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Abstract—Network operators are continuously confronted with  the potentially infinite data streams; (2) usually, the apis
online events, such as online messages, blog updates, eteelo  wijthin the events can evolve or drift over time [34]. For
the huge volume of these events and the fast changes of the il oy ample, the behavior of the online users may change over
it is critical to manage them promptly and effectively. There . - . . .
have been many softwares and algorithms developed to conduc time depending on various factors. Effective systems fdinen
automatic classification over these stream data. Conventiml €VeNnts should be able to adapt to the concept changes and
approaches focus on single-label scenarios, where each mvean revise itself accordingly. Motivated by these challengégam
only be tagged with one label. However, in many stream data, classificationhas received considerable attention in the last
each event can be tagged with more than one labels. Effectivedecade_

stream classification systems should be able to consider the In the literat t lassificati bl h b
unique properties of multi-label stream data, such as largedata n the literature, stream classincauon probiem has been

volumes, label correlations and concept drifts. To addresshese €xtensively studied [9], [31], [17], [3], [4]. Conventioha
challenges, in this paper, we propose an efficient and efféet approaches focus on classifying stream data under single-
methoq for multi-label stream classification based on an ergmble label settings (binary classification or multi-class difss-
of fading _random trees. The proposed mod_el can efflc[ently tion) [17], [31], [13], [18], [33], [3], which assume, explily
process high-speed multi-label stream data with concept dfts. - L h . .
Empirical studies on real-world tasks demonstrate that our ©F implicitly, that each onllne_ event can only be aSS|gneﬂi1_W|
method can maintain a high accuracy in multi-label stream ONe class label. However, in many real-world applications,
classification, while providing a very efficient solution tothe task. each online event can be associated with more than one label.
For example, an online news article about ‘Steve Jobs rssign
. Index Terms—Data stream, data mining, multi-label classifica- as Apple CEO’ can be annotated with labels lie legend
tion, random tree . .
company etc. The analysis and management of the online
documents can be greatly improved if one can train a model to
automatically tag each document with multiple labels in rea
Due to the recent advances in computer networks atiche. This setting is also known as multi-label classifizati
data storage, network operators are continuously corddontvhich aims at designing models to classify each instanae int
with large amount of online events which are produced atultiple categories. It has been shown useful in many real-
a very high speed. Examples of such online events includerld applications such as text categorization [24], [28H a
text streams of online news, emails, twitter posts, crealitic bioinformatics [10].
transactions, stock market data, network traffic recoets, Formally, the multi-label stream classification problent-co
These data are callestream datalt is important to manage responds to training a model to associate each instance in a
them promptly and effectively. For example, in email systemhigh-speed data stream withlabel setin the space of all
researchers want to be able to automatically classify vamissible label sets,e. the power set of all labels. The label
amount of incoming emails into different categories, likeet space can be extremely large even with a small number
spams, personal emails, business emails, important emails possible labels. Multi-label classification is partaty
etc; In bank systems, people are interested in monitoring tieballenging in data stream scenarios. The reason is that,
credit card transactions and classify all the incominggs@n conventional multi-label classification approaches wankler
tions in real-time. Although there have been many softwarédse batch settings which assume all the data are able to fit
and algorithms developed to conduct automatic classifinatiinto the memory and the models can be trained with multiple
over these online events, it remains a challenging task dpasses through the entire dataset. But in stream data, the da
to following factors: (1) vast amount of data arrive at higleontinuously flood in with very high speed, which make it
speed [9]. The whole data can seldom fit into the memoiliywmpossible to be stored in the memory. Stream classification
while they need to be analyzed in real time. Therefore abgorithms should only take one-pass through the datarstrea
efficient system for online events should be able to processtrain the model, and the model should be able to responds
data in one-pass and use only limited memory to deal with the stream data in real time.

