
An Ensemble-based Approach to Fast Classification
of Multi-label Data Streams

Xiangnan Kong
Department of Computer Science
University of Illinois at Chicago

Chicago, IL, USA
Email: xkong4@uic.edu

Philip S. Yu
Department of Computer Science
University of Illinois at Chicago

Chicago, IL, USA
Email: psyu@cs.uic.edu

Abstract—Network operators are continuously confronted with
online events, such as online messages, blog updates, etc. Due to
the huge volume of these events and the fast changes of the topics,
it is critical to manage them promptly and effectively. There
have been many softwares and algorithms developed to conduct
automatic classification over these stream data. Conventional
approaches focus on single-label scenarios, where each event can
only be tagged with one label. However, in many stream data,
each event can be tagged with more than one labels. Effective
stream classification systems should be able to consider the
unique properties of multi-label stream data, such as largedata
volumes, label correlations and concept drifts. To addressthese
challenges, in this paper, we propose an efficient and effective
method for multi-label stream classification based on an ensemble
of fading random trees. The proposed model can efficiently
process high-speed multi-label stream data with concept drifts.
Empirical studies on real-world tasks demonstrate that our
method can maintain a high accuracy in multi-label stream
classification, while providing a very efficient solution tothe task.

Index Terms—Data stream, data mining, multi-label classifica-
tion, random tree

I. I NTRODUCTION

Due to the recent advances in computer networks and
data storage, network operators are continuously confronted
with large amount of online events which are produced at
a very high speed. Examples of such online events include
text streams of online news, emails, twitter posts, credit card
transactions, stock market data, network traffic records,etc.
These data are calledstream data. It is important to manage
them promptly and effectively. For example, in email systems,
researchers want to be able to automatically classify vast
amount of incoming emails into different categories, like
spams, personal emails, business emails, important emails,
etc.; In bank systems, people are interested in monitoring the
credit card transactions and classify all the incoming transac-
tions in real-time. Although there have been many softwares
and algorithms developed to conduct automatic classification
over these online events, it remains a challenging task due
to following factors: (1) vast amount of data arrive at high
speed [9]. The whole data can seldom fit into the memory,
while they need to be analyzed in real time. Therefore an
efficient system for online events should be able to process
data in one-pass and use only limited memory to deal with

the potentially infinite data streams; (2) usually, the concepts
within the events can evolve or drift over time [34]. For
example, the behavior of the online users may change over
time depending on various factors. Effective systems for online
events should be able to adapt to the concept changes and
revise itself accordingly. Motivated by these challenges,stream
classificationhas received considerable attention in the last
decade.

In the literature, stream classification problem has been
extensively studied [9], [31], [17], [3], [4]. Conventional
approaches focus on classifying stream data under single-
label settings (binary classification or multi-class classifica-
tion) [17], [31], [13], [18], [33], [3], which assume, explicitly
or implicitly, that each online event can only be assigned with
one class label. However, in many real-world applications,
each online event can be associated with more than one label.
For example, an online news article about ‘Steve Jobs resigns
as Apple CEO’ can be annotated with labels likeIT, legend,
company, etc. The analysis and management of the online
documents can be greatly improved if one can train a model to
automatically tag each document with multiple labels in real
time. This setting is also known as multi-label classification
which aims at designing models to classify each instance into
multiple categories. It has been shown useful in many real-
world applications such as text categorization [24], [28] and
bioinformatics [10].

Formally, the multi-label stream classification problem cor-
responds to training a model to associate each instance in a
high-speed data stream with alabel set in the space of all
possible label sets,i.e. the power set of all labels. The label
set space can be extremely large even with a small number
of possible labels. Multi-label classification is particularly
challenging in data stream scenarios. The reason is that,
conventional multi-label classification approaches work under
the batch settings which assume all the data are able to fit
into the memory and the models can be trained with multiple
passes through the entire dataset. But in stream data, the data
continuously flood in with very high speed, which make it
impossible to be stored in the memory. Stream classification
algorithms should only take one-pass through the data stream
to train the model, and the model should be able to responds
to the stream data in real time.

Despite the value and significance, there is very limited
research on multi-label data stream classification problem.
Some of the existing solutions focus on extending single-
label stream classification approaches to multi-label cases [2],
without addressing some special challenges in multi-labeldata
streams.

If we consider stream mining and multi-label classification
as a whole, the major research challenges for multi-label
stream classification are as follows:

Multiple labels: A multi-label data stream contains multiple
label concepts, and different labels usually have correlations
with each other. One type of label correlations that people
care about in conventional multi-label learning research is the
pairwise relationship between different labels. Althoughmany
previous works have explicitly studied this issue under batch
settings, these approaches cannot be directly applied to stream
data due to the one-pass constraint in stream classification.
Another type of label correlations in multi-label stream data
is the joint sparseness of different labels,i.e., most of the
instances can only have a small number of labels in their label
sets. In other words, the cardinality of each instance’s label set
usually can neither be too large (close to the total number of
possible labels) nor be too small (be zero). The joint sparseness
among multiple labels should be explicitly considered during
the label set prediction.

Stream data: Another challenge in multi-label stream clas-
sification lies in the huge amount data with high speed and
concept drifts. In multi-label data streams, data continuously
flood in with very high speed. An ideal model for these data
should be able to process the data very efficiently in order to
cope with the speed of data stream. What makes the problem
even more interesting and challenging is that the concepts
within the data streams can evolve or drift over time [34].
For example, the meaning of label concepts in the data stream
may change over time due to various reasons. Effective models
for data streams should be able to adapt to the concept changes
and revise itself accordingly.

