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Abstract—A hybrid cloud is a cloud computing environment
in which an organization provides and manages some internal
resources and the others provided externally. However, this new
environment could bring irretrievable losses to the clients due to
a lack of integrity verification mechanism for distributed data
outsourcing. In this paper, we address the construction of a
collaborative integrity verification mechanism in hybrid clouds
to support the scalable service and data migration, in which
we consider the existence of multiple cloud service providers to
collaboratively store and maintain the clients’ data. We propose
a collaborative provable data possession scheme adopting the
techniques of homomorphic verifiable responses and hash index
hierarchy. In addition, we articulate the performance optimiza-
tion mechanisms for our scheme and prove the security of our
scheme based on multi-prover zero-knowledge proof system,
which can satisfy the properties of completeness, knowledge
soundness, and zero-knowledge. Our experiments also show that
our proposed solution only incurs a small constant amount of
communications overhead.

Index Terms—Integrity Verification, Multi-Prover, Collabora-
tive, Hybrid Clouds.

I. I NTRODUCTION

Cloud computing has become a faster profit growth point
in recent years by providing a comparably low-cost, scalable,
position-independent platform for clients’ data. Although com-
mercial cloud services have revolved around public clouds,
the growing interest of building private cloud on open-source
cloud computing tools forces local users to have a flexible
and agile private infrastructure to run service workloads within
their administrative domains. Private clouds are not exclusive
for being public clouds, and they can also support ahybrid
cloud model by supplementing a local infrastructure with
computing capacity from an external public cloud. By using
virtual infrastructure management (VIM) [1], a hybrid cloud
can allow remote access to its resources over the Internet via
remote interfaces, such as the Web services interfaces that
Amazon EC2 uses.

With the growing popularity of clouds, the tools and tech-
nologies for hybrid clouds are emerging recently, such as
the Platform VM Orchestrator1, VMware vSphere2, and
Ovirt 3. They help users construct a comparably low-cost,
scalable, location-independent platform for managing clients’
data. However, if such an important platform is vulnerable
to security attacks, it would bring irretrievable losses tothe

1www.platform.com/Products/platform-vm-orchestrator
2www.vmware.com/products/vsphere
3http://ovirt.org

clients, for example, the confidential data in an enterprise
may be illegally accessed by using remote interfaces, or the
relevant data and archives are lost or tampered with when
they are stored into an uncertain storage pool outside the
enterprise. Therefore, it is indispensable for cloud service
providers (CSPs) to provide secure management techniques
to ensure their storage services.

Provable data possession (PDP) [2] is a probabilistic proof
technique for a storage provider to prove that clients’ data
remains intact. In other words, the clients can fully recover
their data and have confidence to use the recovered data. This
creates strong demand for seeking an effective solution to
check if their data has been tampered with or deleted without
downloading the latest version of data. Various PDP schemes
have been recently proposed, such as Scalable PDP [3] and
Dynamic PDP [4], to work in a publicly verifiable way so
that users can employ their verification protocol to prove the
availability of the stored data. However, these schemes focus
on the PDP issues at untrusted servers (public clouds), and are
not applicable for a hybrid cloud environment (see Section II
for details).

In this paper, we address the problem of provable data
possession in hybrid clouds. By discussing the characteristics
of hybrid clouds and analyzing security drawbacks of the
existing schemes, we indicate our main research objectives
in three aspects: high security, verification transparency, and
high performance. On this basis, we first propose a verification
framework for hybrid clouds along with the main techniques
adopted in our approach: (1) fragment structure, (2) hash index
hierarchy (HIH), and (3) homomorphic verifiable response
(HVR). We argue that it is possible to construct a collaborative
PDP (CPDP) scheme without compromising data privacy
based on modern cryptographic techniques, such as multi-
prover zero-knowledge proof system (MPZKP) [5].

We then provide an effective construction of CPDP using
homomorphic verifiable responses and hash index hierarchy.
This construction realizes the security against data leakage
attacks and tag forging attacks, considering transparent prop-
erty for the clients to store and manage the resources in
hybrid clouds. This construction uses homomorphic property,
on which the responses of the clients’ challenges computed
from multiple CSPs can be combined into a single response as
the final result of hybrid clouds. By using this mechanism, the
clients can be convinced of data possession without knowing
geographical locations where their files reside. In addition, a



new hash index hierarchy is proposed to realize transparent
property for the clients to store and manage their resourcesin
hybrid clouds.