I. INTRODUCTION



Despite the value and significance, there is very limiteid improve the generalization abilities of our model. Thewab
research on multi-label data stream classification probleprocesses are highly efficient, and can easily be implerdente
Some of the existing solutions focus on extending singléz parallel fashions, since the trees in the ensemble are
label stream classification approaches to multi-labelsf®e independent from each other during both training and tgstin
without addressing some special challenges in multi-ldagd  Moreover, in order to handle concept drifts in the stream,
streams. we design a fading factor on each tree node to gradually

If we consider stream mining and multi-label classificatioreduce the influence of historical data on the statisticshef t
as a whole, the major research challenges for multi-labebde. Empirical studies on real-world multi-label dataatns
stream classification are as follows: demonstrate that the proposed method can maintain a high

Multiple labels: A multi-label data stream contains multipleaccuracy in multi-label stream classification, while pobirg
label concepts, and different labels usually have coimelat a very efficient solution to the task.
with each other. One type of label correlations that peopleThe rest of the paper is organized as follows. We start by
care about in conventional multi-label learning reseasctné a brief review on related work of multi-label classification
pairwise relationship between different labels. Althoungany and data stream classification in Section Il. Then Sectibn I
previous works have explicitly studied this issue undechatdefines the problem of multi-label data stream classificatio
settings, these approaches cannot be directly appliedganst and then we propose a multi-label data stream classification
data due to the one-pass constraint in stream classificatiorethod using a streaming random tree ensemble. Experimen-
Another type of label correlations in multi-label streamalatal results are reported in Section IV, and we conclude in
is the joint sparseness of different labelg., most of the Section V.
instances can only have a small number of labels in theil labe
sets. In other words, the cardinality of each instance’sllabt
usually can neither be too large (close to the total number ofOur work is related to both multi-label classification and
possible labels) nor be too small (be zero). The joint spese stream classification techniques. We briefly discuss both of
among multiple labels should be explicitly considered dgri them.
the label set prediction. Multi-label learning deals with the classification problem

Stream data: Another challenge in multi-label stream claswhere each instance can belong to multiple different ckasse
sification lies in the huge amount data with high speed amdultaneously [27], [25]. Conventional multi-label appcbhas
concept drifts. In multi-label data streams, data contirslyp are focused on offline settings. One well-know type of ap-
flood in with very high speed. An ideal model for these dataroaches is binary relevance (one-vs-all technique [6fjictv
should be able to process the data very efficiently in order t@nsforms the multi-label problem into multiple binarnasi
cope with the speed of data stream. What makes the problsification problems, one for each label.LMKNN[37] is one
even more interesting and challenging is that the concepfsthe binary relevance methods, which extends the lazy
within the data streams can evolve or drift over time [34]earning algorithmkNN, to a multi-label version. It employs
For example, the meaning of label concepts in the data strekabel prior probabilities gained from each exampleisearest
may change over time due to various reasons. Effective rmodetighbors and usmaximum a posteriofMAP) principle to
for data streams should be able to adapt to the concept chardgtermine label set. Elisseeff and Weston [10] presented a
and revise itself accordingly. kernel method RNK-svm for multi-label classification, by

In this paper, we propose a fast multi-label stream classifitinimizing a loss function namednking loss Extension of
cation approach, called Streaming Multi-lAbel Random $reether traditional learning techniques have also been et di
(SMART), to address the above issues. More specifically, wach as probabilistic generative models [24], [32], dedisi
first propose a random-tree based algorithm to keep traickes [7], neural networks [36], maximal margin methodd,[16
of multiple labels in a data stream while considering thg0], maximum entropy methods [15], [39] and ensemble
label correlations. The trees are built at the beginninghef t methods[12]etc.
stream with randomly selected testing variables and randomThere are also some previous works on multi-label stream
cutting values on the tree nodes. Thus the tree buildinggsc classification problem [2], [26], [35]. The first work [2] Bds
is highly efficient while consuming constant memories. Than ensemble of classifiers trained on successive data cHtinks
proposed SMART approach is able to efficiently update treelopts stacked binary relevance model to handle label corre
node’s statistics with the labeled stream data and clais#y lations among multiple labels. Another work on multi-label
incoming testing data in real-time. We show that in order tstream classification [26] modified the single-label stream
effectively consider the pairwise label correlations aaihtj classification approach, Heoffding Tree [9] by extendinghwi
sparseness in multi-label stream classification, it is iefiic a mulit-label version of entropy, and on each leaf node a
and sufficient to collect some simple statistics over theledb batch multi-label classifier is trained. The latest work aultin
data in each tree node: (1) the estimated relevance of edalbel stream classification is [35], which focus on the class
label in each node. (2) the estimated cardinality of the llabienbalance and concept drift problems. A balanced version of
sets in each node. Then, multiple random trees are trainedshding window is used on each class label. Binary relevance
an ensemble, and final outputs are averaged over all the treexlel is adopted with KNN as the base learner.