In this paper, we propose a fast multi-label stream classifi-
cation approach, called Streaming Multi-lAbel Random Trees
(SMART), to address the above issues. More specifically, we
first propose a random-tree based algorithm to keep track
of multiple labels in a data stream while considering the
label correlations. The trees are built at the beginning of the
stream with randomly selected testing variables and random
cutting values on the tree nodes. Thus the tree building process
is highly efficient while consuming constant memories. The
proposed SMART approach is able to efficiently update tree
node’s statistics with the labeled stream data and classifythe
incoming testing data in real-time. We show that in order to
effectively consider the pairwise label correlations and joint
sparseness in multi-label stream classification, it is efficient
and sufficient to collect some simple statistics over the labeled
data in each tree node: (1) the estimated relevance of each
label in each node. (2) the estimated cardinality of the label
sets in each node. Then, multiple random trees are trained as
an ensemble, and final outputs are averaged over all the trees

to improve the generalization abilities of our model. The above
processes are highly efficient, and can easily be implemented
in parallel fashions, since the trees in the ensemble are
independent from each other during both training and testing.
Moreover, in order to handle concept drifts in the stream,
we design a fading factor on each tree node to gradually
reduce the influence of historical data on the statistics of the
node. Empirical studies on real-world multi-label data streams
demonstrate that the proposed method can maintain a high
accuracy in multi-label stream classification, while providing
a very efficient solution to the task.

The rest of the paper is organized as follows. We start by
a brief review on related work of multi-label classification
and data stream classification in Section II. Then Section III
defines the problem of multi-label data stream classification,
and then we propose a multi-label data stream classification
method using a streaming random tree ensemble. Experimen-
tal results are reported in Section IV, and we conclude in
Section V.

II. RELATED WORK

Our work is related to both multi-label classification and
stream classification techniques. We briefly discuss both of
them.

Multi-label learning deals with the classification problem
where each instance can belong to multiple different classes si-
multaneously [27], [25]. Conventional multi-label approaches
are focused on offline settings. One well-know type of ap-
proaches is binary relevance (one-vs-all technique [6]), which
transforms the multi-label problem into multiple binary clas-
sification problems, one for each label. ML-KNN[37] is one
of the binary relevance methods, which extends the lazy
learning algorithm,kNN, to a multi-label version. It employs
label prior probabilities gained from each example’sk nearest
neighbors and usemaximum a posteriori(MAP) principle to
determine label set. Elisseeff and Weston [10] presented a
kernel method RANK -SVM for multi-label classification, by
minimizing a loss function namedranking loss. Extension of
other traditional learning techniques have also been studied,
such as probabilistic generative models [24], [32], decision
trees [7], neural networks [36], maximal margin methods [16],
[20], maximum entropy methods [15], [39] and ensemble
methods[12],etc.

There are also some previous works on multi-label stream
classification problem [2], [26], [35]. The first work [2] builds
an ensemble of classifiers trained on successive data chunks. It
adopts stacked binary relevance model to handle label corre-
lations among multiple labels. Another work on multi-label
stream classification [26] modified the single-label stream
classification approach, Heoffding Tree [9] by extending with
a mulit-label version of entropy, and on each leaf node a
batch multi-label classifier is trained. The latest work on multi-
label stream classification is [35], which focus on the class
imbalance and concept drift problems. A balanced version of
sliding window is used on each class label. Binary relevance
model is adopted with kNN as the base learner.

TABLE I
IMPORTANT NOTATIONS

Symbol Definition

L all candidate labels,L = {l1, · · · , lm}
xi The i-th stream instance
Yi The label set ofxi

yi the binary vector forYi, yi ∈ {0, 1}
|L|

nt the number of random trees in an ensemble
λ The fading factor
d The height of the tree

Node A node of the tree
Node.c the aggregated label relevance vector
Node.n the aggregated number of instances
Node.θ the aggregated cardinality of label sets
Node.t the time stamp of the latest update

Many works have also been proposed to single-label stream
classification problem [2], [26]. There two set of solutions:
single-model based and ensemble based. Single-model based
approaches use new data to incrementally update their model
so that the model can scale to large data volume [9]. These
approaches need to incrementally modify the structure of the
model with complex operations. Ensemble based approaches,
on the other hand, partition the data stream into equal sized
chunks, and train multiple base models on different chunks of
data. Then all the models are combined for prediction. [33],
[23].

We follow a similar strategy to design our classification
model with many random tree ensemble methods in either
single-label stream classification[1] or multi-label batch clas-
sification [38]. But we designed our random tree model to
address the special properties in multi-label stream classifica-
tion problem. Streaming Random Forest[1] builds streaming
decision trees by extending Breiman’s Random Forests[29],
which is focused on single-label data stream classification
problems. Random Decision Tree[11] has also be extended
to multi-label batch classification problems in[38].

III. PROBLEM FORMULATION

A. Multi-label Stream Classification

We first introduce the notations that will be used throughout
this paper. LetX denote the input feature space,X ⊆ R

d,
and L = {l1, · · · , lm} denote the set of all candidate la-
bels. A multi-label data stream is denoted as{(x1, Y1), · · · ,
(xt, Yt) , · · · }, where each data pointxi = (x1

i , · · · , x
d
i) ∈ X

is assigned with a set of labelsYi ⊆ L. The label sets can
also be represented as label vectors{y1, · · · ,yt, · · · }, where

yi =
(

y
(1)
i , · · · , y

(|L|)
i

)

∈ {0, 1}|L|. Hereyji = 1 iff lj ∈ Yi.