We also evaluate the performance of our CPDP scheme
from four aspects: Firstly, we provide a brief security analysis
of our scheme; Secondly, we analyze the performance of
probabilistic queries for detecting abnormal situations in a
timely manner. This probabilistic method also has the inherent
benefit in reducing the computation and communication over-
heads. Next, we prove the security of our scheme based on
multi-prover zero-knowledge proof system, which can satisfy
the properties of completeness, knowledge soundness, and
zero-knowledge. In practical applications, our optimization
algorithm also provides an adaptive parameter selection for
different sizes of files (or clusters), which could ensure that
the extra storage is optimal for the verification process.

The rest of the paper is organized as follows. In Section
II, we address our motivation and research objectives. We
describe the background techniques, which are adopted in our
construction, in Section III. Section IV describes the security
and performance analysis of our solution. We discuss the
related work in Section V and Section VI concludes this paper.

II. M OTIVATION AND OBJECTIVES

In this section, we give an overview of our motivation
and research objectives in constructing collaborative PDP. Our
motivation is based on the following challenging questionsthat
need to be addressed, which help us define our objectives in
this paper.

1. Why Need Integrity Checking of Outsourced Data?

Storage outsourcing in clouds has become a new profit
growth point by providing a comparably low-cost, scalable,
location-independent platform for managing clients’ data.
However, security is critical for such convenient storage ser-
vices due to the following reasons: the cloud infrastructures
are much more powerful and reliable than personal computing
devices but they are still facing all kinds of internal and
external threats; for the benefits of their own business, there
exist various motivations for cloud service providers to behave
unfaithfully towards the cloud users; and, furthermore, the
dispute occasionally suffers from a lack of trust on CSPs.
Consequently, the behaviors of CSPs may not be known by
the cloud users, even if this dispute may result from the users’
own improper operations. Therefore, it is crucial for a CSP to
offer an efficient verification on the integrity and availability
of the stored data to enable the credibility of cloud services.

We expect that the size of outsourced data cannot be too
small to influence the verification efficiency. All outsourced
data would require additional storages for the verification
parameters which must be stored in a Trusted Third Party
(TTP). Thus, from a practical standpoint, the outsourced data
can be either a large file, a database, or a set of files in an
application system including softwares, scripts, Web pages,
snapshots, and so on. Especially, it is critical to check the
integrity of application softwares in public clouds even if

sensitive data are stored in private clouds. For instance, an
attacker can modify application softwares or scripts, or load a
trojan into a snapshot of virtual machine (VM) to compromise
the applications in a cloud.

2. Why Need a New Mechanism for Ensuring the Security
of Outsourced Data in Hybrid Clouds?

A hybrid cloud is a cloud computing environment in which
an organization provides and manages some internal resources
as well as external resources. For example, as shown in Figure
1, an organization, Hybrid Cloud I, uses a public cloud service
such as Amazon’s EC2 for general computing purposes while
storing customers’ data within its own data center in a private
cloud. As cloud computing has been rapidly adopted, the hy-
brid model will be more prevalent for a number of reasons [1]:
to provide clients with the same features found in commercial
public clouds; to provide a uniform and homogeneous view
of virtualized resources; to support configurable resourceallo-
cation policies to meet the organization’s specific goals (high
availability, server consolidation to minimize power usage, and
so on); and to meet an organization’s changing resource needs.

Fig. 1. Types of cloud computing: private cloud, public cloud and hybrid
cloud.

In hybrid clouds, one of core design principles is dynamic
scalability, which guarantees cloud storage services to handle
growing amounts of application data in a flexible manner.
By employing virtualization, such as VIM, hybrid clouds can
effectively provide dynamic scalability of service and data
migration. For example, a client might integrate the data
from multiple private or public providers into a backup or
archive file (see Hybrid Cloud II in Figure 1); or a service
might capture the data from other services in private clouds,
but the application scripts, intermediate data and resultsare
executed and stored in public clouds [6], [7]. Since this
new collaborative paradigm still faces a variety of security
concerns, it is necessary to develop a new method for ensuring
the security of outsourced data in hybrid clouds.

3. Are Existing PDP Schemes Efficient for Hybrid Clouds?
The traditional cryptographic technologies for data in-

tegrity and availability, based on Hash functions and signature
schemes [8], [9], cannot support the outsourced data without
a local copy of data. It is evidently impractical for a cloud
storage service to download the whole data for data validation



due to the expensiveness of communication, especially, for
large-size files. Recently, several PDP schemes are proposed
to address this issue. In fact, PDP is essentially an interactive
proof between a CSP and a client because the client makes
a false/true decision for data possession without downloading
data.