II. RELATED WORK



TABLE | : : : : . o
IMPORTANT NOTATIONS i.e., automatically associate each incoming data psimvith

a label sety; C L.
Multi-label stream classification is a non-trivial task doe
the following problems:

Symbol  Definition

ii ?I:]gi?g'gﬁfaﬁﬁﬁlsﬁ;éh"” rbm} (P1) How to effect.ively pre_dict. multiple labels fqr eachestm _

Y; The label set ofe; instance, while considering label correlations and joint
i the binary vector foi¥;, y; € {0, 1}/€! sparseness in the label set.

ne the number of random trees in an ensemble  (P2) How to design an efficient model to cope with the high
A The fading factor speed data streams while maintaining a high accuracy?
d The height of the tree Clearly, it is impractical to put the entire historical data
Node A node of the tree into the memory, since the large-scale data may result
Node.c  the aggregated label relevance vector in running out of memory. An ideal algorithm for multi-

Node.n the aggregated number of instances
Node.f  the aggregated cardinality of label sets
Node.t  the time stamp of the latest update

label stream classification should be very fast in training
and testing (with one-pass over the data), and it should
only consume a limited size of memory.

(P3) How to make the model be able to adapt to concept drifts
in multi-label data streams? The potentially obsolete his-
torical data may result in inaccurate predictions. An ideal

Many works have also been proposed to single-label stream mode| should be able to gradually reduce the influence
classification problem [2], [26]. There two set of solutions  of the historical data over time.

single-model based and ensemble based. Single-model basef
approaches use new data to incrementally update their mo\%ﬂ(
so that the model can scale to large data volume [9]. The
approaches need to incrementally modify the structure ef t
model with complex ope_r_at|0ns. Ensemble ba_SEd approa‘?*]% del is introduced to cope with the concept drifts in multi-
on the other hand, partition the data stream into equal size&llo| data streams.

chunks, and train multiple base models on different churiiks o

data. Then all the models are combined for prediction. [33}. The Proposed Framework

[23].

We follow a similar strategy to design our classificatio%
model with many random tree ensemble methods in eit
single-label stream classification[1] or multi-label batdas-
sification [38]. But we designed our random tree model fication modelh(z) is a mapping functiont’ — 2£. The
address the special properties in multi-label stream ifileess output of the model is a binary vector:
tion problem. Streaming Random Forest[1] builds streaming
decision trees by extending Breiman’s Random Forests[29], h(z) = (hi(x), -, hm(x))

which is focused on single-label data stream classification

problems. Random Decision Tree[11] has also be extenddgually a multi-label classification model also outputs al-re
to multi-label batch classification problems in[38]. valued vector, indicating the relevance of each label based

upon a ranking function:

f(@) = (fr(@), -, fm(2))

o ) ) In general, we want to find a model which minimizes a
We first introduce the notations that will be used throughopt function L(-) over the joint distribution on¥ x 2%.

- i d
this paper. Lett’ denote the input feature spack, C R, The risk function should be able to consider the special

the following sections, we will first introduce the frame-
for multi-label stream classification. Then, we willopr
Sse an effective and efficient approach based upon strgamin
ndom tree. Moreover, a fading process in our random tree

We first address the problem (P1) discussed in Section IlI-A
defining the multi-label classification as a risk-miniatinn
oblem. Our target is to find an optimal model to predict
multiple labels for each instance. Suppose a multi-labesd-cl

I1l. PROBLEM FORMULATION

A. Multi-label Stream Classification

and £ = {l;,"' ,lm} denote the set of all candidate |a'properties in multi-label stream classification. Gengralh

bels. A multi-label data stream |s.denotedl{43:1,Y1d), " multi-label classification problems, we need to consides tw
(®1,Y1),--- }, where each data point; = (z;,---,27) € X gpecial properties: (a) the pairwise label correlatiohjgint

is assigned with a set of label§ C L. The label sets can sparseness on each label set.

also be (rl?presen(tli(lj) as label vectpgs, - -~ , s, T }, where " £or property (a), we only care about the pairwise relation-
Yi = (yi Y, ) e {0, 1}~ Herey! = 1iff I; € V.. ship between each pair of labels. Thus, we use a famous loss

Let (z,Y;) be the current example in the data stream. Thanction in multi-label learning, calledanking loss[10], as
aim of multi-label stream classification is to train a cléiesi our risk function. Ranking loss evaluates the performari@e o
based on both current and historical multi-label examplesodel's ranking function based upon the ground-truth label
{(x1,Y1), -+, (x,Y:)} in the stream. Then the model is usedets. It is calculated as the average fraction of incomrectl
to predict the label sets of incoming data points in the streaordered label pairs:



SMART Training (n, d, \)

1

RankLoss(f(x),y) = |yl (m — |y

Input:
Z I(fi(m) < fj(fc)) n¢. the number of random trees in the ensemble.
y(O >y d: the height of the tree.