Let (xt, Yt) be the current example in the data stream. The
aim of multi-label stream classification is to train a classifier
based on both current and historical multi-label examples
{(x1, Y1), · · · , (xt, Yt)} in the stream. Then the model is used
to predict the label sets of incoming data points in the stream,

i.e., automatically associate each incoming data pointxi with
a label setYi ⊆ L.

Multi-label stream classification is a non-trivial task dueto
the following problems:

(P1) How to effectively predict multiple labels for each stream
instance, while considering label correlations and joint
sparseness in the label set.

(P2) How to design an efficient model to cope with the high
speed data streams while maintaining a high accuracy?
Clearly, it is impractical to put the entire historical data
into the memory, since the large-scale data may result
in running out of memory. An ideal algorithm for multi-
label stream classification should be very fast in training
and testing (with one-pass over the data), and it should
only consume a limited size of memory.

(P3) How to make the model be able to adapt to concept drifts
in multi-label data streams? The potentially obsolete his-
torical data may result in inaccurate predictions. An ideal
model should be able to gradually reduce the influence
of the historical data over time.

In the following sections, we will first introduce the frame-
work for multi-label stream classification. Then, we will pro-
pose an effective and efficient approach based upon streaming
random tree. Moreover, a fading process in our random tree
model is introduced to cope with the concept drifts in multi-
label data streams.

B. The Proposed Framework

We first address the problem (P1) discussed in Section III-A
by defining the multi-label classification as a risk-minimization
problem. Our target is to find an optimal model to predict
multiple labels for each instance. Suppose a multi-label clas-
sification modelh(x) is a mapping functionX → 2L. The
output of the model is a binary vector:

h(x) = (h1(x), · · · , hm(x))

Usually a multi-label classification model also outputs a real-
valued vector, indicating the relevance of each label based
upon a ranking function:

f(x) = (f1(x), · · · , fm(x))

In general, we want to find a model which minimizes a
risk function L(·) over the joint distribution onX × 2L.
The risk function should be able to consider the special
properties in multi-label stream classification. Generally, in
multi-label classification problems, we need to consider two
special properties: (a) the pairwise label correlations; (b) joint
sparseness on each label set.

For property (a), we only care about the pairwise relation-
ship between each pair of labels. Thus, we use a famous loss
function in multi-label learning, calledranking loss[10], as
our risk function. Ranking loss evaluates the performance of a
model’s ranking function based upon the ground-truth label
sets. It is calculated as the average fraction of incorrectly
ordered label pairs:

RankLoss(f(x),y) =
1

|y|(m− |y|)

∑

y(i)>y(j)

I(fi(x) < fj(x))

HereI(π) equals1 if the conditionπ holds and0 otherwise.
RankLoss ∈ [0, 1]. The smaller the value, the better the
performance. It has been prove by [8] that a ranking function
that sorts the labels according to their probability of relevance,
i.e. define the score functionf(x) asfi(x) = Px(y

(i) = 1),
minimize the expected ranking loss. Thus for problem (a),
we only need to estimate the probability of relevance for
each label,Px(y

(i) = 1). Then each label can be ranked
based on the estimated relevance, which can minimize the
expected ranking loss in multi-label classification. We will
future discuss how to effectively estimatePx(y

(i) = 1) for
each label in the next subsection.

For property (b), we need to decide which subset of labels
should be associated with instancex, i.e. h(x). According
to the above ranking function, an optimal label set prediction
should include the top ranked labels based onf(x), where
the only variable we need to estimate is the cardinality of
the predicted label set. Thus the label set prediction problem
becomes a conventional regression problem, where the loss
function is:

Lc(h(x),y) = (|y| − |h(x)|)
2

.
Thus, the proposed framework for multi-label stream clas-

sification is as follows: (1)Ranking: We first learn a ranking
function which estimates the probability of relevance for each
label (fi(x) = Px(y

(i) = 1)). (2)Regression: Then we learn an
additional function to estimate the label set cardinality for each
instance, denoted asθ(x). (3)Label Set Prediction: Then for
each instance, we rank the labels according to the output of the
ranking function, and predict the label set with the top ranked
θ(x) labels. For example, suppose the ranked order of three
labels is (l3¿ l1¿ l2), and the estimated label set cardinality is
2. Then the predicted label set forx would be{l1, l3}.

We chose the above framework for the following reasons:
• The ranking + regression framework is simple yet very

effective in handling multi-label classification problem.
The ranking loss can be minimized, and joint sparseness
of label sets can naturally be solved under this framework.
The joint sparseness of different labels are explicitly
considered within the regression step.

• The ranking + regression framework is highly efficient,
which can cope with the real-time requirement of data
stream scenarios. Both the relevance estimation and
regression problem can be efficiently solved with our
random tree model, as will be discussed in the next
subsection.

C. Multi-label Random Tree

In this section, we address the problem (P2) discussed in
Section III-A by proposing an efficient method to estimate the
label relevance and label set cardinality simultaneously.

SMART Training (nt, d, λ)

Input:
nt: the number of random trees in the ensemble.
d: the height of the tree.
λ: the fading factor.

Initialization:
1 Build nt multi-label random trees:{T1, · · · , Tnt};
2 Build each random tree with heightd;
3 Randomly select testing variable and threshold value

on each tree node;

Training on Data Stream:
4 while new instance(x,y) arrives at timet
5 for each random treeTi

6 TreeUpdate(Ti.root,x,y, t);
7 end

Output:
{Ti} Streaming Multi-label Random Trees.