Existing PDP schemes mainly focus on integrity verification
issues at untrusted stores in public clouds, but these schemes
are not suitable for a hybrid cloud environment since they
were originally constructed based on a two-party interactive
proof system. For a hybrid cloud, these schemes can only be
used in a trivial way: clients must invoke them repeatedly to
check the integrity of data stored in each single cloud. This
means that clients must know the exact position of each data
block in outsourced data. Moreover, this process will consume
higher communication bandwidth and computation costs at
client sides. Thus, it is of utmost necessary to construct an
efficient verification scheme with collaborative features for
hybrid clouds.

In response to practical requirements for outsoucred stor-
ages in hybrid clouds, the concerns to improve the perfor-
mance of PDP services are mainly from three aspects:

∙ How to design a more efficient PDP model for hybrid
clouds to reduce the storage and network overheads and
enhance the transparency of verification activities;

∙ How to provide an efficient sampling policy to help
provide a more cost-effective verification service; and

∙ How to optimize the parameters of PDP scheme to min-
imize the computation overheads of verification services
in hybrid clouds.

Solving these problems will help improve the quality of PDP
services, which can not only timely detect abnormality, but
also take up less resources, or rationally allocate resources.
Hence, a new PDP scheme is desirable to accommodate these
application requirements from hybrid clouds.

4. Are Existing PDP Schemes Secure Enough for Hybrid
Cloud Environments?

In hybrid clouds, a collaborative work model provides
some mutual channels among individual clouds. This kind of
channels will no doubt increase the possibility of malicious
attacks. For example, existing PDP schemes could provide
an efficient integrity checking for outsourced data, however,
most of these schemes ignore the problem of information
leakage among the interactive processes. Thus, as a public
verification service without a strong security mechanism for
data protection, a malicious attacker could easily exploitsuch
a service to obtain private data. This attack is extremely
dangerous to the confidential data of an enterprise.

Even though existing PDP schemes have addressed var-
ious aspects such as public verifiability [2], dynamics [4],
scalability [3], and privacy preservation [10], we still need a
careful consideration to the following attacks, which are more
easily compromise the security of storage services in hybrid
environments than those in public clouds:
Data leakage attack: Through the interfaces of public

clouds, various applications in hybrid clouds are allowed to
access data in private clouds, so a PDP service (considered
as a Daemon) undoubtedly provides a covert channel to
access the secret data in private clouds. Therefore, if a
PDP scheme cannot resist against the data leakage attacks,
an adversary can easily obtain the entire data through the
interactive proof process. For instance, Attack 1 and Attack
3 described in Appendix A and B demonstrates that a
verifier can get the stored data after running or wiretapping
sufficient verification communications. It is obvious that
such an attack could significantly impact the privacy of
outsourced data in clouds.

Tag forgery attack: In hybrid clouds, an untrusted CSP has
more opportunities to induce a forgery attack, in which the
CSP can cheat a verifier by generating a valid tag for the
tampered data. For example, Attack 2 and Attack 4 given in
Appendix A and B shows that a successful forgery attack
can occur only if one of the following cases is happened:

∙ Clients modify data blocks in a file;
∙ Clients insert and delete blocks repeatedly in a file;
∙ Clients reuse the same file name to store multiple differ-

ent files.

Some security mechanisms, such as client-side encryption
and access control, can be implemented in clouds to enhance
the security of existing PDP schemes, but they will undoubt-
edly increase the computation and communication overheads
of PDP services.

In summary, it is essential to develop an efficient verification
method for the data security in hybrid cloud environments.
Furthermore, from the above-mentioned challenges, our ob-
jectives for checking integrity of outsourced data in hybrid
clouds are as follows:

Security aspect: Our scheme should provide adequate secu-
rity features to resist some existing attacks, such as data
leakage attack and tag forgery attack;

Usability aspect: In the way of collaboration, a client should
make use of the integrity check via a cloud service provider.
Our scheme should conceal the details of the storage to
reduce the burden on clients; and

Performance aspect:Our scheme should have a higher per-
formance for anomaly detection and only introduce lower
communication and computation overheads.

III. F RAMEWORK AND MAIN TECHNIQUES

In this section, we present our verification framework for
hybrid clouds and a formal definition of collaborative PDP.
In order to construct such a PDP, we propose three main
techniques: fragment structure, hash index hierarchy, and
homomorphic verifiable response. These techniques lay the
foundation of our CPDP scheme.