Here I () equalsl if the condition7 holds and) otherwise. A: the fading factor.
RankLoss € [0,1]. The smaller the value, the better the Initialization:

performance. It has been prove by [8] that a ranking function 1 BuildBﬁtil?ggg*a?aeriJgrmd?rrgetﬁﬁﬁ%éiéﬁ{ Tt}
.that SO.”S the labels accor<_j|ng to their probability 8‘;V&me’ 3 Randomly select testing variable and threshold value
i.e. define the score functiotf(x) as fi(x) = Pr(y\" = 1), on each tree node:

minimize the expectgd ranking loss. Th_us for problem (a), Training on Data Stream:

we only need to estimate the probability of relevance for 4 whiie new instance(x, y) arrives at timet
each label,P,(y(¥ = 1). Then each label can be ranked 5 for each random treg;

based on the estimated relevance, which can minimize the 6  TreeUpdate(T;.root, z,y,t);
expected ranking loss in multi-label classification. Wel wil 7end

future discuss how to effectively estimafe,(y) = 1) for Output: . .
each label in the next subsection. {T;} Streaming Multi-label Random Trees.
For property (b), we need to decide which subset of labels Fig. 1. Training Process of SMART

should be associated with instange i.e. h(x). According
to the above ranking function, an optimal label set predicti
should include the top ranked labels based fdm), where
the only variable we need to estimate is the cardinality of TreeUpdate(Node,x,y,t)

the predicted label set. Thus the label set prediction prabl Input:
becomes a conventional regression problem, where the loss Node: a node of the random tree
function is: a: a train instance in the data stream
y: label vector
Le(h(@).y) = (ly| - |h(@)])* Process:

1 Update the statistics aVode with fading factor\.
. 2 Collect information from the current instance:
Thus, the proposed framework for multi-label stream clas- 3 Node.n++;

sification is as follows: (1Ranking We first learn a ranking 4 Node.d = Node.§ + 1" y;

function which estimates the probability of relevance facke S Node.c = Node.c +y; .

label (f;(z) = P.(y¥ = 1)). (2)RegressionThen we learn an g Fon/\i/? rﬁ]égi g‘:ﬁ?? ;Osﬁgllq nodes:

additional function to estimate the label set cardinalitydach 3 Decise which child nogé will traverse
instance, denoted aKx). (3)Label Set PredictionThen for 9 Update the child node witfireeUpdate(z, y, t);
each instance, we rank the labels according to the outpbeof t

ranking function, and predict the label set with the top ethk
6(x) labels. For example, suppose the ranked order of three
labels is (3¢ [1¢ 12), and the estimated label set cardinality is
2. Then the predicted label set farwould be{l;,[3}.

Fig. 2. UpdateTree Process

We chose the above framework for the following reasons: Our approach starts from a mainstream idea for learning
« The ranking + regression framework is simple yet veriabel relevance and regression that builds an ensemble of

effective in handling multi-label classification problemmultiple random trees [1], [38]. As its name implies, thigad

The ranking loss can be minimized, and joint sparseng§sabout training a set of random trees where tree nodes are
of label sets can naturally be solved under this frameworlilt by randomly selected testing variables and cuttinges
The joint sparseness of different labels are explicitly A couple of issues may arise if we directly use these models
considered within the regression step. to multi-label stream data: (a) the random tree model should
The ranking + regression framework is highly efficientpe able to handle multiple label concepts within the data
which can cope with the real-time requirement of datgfream,i.e. the model should be able to estimate relevances
stream scenarios. Both the relevance estimation af@d all labels (ranking) and estimate the label set cardieal
regression problem can be efficiently solved with oufregression) simultaneously. (b) the random tree modellgho
random tree model, as will be discussed in the neke able to handle the high-speed data stream, with concept
subsection. drifts.

To deal with the above issues, we propose the follow-

C. Multi-label Random Tree ing approach, called Streaming Multi-lAbel Random Trees

In this section, we address the problem (P2) discussed(BMART). At the beginning of the data stream, we first train

Section IlI-A by proposing an efficient method to estimate tha set of binary random trees with heightd is a parameter
label relevance and label set cardinality simultaneously. of our model corresponding to the tree sizes. In each tree



node, we randomly select a testing feature with a random SMART Classify(x)

splitting value within the valid range. Thus, with each tree Input:

node, the feature spack is partitioned into two subspaces. {Ti}: Multi-label random trees.

