with the person who is performing the action is stored in the
corresponding part of a state object. State objects are changed
by transitions; a transition occurs when a user starts, finishes or
aborts a process. The allowed transitions with their succeeding
states of a certain situation are derived from a given state
object.

We have developed a planning system that computes all
possible ways a process model may be executed potentially.
All theoretically possible transitions form a graph that con-
tains two special kinds of nodes: an INITIAL-state and a
COMPLETE-state. The initial state (no process is executed yet)
is stored in a so called “initial state object”. The final state (all
processes are marked as “done”) is also computed. Together
with state transitions it is possible to calculate the complete
automaton that represents all possible execution scenarios of
a given process model. Formally, our state transition system
is a tuple Σ = (S, P,A, γ) where
• S = {s1, s2, ..., sn} is a finite or recursively enumerable

set of states

• P = {startable, abortable, finishable} is a finite set of
preconditions

• A = {start, abort, finish} is a finite set of actions
• γ : S × P ×A→ S is a state-transition function

A state-transition system can be represented by a directed
graph whose nodes are states of S. If s ∈ γ(s, pi, ai) with p ∈
Pn and a ∈ An, then the graph contains an arc from s to s′ that
is labeled with u. Each state-transition can have one or more
successive states s′ and therefore can be non-deterministic.
The state sinit is the initial state with no incoming edges; the
state sgoal is the final state with no outgoing edges. sinit refers
to the state of the process model when no process has been
executed yet (no action applied); sgoal refers to a situation
where all processes have been executed already (all processes
are marked as “done”). An action a, that is performed on a
process, changes the state in a way that the precondition for a
second process evaluates to true and therefore an action a′ can
be applied to it. For the organizational perspective we need to
further specify the set of preconditions and actions:

• AG = {agent1, agent2, ..., agentn} is a finite or recur-
sively enumerable set of agents

• C = {candidate1, candidate2, ..., candidaten} is a fi-
nite or recursively enumerable set of candidates; C ⊆ AG

• τ : AG→ C is a relation that maps agents to candidates

The relation m : AG → C holds a mapping of certain
elements of AG to C. The set of agents can be found in
Figure 4 inside the dashed boxes (second from left and right in
each case). The candidates are retrieved through an evaluation
of the constraints (asserted in the process model) on these
agents. Listing 1 illustrates such an evaluation which retrieves
all “Assistant Doctors” who are candidates and build the set C.
Therefore every element pi of preconditions P is a tuple (s, c)
where s ∈ S and c ⊆ C. C, represents the set of candidates
who can perform the process step.

1 'clinic:XRayDepartment'::'org:member'(M),
2 M::'org:plays'('clinic:AssistantDoctor').

Listing 1. Retrieving all Assistant Doctors of the X-Ray department

Every element ai of actions A is a triple (s, c, s′) where
s, s′ ∈ S and c ⊆ C. s represents the state that is considered
for the evaluation of γ and τ . The calculated state s′ represents
the state when action ai has been performed. The state
transition γ, which is of non-deterministic kind, calculates
for a given state s ∈ S one or more succeeding states s′.
If no succeeding states can be calculated then s = sgoal. The
second component u of the state transition γ must be valid
(true), so the transition can be applied. First, the precondition
pi is evaluated against all processes. During this evaluation all
perspectives of a certain process are validated. If none of the
perspectives is violated, then the precondition of the process
is valid and therefore the desired action can be performed on
the process.

VI. PROCESS EXECUTION

A. Normal Execution
The process model we use in this subsection is the one

presented in Figure 3. We want to check which process can
be started in the initial state. For this purpose the execution
prerequisites for every process have to be checked. In this case
we evaluate all perspectives of each process. In process PID

1 the functional constraint defines that the process can be
executed exactly once. The second constraint (organizational
perspective) restricts the persons who can perform the process
to the ones playing the role of an “Assistant Doctor”. The
persons who are candidates for this task are (according to
Figure 4) John from the X-Ray Department and Jack from the
Cardiology department. As no behavioral constraint is given
in process “Prepare Surgery Plan” (neither through an ingoing
arrow nor through an explicit constraint inside the process) the
prerequisite check evaluates that the process can actually be
started by the persons John and Jack. In case of process PID 2

the evaluation of the organizational constraint would lead to a
negative result, as the prerequisites prescribe that process PID

1 has to be executed before process PID 2 (the system must
know the executor of PID 1 to determine the executor of PID
2 who is the supervisor of the former one). Therefore process
“Acknowledge Surgery Plan” cannot be marked as startable

in the initial state.
We now assume that process PID 1 has been executed by

John. This state is marked as · in Figure 5 which represents
the automaton for the process model of Figure 3. All possible
execution scenarios are included in this graph. It is a virtual
state space (all possible execution scenarios are visualized),
since it is computed by ESProNa but is not stored explicitly.
One path (bold arrows) from the initial state ¶ of the tree to
one leaf state ¸ is marked. It represents a possible execution
scenario of the process model where John starts the process
“Prepare Surgery Plan” and Peter, as his supervisor, finishes
it.