Fig. 1. Training Process of SMART

TreeUpdate(Node,x,y, t)

Input:
Node: a node of the random tree

x: a train instance in the data stream
y: label vector

Process:
1 Update the statistics ofNode with fading factorλ.
2 Collect information from the current instance:
3 Node.n++;
4 Node.θ = Node.θ + 1⊤y;
5 Node.c = Node.c+ y;
6 Forward the instance to child nodes:
7 if Node.Level = d, stop;
8 Decise which child nodex will traverse
9 Update the child node withTreeUpdate(x,y, t);

Fig. 2. UpdateTree Process

Our approach starts from a mainstream idea for learning
label relevance and regression that builds an ensemble of
multiple random trees [1], [38]. As its name implies, this idea
is about training a set of random trees where tree nodes are
built by randomly selected testing variables and cutting values.

A couple of issues may arise if we directly use these models
to multi-label stream data: (a) the random tree model should
be able to handle multiple label concepts within the data
stream,i.e. the model should be able to estimate relevances
for all labels (ranking) and estimate the label set cardinalities
(regression) simultaneously. (b) the random tree model should
be able to handle the high-speed data stream, with concept
drifts.

To deal with the above issues, we propose the follow-
ing approach, called Streaming Multi-lAbel Random Trees
(SMART). At the beginning of the data stream, we first train
a set of binary random trees with heightd. d is a parameter
of our model corresponding to the tree sizes. In each tree

node, we randomly select a testing feature with a random
splitting value within the valid range. Thus, with each tree
node, the feature spaceX is partitioned into two subspaces.
All the nodes in random trees are trained from the labeled
instances in the stream only.

The multi-label random trees are built at the beginning
of data stream and timely updated over the data stream as
follow: The tree building process starts with all empty tree
nodes. when training data points in the data stream arrive,
each node keeps updating two types of statistics information
for the multiple label data stream: (1) the probabilities oflabel
relevances that traverse through that node, which is similar to
conventional decision trees. (2) the estimated cardinality of the
label sets in that node, which is similar to regression trees.

DEFINITION 1: A node of multi-label random tree for a
set ofm candidate labels{l1, · · · , lm} is defined as follows:
We collect a (m + 3) dimensional simple statistics over
the data stream,i.e., (c, n, θ, t). Suppose there is a set of
multi-label streaming points{(x1, Y1), · · · , (xt, Yt)} traverse
to the node. The entries of each of tree node are defined as
follow:

• For each class labelli, the count of labelli within all
label sets of the streaming points, that traverse through
the node, are maintained in thei-th entry of vectorc, i.e.,
c = (c1, · · · , cm) andcj =

∑t
i=1 y

(j)
i .

• The number of data points that traverse through the node
is maintained inn.

• The sum of the label sets’ cardinalities is maintained inθ.
i.e., θ =

∑t
i=1 |Yi|.

• The latest time stamp for instances, that traverse through
the node, is maintained int.

The above simple statistics are maintained at each tree node,
which are crucial to the success of our method. Each node
maintains the summary information for the multi-label data
points that traverse through the node. Thec, θ and n are
all additive sum over different data points, thus they can be
efficiently updated over data streams.

Training Process: Figure 1 shows the training process of
our multi-label random tree models. The SMART method
starts with all empty nodes, and zero values for all the
statistics variables within the node. As streaming data points
arrive, SMART keeps updating statistic information on each
tree node. Figure 2 shows the process when new instances
traverse to a tree node. The training process of SMART is
highly efficient, with constant time costs for each instance,
O(nt ×m× d).

Multi-label Prediction : Figure 3 shows the classification
process of our multi-label random tree model. When a testing
instance arrives, it is forwarded to each of the random tree
in the ensemble. Each tree node can output two types of
information for the testing instance: (1) the estimated label
relevances ,f(x) = Node.c

Node.n , and (2) the estimated label set
cardinality, Node.θ

Node.n . We only output with the last non-empty

SMART Classify(x)

Input:
{Ti}: Multi-label random trees.

x: a test instance in the data stream.
Process:
1 for each random treeTi

2 Forward instancex to each tree
(pi, θi)← TreePredict(x, Ti.root);

3 end
4 Average the predictions of all random trees

p =
∑

i
pi/nt andθ =

∑
i
θi/nt;

5 Sort all the labels according to their
scoresp in descending order;

6 Let y be the set of first⌊θ + 0.5⌋ labels
in sorted list;

7 return y andp;
Output:

y: the predicted label set;
p: the predicted scores.

Fig. 3. Classification Process of SMART

TreePredict(Node,x)

Input:
Node: a node of the random tree

x: a testing instance in the data stream

Process:
1 if Node is leaf node
2 return : p = Node.c/Node.n andθ = Node.θ/Node.n;
3 Decide which child node (child) will x traverse;
4 if child.n == 0, i.e., child node is empty
5 return : p = Node.c/Node.n andθ = Node.θ/Node.n;
6 else: forwardx to the nodechild
7 return : TreePredict(child,x);

Output:
p vector of label relevances;
θ estimated label set cardinality.

Fig. 4. The Prediction Process of a Single Random Tree

node that the instance traverses on each random tree.
Then, the final outputs forx are computed by averaging over

the ensemble ofnt random trees{T1, · · · , Tnt
}, as shown in

Figure 3.

p =

nt
∑

i=1

pi/nt andθ =

nt
∑

i=1

θi/nt

wherepi denotesTi’s probability outputs forx’s label rele-
vances, andθi denotesTi’s estimated cardinality forx’s label
set.