All the nodes in random trees are trained from the labeled : atestinstance in the data stream.
instances in the stream only. Process:

. . _— 1 for each random treg;

The multi-label ran.dom trees are built at the beginning 2 Forward instance: to each tree
of data stream and timely updated over the data stream as (pi,0;) < TreePredict(x, T;.root);
follow: The tree building process starts with all empty tree 3 end o
nodes. when training data points in the data stream arrive, 4 Average the predictions of all random trees
each node keeps updating two types of statistics informatio p=>;pi/re andd =3, 0:/n;

. - S 5 Sort all the labels according to their
for the multiple label data stream: (1) the probap|llt|_e$ac_bfe.I scoresp in descending order;
relevances that traverse through that node, which is sirtdla 6 Lety be the set of firs{d + 0.5] labels
conventional decision trees. (2) the estimated cardinafithe in sorted list;
label sets in that node, which is similar to regression trees (7) retqrn y andp;

DEFINITION 1: A node of multi-label random tree for a utput:

y: the predicted label set;

set of m candidate label§ly, - -- ,l,,} is defined as follows: p.  the predicted scores.

We collect a(m + 3) dimensional simple statistics over
the data streami.e., (¢,n,6,t). Suppose there is a set of

Fig. 3. Classification Process of SMART

multi-label streaming point$§(xy, Y1), - -, (x+, Y:)} traverse
to the node. The entries of each of tree node are defined as
follow:

TreePredict(Node, x)

e For each class labdl, the count of labell; within all -
label sets of the streaming points, that traverse througH"Put

L . ) . Node: a node of the random tree
the node, are maintained in theth entry of vectore, i.e, 2 a testing instance in the data stream

c=(c1, -+ ,¢p) ande; = 2521 ygj). Process:
. The_ nu_mber. of data points that traverse through the nodq it node is leaf node
is maintained inn. 2 return: p = Node.c/Node.n andf = Node.0/Node.n;
e The sum of the label sets’ cardinalities is maintained.in 3 Decide which child nodectld) will « traverse;
ie 0— Zt i 4 if child.n == 0, i.e,, child node is empty
YT L=l 1 ) 5 return: p = Node.c/Node.n andf = Node.0/Node.n;
e The latest time stamp for instances, that traverse througls else forward  to the nodechild
the node, is maintained ih 7 return : TreePredict(child, x);
Output:

The above simple statistics are maintained at each tree node?  Vvector of label relevances;
which are crucial to the success of our method. Each node ! ©stimated label set cardinality.
maintains the summary information for the multi-label data Fig. 4. The Prediction Process of a Single Random Tree
points that traverse through the node. Thef and n are
all additive sum over different data points, thus they can be
efficiently updated over data streams.

Training Process Figure 1 shows the training process ofode that the instance traverses on each random tree.

our multi-label random tree models. The SMART method Then, the final outputs far are computed by averaging over

starts with all empty nodes, and zero values for all th§e ensemble of, random tree§ Ty, - , Ty, }, as shown in
statistics variables within the node. As streaming dataigoi g e 3, ooy

arrive, SMART keeps updating statistic information on each e e
tree node. Figure 2 shows the process when new instances p= Zpi/”t andf = Zei/”t
=1 i=1

traverse to a tree node. The training process of SMART is
highly efficient, with constant time costs for each instance
O(ny x m x d). where p; denotesT;’s probability outputs forz’s label rele-

. . , ... vances, and; denotesl;'s estimated cardinality fox's label
Multi-label Prediction : Figure 3 shows the classmcatlonSet

process of our multi-label random tree model. When a testing.llhen the label set predication far can be determined by
!nstﬁnce arrlv%sl, 'tE'S frc])r\t/varded 50 each Oft thte trandtom tr% following steps: (1) Ranking all labels according to the
e e o0 QWP 1, UDE% e probabity value fors i descending order (Line 5
relevances f(z) — X2dee and (2) the estimated label set(z) Predict the top rankef¥ + 0.5| labels as the label set for

) ’ Node.n’ . Line 6).
cardinality, {246 \We only output with the last non-empty” ( )




D. Handling Concept Drifts

In the previous subsection, our multi-label random tre
approach focused on static data streams without concdst. dri

In this subsection, we address the problem (P3) discussed in

TABLE Il

A SUMMARY OF DATASETS USED |D| DENOTES THE NUMBER OF
ANSTANCES, |£| DENOTES THE NUMBER OF CLASSES|.X'| DENOTES THE
NUMBER OF DIMENSIONS 'LDENS' DENOTES THE LABEL DENSITY OF

THE DATASET.