In situation (state) · the system computes that process PID

2 now becomes startable. The evaluation of the behavioral
constraint in that situation returns “true” because process PID

1 is completed. The interesting part is to determine, who
(which person from the organization) can perform the process.
This information can be retrieved from the organizational
model in the data tier (Figure 4). Therefore we first have to
retrieve the person who started process PID 1. We assumed
that this was John. Hence a query against the data (this query
is stated by our system internally during evaluation) would
retrieve that Peter and Charles are candidates, because they
keep a supervisor role with respect to John.

B. Re-ordering of Process Models
In this section we want to resume the supervisor example

presented in the introduction. The process model in Figure 6
is similar to the one in Figure 3, except that the behavioral
restriction between the two process steps is removed: We omit
the constraint that process PID 1 “must” be performed before
process PID 2.

Action: start/finish,
ProcessID: pid_1,
Agent = [John]

Action:start/finish,
ProcessID: pid_1,
Agent = [Jack]

pid_1, [s-[John], f-[John]], 1
pid_2, [s-[Charles], f-[Charles]], 1

pid_1, [s-[John], f-[John]], 1
pid_2, [s-[Peter], f-[Peter]], 1

Action: start/finish,
ProcessID: pid_2,
Agent = [Peter]

pid_1, [s-[Jack], f-[Jack]], 1
pid_2, [s-[Jacob], f-[Jacob]], 1

pid_1, [s-[Jack], f-[Jack]], 1
pid_2, [s-[Hugo], f-[Hugo]], 1

1

2

3

Action: start/finish,
ProcessID: pid_2,
Agent = [Jacob]

Action: start/finish,
ProcessID: pid_2,
Agent = [Hugo]

Action: start/finish,
ProcessID: pid_2,
Agent = [Charles]

pid_1, [s-[John], f-[John]], 1
pid_2, [], 0

pid_1, [s-[Jack], f-[Jack]], 1
pid_2, [], 0

pid_1, [], 0
pid_2, [], 0

Fig. 5. Illustration of possible execution scenarios of the clinical process model from Figure 3

Prepare Surgery Plan Acknowledge Surgery Plan
PID: 1

Agent org:plays
 clinic:Assistant Doctor

PID: 2

Agent org:supervises
 PID_1.executed_by(Agent_PID1)

#= 1#= 1

Fig. 6. Modified clinical example model from Figure 3

It is problematic to execute PID 2 since its execution re-
quires to know who executed PID 1 since the supervisor of that
executor should execute PID 2. ESProNa fosters two different
execution strategies in this case which enhances execution
flexibility enormously. The two strategies to choose from are
called Forward and Backward Chaining.

Forward Chaining: This is the standard behavior and
described in the previous section. Since the organizational per-
spective requires the execution of PID 1 (in order to determine
the supervisor), PID 2 cannot be executed at first with this
concept.

Backward Chaining: In this scenario process step PID

2 is performed first although this seems to conflict with the
former observations. However, ESProNa exploits the organiza-
tional graph structure of Figure 4 and follows the relationships
given in that organizational structure backwards.

The concept of Backward Chaining is realized in the
following way: ESProNa first retrieves all supervisors, in
our situation Peter and Charles from the X-Ray department
and Hugo and Jacob from the Cardiology department. Then
ESProNa allows them to start PID 2. We assume that Peter is
actually starting process PID 2. He acknowledges the surgery
plan and finishes the process. Now, ESProNa backward chains
the organizational structure of Figure 4. Therefore, it checks
the potential executors of process step “Prepare Surgery Plan”
regarding that Peter executed PID 2. A query to the data tier
will return that John is an “Assistant Doctor” and is supervised
by Peter. Consequently John is eligible to execute PID 1.