Then the label set predication forx can be determined by
the following steps: (1) Ranking all labels according to the
final probability values forx in descending order (Line 5);
(2) Predict the top ranked⌊θ+0.5⌋ labels as the label set for
x (Line 6).

D. Handling Concept Drifts

In the previous subsection, our multi-label random tree
approach focused on static data streams without concept drifts.
In this subsection, we address the problem (P3) discussed in
Section III-A, to discuss how to deal with concept drifts in
our proposed SMART approach.

To handle the concept drifts in the data streams, we intro-
duce a fading factor in each tree node to gradually reduce the
influences of historical data. We assume that each instance
is weighted with by afading function, F (·), based upon the
time stampt. Similar to [5], we define the fading function
as follows: Suppose an instancexi with time stampti, and
the current time ist. The weight of instancexi at time t is
Wi(t) = 2−(t−ti)/λ. Whent increases over time, instancexi

gradually turns into historical data and its weight decreases
exponentially witht. Here λ is a parameter of our model,
calledfading factor, indicating the speed of the fading effects.
Generally,λ represents the period of time when the weights
of the instancse will be reduced by half. The higher the value
of λ, the slower the weight of each instance will decay.

Then we can use the fading function to maintain the
weighted sum of version of statistics on each random tree
node, so that the influence of the historical data can be
gradually reduced. Suppose the current time ist, and the
last updated time stamp for a tree nodeNode is Node.t.
When a new instance traverse toNode, we only need to
update the statistics ofNode by multiplying each value with
2−(t−Node.t)/λ. This process is highly efficient, only takes
constant time for each training data.

IV. EXPERIMENTS

In this section, we conduct experiments to examine the per-
formances of SMART in real-world multi-label data streams.

A. Experiment Setup

Data Collections: In order to evaluate the multi-label
stream classification performances, we tested our algorithm on
three real-world data sets as follows: (Summarized in TableII.)

• MediaMill: The first dataset is for video annotation task,
which is part of the MediaMill challenge1 for automated
detection of semantic concepts within the video frame.
This dataset contains (43907) video frames annotated
with 101 label concepts. We use the setting of experi-
ment 1 as described in [30], where each video frame is
represented by 120 visual features.

• TMC2007: The second dataset is for text classification
task, which is based on the competition organized by the
text mining workshop of the 7th SIAM international con-
ference on data mining2. The dataset contains (28,596)
aviation safety reports, each annotated with a subset of
the 22 problem types that appear during flights. Safety
Reports are represented as instances using bag-of-words,

1http://www.science.uva.nl/research/mediamill/challenge/
2http://www.cs.utk.edu/tmw07/

TABLE II
A SUMMARY OF DATASETS USED. |D| DENOTES THE NUMBER OF

INSTANCES; |L| DENOTES THE NUMBER OF CLASSES; |X | DENOTES THE

NUMBER OF DIMENSIONS. ’ LDENS’ DENOTES THE LABEL DENSITY OF
THE DATASET.

Properties

Data set |D| |X | |L| Avg |Y | lDens Domain

MediaMill 43,907 120 101 4.415 0.044 Video
TMC2007 28,596 204 22 2.158 0.098 Text
RCV1-v2 804,414 203 103 3.241 0.031 Text

and we remove the infrequent words that occur in less
than 10% of the documents.

• RCV1-v2: The third dataset is a large-scale dataset for
text classification task. It is based on the well known
benchmark dataset for text classification, Reuters (RCV1)
dataset. We use the topics full set3 that contains (804,414)
news articles. Each article is assigned into a subset of the
103 topics. An detailed description of the RCV1 dataset
can be found in [21].

We generate each dataset into a stream of instances accord-
ing to their original orders. To simulate concept drifts, we
create a new multi-label data stream by shuffling the labels,
i.e., l1 → l2 → · · · → l|L| → l1 for all instances. Then
the new data stream is mixed into the old stream: As the
data stream continues, the two data streams are combined
using percentages(Pold, Pnew) = (100%, 0%), (90%, 10%),
(80%, 20%), · · · , (0%, 100%).

Comparing Methods: We compare the performance of our
approach against two baselines:

• Stream Multi-lAbel Random Tree (SMART): The pro-
posed multi-label stream classification method. The de-
fault parameter settings for SMART are as follows: the
tree heightd = 15; the number of trees in the ensemble
nt = 20; fading factorλ = 200. The sensitivity of the
parameters are discussed later in Section IV-C.

• SMART(static): Our stream multi-label random tree
method without decay,i.e., λ = ∞. All other parameters
are set the same as SMART.

• ML-KNN[37]: A kNN based multi-label classification
method, which is one of the state-of-the-art methods in
offline settings. In order to fit into the stream classification
problem, we adopted an approach, which is similar to
sliding window approaches,i.e., we train a ML-KNN

classifier on the latest chunk of data, and use it to
classify the next chunk of data. Since the data chunk size
can affect the classification performance as well as the
training time cost, here we test the performance of ML-
KNN with different chunk sizes (sliding window sizes).