Section 1lI-A, to discuss how to deal with concept drifts in Properties

our proposed SMART apprpach. ) Data set D] |X| |£] Avgly| IDens  Domain
To hand[e the con_cept drifts in the data streams, we intro= vedaMil  43.907 120 101 4415 0044 Video

duce a fading factor in each tree node to gradually reduce the, 007 28596 204 22 2158 0.098 Text

influences of historical data. We assume that each instancercviv2 804,414 203 103 3.241 0.031 Text

is weighted with by aading function F(-), based upon the
time stampt. Similar to [5], we define the fading function
as follows: Suppose an instanag with time stampt;, and
the current time ig. The weight of instance:; at timet is
W;(t) = 2=(=t)/> Whent increases over time, instanag
gradually turns into historical data and its weight decesas

and we remove the infrequent words that occur in less
than 10% of the documents.

RCV1-v2: The third dataset is a large-scale dataset for
text classification task. It is based on the well known

exponentially with¢. Here )\ is a parameter of our model,
calledfading factor indicating the speed of the fading effects.
Generally,A represents the period of time when the weights

of the instancse will be reduced by half. The higher the value 103 topics. An detailed description of the RCV1 dataset
of A, the slower the weight of each instance will decay. can be found in [21].

Then we can use the fading function to maintain the \ye generate each dataset into a stream of instances accord-
weighted sum of version of statistics on each random &gy 1, their original orders. To simulate concept drifts, we
node, so that the influence of the historical data can Rfeate a new multi-label data stream by shuffling the labels,
gradually reduced. Suppose the current timet,isand the ie, s — Iy — -~ — I — I for all instances. Then
last updated time stamp for a tree nofl@de is Nodet. he new data stream is mixed into the old stream: As the
When a new instance traverse fode, we only need 10 ya15 stream continues, the two data streams are combined

update the statistics dVode by multiplying each value with «ing percentage P — (100%.0%). (90%.10%
2~ (t=Node.t)/A " This process is highly efficient, only takes(80(7? on%) ,.,g((s)%m{oon%\s)_ (100%,0%), (90%, 10%)

constant time for each training data.

benchmark dataset for text classification, Reuters (RCV1)
dataset. We use the topics full $état contains (804,414)
news articles. Each article is assigned into a subset of the

Comparing Methods: We compare the performance of our
approach against two baselines:

In this section, we cqnduct experimenﬁs to examine the Per-. Siream Multi-lAbel Random Tree (SMART): The pro-
formances of SMART in real-world multi-label data streams. posed multi-label stream classification method. The de-
fault parameter settings for SMART are as follows: the
tree heightd = 15; the number of trees in the ensemble
ny = 20; fading factorA = 200. The sensitivity of the
parameters are discussed later in Section IV-C.

SMART (static): Our stream multi-label random tree
method without decay,e., A = co. All other parameters
are set the same as SMART.

ML-KNN[37]: A kNN based multi-label classification
method, which is one of the state-of-the-art methods in

IV. EXPERIMENTS

A. Experiment Setup

Data Collections: In order to evaluate the multi-label
stream classification performances, we tested our algorith
three real-world data sets as follows: (Summarized in THhle

« MediaMill: The first dataset is for video annotation task,
which is part of the MediaMill challendefor automated
detection of semantic concepts within the video frame. o
This dataset contains (43907) video frames annotated

with 101 label concepts. We use the setting of experi-
ment 1 as described in [30], where each video frame is
represented by 120 visual features.