The latter example shows the flexibility ESProNa provides.
It is achieved by modeling the organizational structure in a
formal way (Figure 4) and utilizing that structure as much
as possible with logic operators. According to our knowledge
there is no other implementation of the organizational perspec-
tive of process management systems that allows this flexibility.
It copes with the “non-predictability” of this perspective since
a much broader spectrum of execution orders becomes avail-
able through exploiting the logical structure of organizational
constraints. This feature helps to bridge temporary bottlenecks
in the organizational perspective as it was discussed in Section
I.

C. Planning of Process Models

As already mentioned in Section I, the concept of planning
on process models is used to predict problematic situations
in order to avoid them. As an example, Peter as one of the
supervisors, is on vacation. Normally the “Assistant Doctors”
(in XRayDepartment) would consult Peter for the acknowl-
edgement of the preparation of a surgery plan. But as Peter

is not available, the execution of process step PID 2 would
be delayed until he is back from vacation. Our planning
module would predict such bottlenecks and guide the user
in order to avoid them. Whenever a process step is finished,
the planning module calculates potential agents required to
perform upcoming process steps. It would encounter that
through the absence of Peter (this information must be kept in
the data tier) the execution of the process would be hindered.
The planning module would inform a system administrator
about this bottleneck. The system administrator then could -
if it is possible from an application point of view - re-define the
organizational constraint for process step PID 2. For example,
not the direct supervisor but the supervisor of her supervisor
should execute process step PID 2. So, the execution of the
process is not delayed.

As discussed before, the planning module calculates all po-
tential agents that must perform upcoming processes. Not just
bottlenecks are detected by this, but also overload situations

could be encountered. In such a situation the planning com-
ponent would calculate (and recommend) that former process
steps should or should not be performed by specific people
in order to avoid such a overload. For example, we assume
that agents A1 or A2 have to execute a certain process step.
The next process step has to be executed by the supervisor
of the former executor. Let’s assume that S3 is the supervisor
of A1 and A2; furthermore, A2 also has S4 as supervisor. Let’s
further assume that S3 is completely overloaded while S4 is
not occupied at all. Our planning component would detect this
situation and would recommend that A2 instead of A1 should
execute the process step in order to avoid that S3 is the only
agent to execute the next process step. In [33] we detail the
implementation underlying our process modeling and planning
components.

VII. CONCLUSION

In this paper we introduced a novel concept for realizing
the organizational perspective in process management systems.
Organizational constraints are interpreted as constraints that
have an impact on the execution order of process steps. We
first outlined that arbitrary organizational structures can be
defined within our approach. We then described how these
organizational structures can be exploited to improve the exe-
cution of processes by offering the two concepts “re-ordering”
and “planning”. The implementation (ESProNa) makes use of
the Logtalk object-oriented logic programming language to
provide a robust and easily maintainable system.

REFERENCES

[1] H. Smith and P. Fingar, Business Process Management (BPM): The Third
Wave. Meghan-Kiffer Press.

[2] J. Cardoso and W. Van Der Aalst, Handbook of Research on Business
Process Modeling. Hershey, PA: Information Science Reference -
Imprint of: IGI Publishing, 2009.

[3] M. Weske, Business Process Management: Concepts, Languages, Archi-
tectures, 1st ed. Springer, November 2007.

[4] S. Jablonski and C. Bußler, “Workflow-management: Modeling con-
cepts, architecture and implementation,” International Thomson Com-
puter Press, 1996.

[5] D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview
of workflow management: From process modeling to workflow
automation infrastructure,” Distributed and Parallel Databases, vol. 3,
no. 2, pp. 119–153, 1995. [Online]. Available: http://dx.doi.org/10.
1007/BF01277643

[6] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam, “Adaptive process
management with adept2,” in ICDE ’05: Proceedings of the 21st
International Conference on Data Engineering. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 1113–1114.

[7] S. Jablonski and C. Bussler, Workflow Management: Modeling Concepts,
Architecture and Implementation. International Thomson Computer
Press, September 1996.

[8] S. Jablonski, “Functional and behavioral aspects of process modeling in
workflow management systems,” in CON’94: Proceedings of the Ninth
Austrian-informatics conference on Workflow management: challenges,
paradigms and products. Munich, Germany, Germany: R. Oldenbourg
Verlag GmbH, 1994, pp. 113–133.

[9] OASIS. (2010, Mar) Web services business process execution language
version 2.0. [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/
OS/wsbpel-v2.0-OS.html

[10] C. Bußler, Organisationsverwaltung in Workflow Management Systemen.
Dt. Univ.-Verl., Jan 1998.

[11] M. Zur Muehlen, “Organizational management in workflow applications
– issues and perspectives,” Inf. Technol. and Management, vol. 5, no.
3-4, pp. 271–291, 2004.