We used ML-KNN with the above setting for following
reason: Due to the real-time constraint and concept drift in
streaming environment, it is infeasible to use a large training

3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multilabel.html

1 2 3 4 5 6 7 8 9 10
 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Stream (× 4,300 instances)

M
ic

ro
 F

1

SMART
SMART(static)
Mlknn (w=100)
Mlknn (w=200)
Mlknn (w=400)

(a) Micro F1↑ on MediaMill dataset

1 2 3 4 5 6 7 8 9 10
 0.0

 0.1

 0.2

 0.3

 0.4

Stream (× 4,300 instances)

R
an

ki
ng

 L
os

s

SMART
SMART(static)
Mlknn (w=100)
Mlknn (w=200)
Mlknn (w=400)

(b) Ranking Loss↓ on MediaMill dataset

1 2 3 4 5 6 7 8 9 10
 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

Stream (× 80,400 instances)

M
ic

ro
 F

1

SMART
SMART(static)
Mlknn (w=100)
Mlknn (w=200)
Mlknn (w=400)

(c) Micro F1↑ on RCV1-v2 dataset

1 2 3 4 5 6 7 8 9 10
 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

Stream (× 80,400 instances)
R

an
ki

ng
 L

os
s

SMART
SMART(static)
Mlknn (w=100)
Mlknn (w=200)
Mlknn (w=400)

(d) Ranking Loss↓ on RCV1-v2 dataset

1 2 3 4 5 6 7 8 9 10

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

Stream (× 2,800 instances)

M
ic

ro
 F

1

SMART
SMART(static)
Mlknn (w=100)
Mlknn (w=200)
Mlknn (w=400)

(e) Micro F1↑ on TMC2007 dataset

1 2 3 4 5 6 7 8 9 10
 0.1

 0.2

 0.3

 0.4

 0.5

Stream (× 2,800 instances)

R
an

ki
ng

 L
os

s

SMART
SMART(static)
Mlknn (w=100)
Mlknn (w=200)
Mlknn (w=400)

(f) Ranking Loss↓ on TMC2007 dataset

Fig. 5. Performances of multi-label data stream classification. Here “↓” means the smaller the value the better the performance and “↑” means the larger
the value the better the performance.

TABLE III
PROCESSINGRATE. HERE “↓” MEANS THE SMALLER THE VALUE THE BETTER THE PERFORMANCE AND“↑” MEANS THE LARGER THE VALUE THE

BETTER THE PERFORMANCE.

RCV1-v2 MediaMill TMC2007

Rate↑ Time ↓ Rate↑ Time ↓ Rate↑ Time ↓
Method (instance/sec) (sec) (instance/sec) (sec) (instance/sec) (sec)

SMART 6,484 124 5,000 8.6 14,973 1.87
ML-KNN(w=100) 122 6,597 267 150 221 132
ML-KNN(w=200) 115 6,963 227 189 174 161
ML-KNN(w=400) 100 7,990 158 272 137 204

set to train the ML-KNN model. In many data stream classifi-
cation problems, conventional classifiers trained on the latest
data serve as perform better than using more historical datain
an evolving data stream.

Evaluation Metrics: Multi-label classification require dif-
ferent evaluation metrics than conventional single-labelclassi-
fication problems. Here we adopt some metrics used in [10],
[19], [22] to evaluate the multi-label classification performance
in a data stream. Assume we have a multi-label data stream
D containing|D| multi-label instances(xi, Yi), whereYi ⊆ L
(i = 1, · · · , |D|). Let h(xi) ⊆ L denote a multi-label
classifier’s predicted label set forxi andf(xi, k) denote the
classifier’s probability outputs forxi on thek-th label (lk).
We have the following evaluation criteria:

a) Micro F1 [19], [22]: evaluates a classifier’s label set pre-
diction performance, which considers both micro average
of Precision and Recall with equal importance.

MicroF1(h,D) =
2×

∑|D|
i=1 |h(x) ∩ Yi|

∑|D|
i=1 |h(x)|+

∑|D|
i=1 |Yi|

The larger the value, the better the performance.
b) Ranking Loss [10]: evaluates the performance of classi-

fier’s probability outputs or real-value outputsf(xi, k). It
is calculated as the average fraction of incorrectly ordered
label pairs:

RankLoss(f,D) =
1

|D|

|D|
∑

i=1

1

|Yi||Yi|
loss(f,xi, Yi)

Where theYi denotes the complementary set ofYi in L.

loss(f,xi, Yi) =
∑

k∈Yi

∑

k′∈Yi

I(f(xi, k) ≤ f(xi, k
′))

and I(π) equals1 if the conditionπ holds and0 oth-
erwise.RankLoss ∈ [0, 1]. The smaller the value, the
better the performance.

The above criteria evaluate the multi-label classificationper-
formances from two aspects: 1) Ranking Loss: the perfor-
mance of the real-value outputs. 2) Micro F1: the performance
of the label set predictions.

In addition to the classification performances, we also show
the running time of each approach. All experiments are con-
ducted on machines with 24 GB RAM and Intel XeonTMQuad-
Core CPU of 2.27 GHz.

B. Multi-label Classification Performance

To evaluate the multi-label stream classification perfor-
mances, a prequential setting similar to [14] is used, where
we first divide the data stream into chunks of the same size
(100 by default) and each chunk is first used for testing the
model before being used as training data.

The results are summarized in Figure 5. We show the multi-
label classification performances of the compared methods on
three real-world datasets. To show the evaluation result of

TABLE IV
INFLUENCE OF# TREE, nt , ON SMART (MEDIAM ILL DATASET).

Evaluation Criteria

tree Micro F1 ↑ Ranking Loss↓ Time (sec)↓

5 0.457 0.094 2.7
10 0.463 0.087 4.9
15 0.465 0.087 6.9
20 0.463 0.086 8.6
25 0.466 0.085 10.9
30 0.465 0.084 12.8

TABLE V
INFLUENCE OF TREE HEIGHT, d, ON SMART (MEDIAM ILL DATASET).