« TMC2007: The second dataset is for text classification
task, which is based on the competition organized by the
text mining workshop of the 7th SIAM international con-
ference on data minirfg The dataset contains (28,596)

offline settings. In order to fit into the stream classificatio
problem, we adopted an approach, which is similar to
sliding window approached,e., we train a M.-KNN
classifier on the latest chunk of data, and use it to
classify the next chunk of data. Since the data chunk size
can affect the classification performance as well as the
training time cost, here we test the performance af-M

aviation safety reports, each annotated with a subset of KNN with different chunk sizes (sliding window sizes).
the 22 problem types that appear during flights. SafetyWe used M-kNN with the above setting for following
Reports are represented as instances using bag-of-wordason: Due to the real-time constraint and concept drift in

streaming environment, it is infeasible to use a large ingin
http://www.science.uva.nl/research/mediamill/chadie/

2http:/iwww.cs.utk.edu/tmw07/ Shttp://www.csie.ntu.edu.twécjlin/libsvmtools/datasets/multilabel.html
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Fig. 5. Performances of multi-label data stream classifinatHere “,” means the smaller the value the better the performance &hdeans the larger
the value the better the performance.

TABLE Il
PROCESSINGRATE. HERE"]” MEANS THE SMALLER THE VALUE THE BETTER THE PERFORMANCE AND'1” MEANS THE LARGER THE VALUE THE
BETTER THE PERFORMANCE

RCV1-v2 MediaMill TMC2007
Rate 1 Time | Ratet Time | Ratet Time |
Method (instance/sec)  (sec) (instance/sec)  (sec) (instange/sdsec)
SMART 6,484 124 5,000 8.6 14,973 1.87
ML-KNN(w=100) 122 6,597 267 150 221 132
ML-KNN(w=200) 115 6,963 227 189 174 161

ML-KNN(w=400) 100 7,990 158 272 137 204




. - TABLE IV
set to train the M-KNN model. In many data stream classifi-  |yrLuence oF# TREE, ni, ON SMART (MEDIAMILL DATASET).

cation problems, conventional classifiers trained on thesta
data serve as perform better than using more historicalidata

an evolving data stream. Evaluation Criteria
#tree Micro F11T Ranking Loss, Time (sec)

Evaluation Metrics: Multi-label classification require dif- 5 0.457 0.094 2.7
ferent evaluation metrics than conventional single-|aetsi- 10 0.463 0.087 4.9
fication problems. Here we adopt some metrics used in [10], ;g 8:322 8:822 g:g
[19], [22] to evaluate the multi-label classification perfance 25 0.466 0.085 10.9
in a data stream. Assume we have a multi-label data stream 30 0.465 0.084 12.8
D contalnlng|D| multi-label instance$x;, Y;), whereY; C L
(¢ = 1,---,|D|). Let h(xz;) C L denote a multi-label TABLE V

er . INFLUENCE OF TREE HEIGHTd, ON SMART (MEDIAMILL DATASET).
classmers predicted label set far; and f(x;, k) denote the T ( )

classifier's probability outputs fox; on the k-th label ().
We have the following evaluation criteria:

a) Micro F1 [19], [22]: evaluates a classifier’s label set-pre
diction performance, which considers both micro average

Evaluation Criteria
Height Micro F11 Ranking Loss| Time (sec))

o . : 5 0.451 0.092 35
of Precision and Recall with equal importance. 10 0.461 0.088 5.5
5 Z‘D‘ h(z) Y 15 0.463 0.087 8.6
. X D e )NY; 2 0.468 0.085 15.7
MicroF1(h,D) = D] =1 D] 0
> @)+ 325 Vil
TABLE VI
The larger the value, the better the performance. INFLUENCE OF THE FADING FACTOR A\, ON SMART (MEDIAMILL
b) Ranking Loss [10]: evaluates the performance of classi- DATASET).

fier's probability outputs or real-value outputéz;, k). It
is calculated as the average fraction of incorrectly ordere

Evaluation Criteria

label pairs:
D) A Micro F1 1 Ranking Loss| Time (sec)
D
1 100 0.464 0.089 8.3
RankLoss(f, D) = @ Z —Y ? lOSS(f, i, }/7,) 200 0.463 0.086 8.6
i=1 Yal[Yi] 400 0.463 0.082 8.8
_ . 800 0.467 0.083 8.7
Where theY; denotes the complementary setYgfin L. 1600 0.465 0.084 9.6
ZOSS fv T, Y; z Z Z -7317 < f(mm ))
keYi Y,

the compared methods, we report the average performance on
and I(w) equalsl if the condition7 holds and0 oth- every|D|/10 instances.
erwise. RankLoss € [0,1]. The smaller the value, the Now, we first study the effectiveness of our method in
better the performance. handling concept-drifting multi-label data streams. Fig5
The above criteria evaluate the multi-label classificagen- indicates that, 1) Our proposed SMART method outperforms
formances from two aspects: 1) Ranking Loss: the perfal the other baseline methods in almost all cases. This is
mance of the real-value outputs. 2) Micro F1: the perforneanbecause SMART can effectively handle the concept drifts
of the label set predictions. within the stream data by reducing the influence of histdrica
In addition to the classification performances, we also shadata. Thus it can effectively adapt to concept drifts and enak
the running time of each approach. All experiments are conse of both the latest data in the data stream and some of the
ducted on machines with 24 GB RAM and Intel Xé¥iQuad- historical data to train the random tree models. This sgttin