[12] M. Ford, A. Endpoints, and C. Keller, “Ws-bpel extension for people
(bpel4people), version 1.0,” 2007.

[13] A. Agrawal, “Web Services Human Task (WS-HumanTask), Version
1.0,” 2007.

[14] OASIS Standard. Web service business process execution language
version 2.0. [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.html

[15] E. Bertino, E. Ferrari, and V. Atluri, “The specification and enforcement
of authorization constraints in workflow management systems,” ACM
Trans. Inf. Syst. Secur., vol. 2, no. 1, pp. 65–104, 1999.

[16] F. Casati, S. Castano, M. Fugini, I. Mirbel, and B. Pernici, “Using
patterns to design rules in workflows,” IEEE Transactions on Software
Engineering, vol. 26, pp. 760–785, 2000.

[17] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative
workflows: Balancing between flexibility and support.” Computer Sci-
ence — R&D, vol. 23, no. 2, pp. 99–113, 2009.

[18] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst, “DECLARE: Full
support for loosely-structured processes,” in EDOC’07: Proceedings of
the 11th IEEE International Enterprise Distributed Object Computing
Conference. Washington, DC, USA: IEEE Computer Society, 2007, p.
287.

[19] F. Bacchus and F. Kabanza, “Using temporal logics to express search
control knowledge for planning,” Artif. Intell., vol. 116, no. 1-2, pp.
123–191, 2000.

[20] S. Mukherjee, H. Davulcu, M. Kifer, P. Senkul, and G. Yang,
“Logic based approaches to workflow modeling and verification.”
in Logics for Emerging Applications of Databases, J. Chomicki,
R. van der Meyden, and G. Saake, Eds. Springer, 2003, pp. 167–202.
[Online]. Available: http://dblp.uni-trier.de/db/conf/dagstuhl/lead2003.
html#MukherjeeDKSY03

[21] C. Bock, A. Fokoue, P. Haase, R. Hoekstra, I. Horrocks, A. Ruttenberg,
U. Sattler, and M. Smith, “Owl 2 web ontology language structural
specification and functional-style syntax,” June 2009. [Online].
Available: http://www.w3.org/TR/2009/CR-owl2-syntax-20090611

[22] V. Vassiliadis, J. Wielemaker, and C. Mungall, “Processing OWL2
Ontologies using Thea: An Application of Logic Programming,” in
OWLED, ser. CEUR Workshop Proceedings, R. Hoekstra and P. F. Patel-
Schneider, Eds., vol. 529. CEUR-WS.org, 2009.

[23] S. Goedertier, R. Haesen, and J. Vanthienen, “EM-BrA2CE v0.1: A
vocabulary and execution model for declarative business process mod-
eling,” K.U.Leuven, FETEW Research Report KBI-0728, 2007.

[24] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and
A. P. Barros, “Workflow patterns,” Distrib. Parallel Databases, vol. 14,
no. 1, pp. 5–51, 2003.

[25] W. Aalst, A. H. M. ter Hofstede, and N. Russell. Workflow pattern.
[Online]. Available: http://www.workflowpatterns.com

[26] P. Athena. Flower. [Online]. Available: http://www.pallas-athena.com
[27] B.-S. GmbH. The cosa bpm suite. [Online]. Available: http:

//www.cosa.nl
[28] S. White. (2004, May) Business Process Modeling Notation (BPMN)

— Version 1.0. [Online]. Available: http://www.bpmn.org/Documents/
BPMN V1-0 May 3 2004.pdf

[29] IBM. Websphere mq workflow. [Online]. Available: http://www-
01.ibm.com/software/integration/wmqwf

[30] M. Faerber, S. Jablonski, and S. Meerkamm, “The ProcessNavigator —
Flexible process execution for product development projects,” Interna-
tional Conference on Engineering Design, ICED’09, 2009.

[31] M. Faerber, F. Jochaud, F. Stöber, S. Jablonski, and H. Meerkamm,
“Knowledge oriented Process Design for DfX,” 10th International
Design Conference, 2008.

[32] P. Moura, “Logtalk — Design of an Object-Oriented Logic Program-
ming Language,” Ph.D. dissertation, Department of Computer Science,
University of Beira Interior, Portugal, Sep. 2003.

[33] M. Igler, P. Moura, and S. Jablonski, “ESProNa: Constraint-Based
Declarative Business Process Modeling,” 2010, Third International
Workshop on Dynamic and Declarative Business Processes, DDBP’10.