Evaluation Criteria

Height Micro F1 ↑ Ranking Loss↓ Time (sec)↓

5 0.451 0.092 3.5
10 0.461 0.088 5.5
15 0.463 0.087 8.6
20 0.468 0.085 15.7

TABLE VI
INFLUENCE OF THE FADING FACTOR, λ, ON SMART (MEDIAM ILL

DATASET).

Evaluation Criteria

λ Micro F1 ↑ Ranking Loss↓ Time (sec)↓

100 0.464 0.089 8.3
200 0.463 0.086 8.6
400 0.463 0.082 8.8
800 0.467 0.083 8.7

1600 0.465 0.084 9.6

the compared methods, we report the average performance on
every |D|/10 instances.

Now, we first study the effectiveness of our method in
handling concept-drifting multi-label data streams. Figure 5
indicates that, 1) Our proposed SMART method outperforms
all the other baseline methods in almost all cases. This is
because SMART can effectively handle the concept drifts
within the stream data by reducing the influence of historical
data. Thus it can effectively adapt to concept drifts and make
use of both the latest data in the data stream and some of the
historical data to train the random tree models. This setting
is crucial for streaming environment with concept drifts. 2)
The SMART(static) method, which never reduce the influence
of historical data in the model,i.e. it uses all the historical
data to train the model, can not adjust to the concept drifts in
the data stream. These results support our first intuition, that
SMART method with fading operations can effectively adapt
to concept drifts in evolving data streams.

We further observe that SMART’s performances are better
than our second baseline ML-KNN, with different sliding
window sizes. Although we can still enlarge the window size
of ML-KNN to further improve the classification performances,

however, the training and testing time cost of ML-KNN will
increase accordingly. Thus, we only compare with the above
settings of ML-KNN which can process the high-speed data
streams in real-time. The classification results support our
second intuition thatSMART can effectively keep track of
multiple label concepts within the data stream and can effec-
tively make good multi-label predictions for new streaming
data.

In Table III, we report the running time (training+testing)of
the compared methods on all the datasets. As been shown, our
SMART approach is much more efficient than other baselines
and can process 5,000 - 15,000 data points in each second.
This is because the our random tree approach can speed up
the training process by randomly select testing variable and
splitting values on each node. Our SMART approach is a very
fast one-pass algorithm. It only collect simple statisticsalong
the data stream, without storing any instance in the memory.
Moreover, it is worth mentioning that our SMART approach
takes constant memory cost while processing the data stream.
This is crucial for data stream applications, since no additional
memory will be requested after SMART starting the data
processing.

C. Sensitivity of Parameters

We further study the influences of the parameters on our
SMART method. We compare the classification performance
and the running time of SMART approach with different
settings onnt (the number of trees in the ensemble),d (the
height of each random tree) andλ (fading factor). The average
performances over the whole data stream under each parameter
settings are reported.

Table IV shows the performance of SMART with different
number of trees in the ensemble. Generally, the classification
performances will increase with more trees in the ensemble.
This is desirable, as with all ensemble learning methods,
the performance improves as the number of trees increases.
However, after a certain point (10), there is no significant
improvement. It is worth noting that, in our current implemen-
tation, we sequentially train each random tree in the ensemble,
thus the running time increases whennt becomes larger.
However, our approach is very easy to be fit into parellel
training and testing on multi-core systems, since each random
tree can be trained and tested independently.

Table V shows the performance of SMART with different
tree sizes. Generally, the larger each random tree is, the better
the performance we can get. This is because the accuracy
of label relevance estimation and regression will both be
improved with larger trees. However, larger trees will consume
much larger memory. Thus, in practice, we usually set the
maximium height of random trees asd ≤ 20.

Table VI shows the performance of SMART with different
fading factors. The fading factorλ controls how fast SMART
reduces the influence of historical data. The largerλ is, the
slower the fading process is. We observe that our method is
not quite sensitive to the parameterλ.

V. CONCLUSION

In this paper, we study the multi-label classification problem
for evolving data streams. It is significantly more challenging
than the conventional offline problems and single-label data
stream classification problems because of the properties of
data stream and multiple labels assigned to each instances.
To address these challenges, we propose a one-pass multi-
label data stream classification approach, named Streaming
Multi-lAbel Random Trees (SMART), to efficiently update
model structure and statistics on each tree node over the
multi-label data stream. Then the trained SMART model can
effectively and efficiently predict multiple labels for future
data points. Empirical studies on real-world tasks show that
our multi-label data stream classification approach is very
effective and efficient for multi-label stream classification and
can automatically adapt to concept drifts.

ACKNOWLEDGMENT

This work is supported in part by NSF through grants IIS-
0905215, OISE-0968341, and DBI-0960443.

REFERENCES

[1] H. Abdulsalam, D. Skillicorn, and P. Martin. Classifying evolving data
streams using dynamic streaming random forests. InDEXA, pages 643–
651, Turin, Italy, 2008.

[2] H. Abdulsalam, D. Skillicorn, and P. Martin. Classifying evolving data
streams using dynamic streaming random forest. InFSKD, pages 275–
279, 2009.

[3] C. Aggarwal, J. Han, J. Wang, and P. Yu. On demand classification of
data streams. InKDD, pages 503–508, Seattle, WA, 2004.

[4] C. Aggarwal and P. Yu. LOCUST: An online analytical processing
framework for high dimensional classification of data streams. InICDE,
pages 426–435, Cancun, Mexico, 2008.

[5] C. Agrawal, J. Han, J. Wang, and P. Yu. A framework for projected
clustering of high dimensional data streams. InVLDB, 2004.