Core CPU of 2.27 GHz. is crucial for streaming environment with concept drift3. 2
) o The SMART (static) method, which never reduce the influence
B. Multi-label Classification Performance of historical data in the model,e. it uses all the historical

To evaluate the multi-label stream classification perfodata to train the model, can not adjust to the concept drifts i
mances, a prequential setting similar to [14] is used, whelfee data stream. These results support our first intuitios, t
we first divide the data stream into chunks of the same siZMART method with fading operations can effectively adapt
(100 by default) and each chunk is first used for testing the concept drifts in evolving data streams.
model before being used as training data. We further observe that SMART’s performances are better

The results are summarized in Figure 5. We show the multihan our second baseline UWKNN, with different sliding
label classification performances of the compared methondswindow sizes. Although we can still enlarge the window size
three real-world datasets. To show the evaluation result @fML-KNN to further improve the classification performances,



however, the training and testing time cost of MNN will V. CONCLUSION
increase accordingly. Thus, we only compare with the above
settings of M.-KNN which can process the high-speed datfa ; o \

X . e or evolving data streams. It is significantly more challieg
streams in real-time. The classification results support o

second intuition thatSMART can effectively keep track o an the cony_entl_onal offline problems and smgle-labek_ldat
Stream classification problems because of the properties of

multiple label concepts within the data stream and can effe ata stream and multiple labels assigned to each instances.

tively make good multi-label predictions for new streaminq :
data. 0 address these challenges, we propose a one-pass multi-

L . . label data stream classification approach, named Streamin
In Table 111, we report the running time (training-+testiraf) bp g

h g hod I the d As b h Multi-lIAbel Random Trees (SMART), to efficiently update
the compared methods on all the datasets. As been s oWn, Qel structure and statistics on each tree node over the

SMART approach is much more efficient than cher base“nﬁelti-label data stream. Then the trained SMART model can
and can process 5,000 - 15,000 data points in each secq ctively and efficiently predict multiple labels for fue

In this paper, we study the multi-label classification pewbl

splitting values on each node. Our SMART approach is a vel¥e
fast one-pass algorithm. It only collect simple statistdsng can
the data stream, without storing any instance in the memory.
Moreover, it is worth mentioning that our SMART approach
takes constant memory cost while processing the data stream
This is crucial for data stream applications, since no &afukd

points. Empirical studies on real-world tasks show tha
multi-label data stream classification approach is very

ctive and efficient for multi-label stream classifioatiand

automatically adapt to concept drifts.
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C. Sensitivity of Parameters [1]

We further study the influences of the parameters on our
SMART method. We compare the classification performanc@]
and the running time of SMART approach with different
settings onn,; (the number of trees in the ensemblé)(the
height of each random tree) andfading factor). The average 4
performances over the whole data stream under each palramétge
settings are reported.

Table IV shows the performance of SMART with different [5]
number of trees in the ensemble. Generally, the classiitati g]
performances will increase with more trees in the ensemble.
This is desirable, as with all ensemble learning methods’]
the performance improves as the number of trees increases.
However, after a certain point (10), there is no significans]
improvement. It is worth noting that, in our current impleme
tation, we sequentially train each random tree in the enEmb g,
thus the running time increases when becomes larger.
However, our approach is very easy to be fit into parell€°
training and testing on multi-core systems, since eachmamd[n]
tree can be trained and tested independently.

Table V shows the performance of SMART with different'2]
tree sizes. Generally, the larger each random tree is, titerbe
the performance we can get. This is because the accurféey
of label relevance estimation and regression will both be
improved with larger trees. However, larger trees will aong [14
much larger memory. Thus, in practice, we usually set the
maximium height of random trees ds< 20. [15]

Table VI shows the performance of SMART with differentg
fading factors. The fading factor controls how fast SMART
reduces the influence of historical data. The laryes, the [17]
slower the fading process is. We observe that our method[1i§]
not quite sensitive to the parameter

(3]
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