[6] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label
scene classification.Pattern Recognition, 37(9):1757–1771, 2004.

[7] F. D. Comité, R. Gilleron, and M. Tommasi. Learning multi-label
altenating decision tree from texts and data. InMLDM, pages 35–49,
Leipzig, Germany, 2003.

[8] K. Dembczynski, W. Cheng, and E. Hullermeier. Bayes-optimal mul-
tilabel classification via probabilistic classifier chains. In ICML, pages
279–286, Haifa, Israel, 2010.

[9] P. Domingos and G. Hulten. Mining high-speed data streams. In KDD,
pages 71–80, Boston, MA, 2000.

[10] A. Elisseeff and J. Weston. A kernel method for multi-labelled
classification. InNIPS, pages 681–687. 2002.

[11] W. Fan, H. Wang, P. S. Yu, and S. Ma. Is random model better? On its
accuracy and efficiency. InICDM, pages 51–58, Melbourne, FL, 2003.

[12] I. Vlahavas G. Tsoumakas. Random k-labelsets: An ensemble method
for multilabel classification. InECML, pages 406–417, Warsaw, Poland,
2007.

[13] J. Gama, R. Rocha, and P. Medas. Accurate decision treesfor mining
high-speed data streams. InKDD, pages 523–528, Washington, DC,
2003.

[14] J. Gama, R. Sebastia, and P. P. Rodrigues. Issues in evaluation of stream
learning algorithm. InKDD, pages 329–338, Paris, France, 2009.

[15] N. Ghamrawi and A. McCallum. Collective multi-label classification.
In CIKM, pages 195–200, Bremen, Germany, 2005.

[16] S. Godbole and S. Sarawagi. Discriminative methods formulti-labeled
classification. InPAKDD, pages 22–30, Sydney, Australia, 2004.

[17] G. Hulten, L. Spencer, and P. Domingos. Mining time changing data
streams. InKDD, pages 97–106, San Francisco, CA, 2001.

[18] R. Jin and G. Agrawal. Efficient decision tree construction on streaming
data. InKDD, pages 571–576, Washington, DC, 2003.

[19] F. Kang, R. Jin, and R. Sukthankar. Correlated label propagation with
application to multi-label learning. InCVPR, pages 1719–1726, New
York, NY, 2006.

[20] H. Kazawa, T. Izumitani, H. Taira, and E. Maeda. Maximalmargin
labeling for multi-topic text categorization. InNIPS, pages 649–656.
2005.

[21] D. D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark
collection for text categorization research.Journal of Machine Learning
Research, 5:361–397, 2004.

[22] Y. Liu, R. Jin, and L. Yang. Semi-supervised multi-label learning by
constrained non-negative matrix factorization. InAAAI, pages 421–426,
Boston, MA, 2006.

[23] M. Masud, J. Gao, L. Khan, and J. Han. A practical approach to classify
evolving data streams: Training with limited amount of labeled data. In
ICDM, pages 929–934, Pisa, Italy, 2008.

[24] A. McCallum. Multi-label text classification with a mixture model
trained by EM. InAAAI’99 Workshop on Text Learning, Orlando, FL,
1999.

[25] J. Read.Scalable Multi-label Classification. PhD thesis, University of
Waikato, 2010.

[26] J. Read, A. Bifet, G. Holmes, and B. Pfahringer. Efficient multi-label
classification for evolving data streams. Technical Report04, University
of Waikato, 2010.

[27] J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for
multi-label classification. InECML, pages 254–269, Bled, Slovenia,
2009.

[28] R. E. Schapire and Y. Singer. Boostexter: a boosting-based system for
text categorization.Machine Learning, 39(2-3):135–168, 2000.

[29] R. E. Schapire and Y. Singer. Random forests.Machine Learning,
45(1):5–32, 2001.

[30] C. Snoek, M. Worring, J. Gemert, J. Geusebroek, and A. Smeulders. The
challenge problem for automated detection of 101 semantic concepts in
multimedia. InACM Multimedia, pages 421–430, New York, NY, 2006.

[31] W. Street and Y. Kim. A streaming ensemble algorithm (SEA) for large-
scale classification. InKDD, pages 377–382, San Francisco, CA, 2001.

[32] N. Ueda and K. Saito. Parametric mixture models for multi-labeled text.
In NIPS, pages 721–728. 2003.

[33] H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting data
streams using ensemble classifiers. InKDD, pages 226–235, Washing-
ton, DC, 2003.

[34] G. Widmer and M. Kubat. Learning in the presence of concept drift
and hidden contexts.Machine Learning, 23(1):69–101, 1996.

[35] E. Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. Vlahavas. Dealing
with concept drift and class imbalance in multi-label stream classifica-
tion. In IJCAI, Barcelona, Spain, 2011.

[36] M.-L. Zhang and Z.-H. Zhou. Multilabel neural networkswith applica-
tions to functional genomics and text categorization.IEEE Transactions
on Knowledge and Data Engineering, 18(10):1479–1493, 2006.

[37] M.-L. Zhang and Z.-H. Zhou. Ml-knn: A lazy learning approach to
multi-label learning.Pattern Recognition, 40(7):2038–2048, 2007.

[38] X. Zhang, Q. Yuan, S. Zhao, W. Fan, W. Zheng, and D. Wang. Multi-
label classification without multi-label cost. InSDM, pages 778–789,
Columbus, OH, 2010.

[39] S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled classification using
maximum entropy method. InSIGIR, pages 274–281, Salvador, Brazil,
2005.