A. Verification Framework for Hybrid Clouds

Although PDP schemes evolved around public clouds offer
a publicly accessible remote interface to check and manage
the tremendous amount of data, the majority of today’s PDP



schemes is incapable of satisfying such an inherent require-
ment of hybrid clouds in terms of bandwidth and time. To
solve this problem, we consider a hybrid cloud storage service
as illustrated in Figure 2. In this architecture, we consider a
data storage service involving three different entities: Granted
clients, who have a large amount of data to be stored in hybrid
clouds and have the permissions to access and manipulate
these stored data; Cloud service providers (CSPs), who work
together to provide data storage services and have enough stor-
age space and computation resources; and Trusted third parties
(TTPs), who are trusted to store the verification parametersand
offer the query services for these parameters.

Fig. 2. Verification architecture for data integrity in hybrid clouds.

To support this architecture, a cloud storage provider also
needs to add corresponding modules to implement collabo-
rative PDP services. For example, OpenNebula is an open
source, virtual infrastructure manager that integrated with
multiple virtual machine managers, transfer managers, and
external cloud providers. In Figure 3, we describe such a cloud
computing platform based on OpenNebula architecture [1], in
which a service module of collaborative PDP is added into
cloud computing management platform (CCMP). This module
is able to response the PDP requests of TTP through cloud
interfaces. In addition, a hash index hierarchy (HIH), which
is described in details in Section III-C, is used to provide
a uniform and homogeneous view of virtualized resources
in virtualization components. For the sake of clarity, we use
yellow color to indicate the changes from original OpenNebula
architecture.

In this architecture, we consider the existence of multiple
CSPs to collaboratively store and maintain the clients’ data.
Moreover, a collaborative PDP is used to verify the integrity
and availability of their stored data in CSPs. The verification
flowchart is described as follows: Firstly, the client (data
owner) uses the secret key to pre-processes the file, which
consists of a collection ofn blocks, generates a set of public
verification information that is stored in TTP, transmits the
file and some verification tags to CSPs, and may delete its
local copy; At a later time, by using a verification protocol
for collaborative PDP, the clients can issue a challenge for
one CSP to check the integrity and availability of outsourcing
data in terms of public verification information stored in TTP.
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· 
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Fig. 3. Cloud computing platform for CPDP service based on OpenNebula
architecture [1].

B. Definition of Collaborative PDP

In order to prove the integrity of data stored in hybrid
clouds, we define a framework for Collaborative Provable
Data Possession (CPDP) based on interactive proof system
(IPS) [11]:

Definition 1 (Collaborative-PDP). A collaborative provable
data possession schemeS ′ is a collection of two algorithms
and an interactive proof system,S ′ = (K, T ,P):

KeyGen(1�): takes a security parameter� as input, and
returns a secret keysk or a public-secret keypair(pk, sk);
T agGen(sk, F,P): takes as inputs a secret keysk, a file F ,

and a set of cloud storage providersP = {Pk}, and returns
the triples (�,  , �), where � is the secret of tags, =
(u,ℋ) is a set of verification parametersu and an index
hierarchyℋ for F , � = {�(k)}Pk∈P denotes a set of all
tags,�(k) is the tags of the fractionF (k) of F in Pk;
Proof (P , V ): is a protocol of proof of data possession be-

tween the CSPs (P = {Pk}) and a verifier (V), that is,
⟨
∑

Pk∈P
Pk(F

(k), �(k)), V ⟩(pk,  ), where eachPk takes as
input a fileF (k) and a set of tags�(k), and a public key
pk and a set of public parameters is the common input
betweenP andV . At the end of the protocol run,V returns
a bit {0∣1} denoting false and true.

where,
∑

Pk∈P
denotes the collaborative computing inPk ∈

P .

To realize the CPDP, a trivial way is to check the data
stored in each cloud one by one. However, it would cause
significant cost growth in terms of communication and com-
putation overheads. It is obviously unreasonable to adopt such
a primitive approach that diminishes the advantages of cloud
storage: scaling arbitrarily up and down on-demand [12]. For
the sake of clarity, we list some used signals in Table I.

C. Hash Index Hierarchy for Collaborative PDP

As a virtualization approach, we introduce a simple index-
hash table to record the changes of file blocks, as well as
generate the Hash value of block in the verification process.



TABLE I
THE SIGNAL AND ITS EXPLANATION.

Sig. Repression

n the number of blocks in a file;
s the number of sectors in each block;
t the number of index coefficient pairs in a query;
c the number of clouds to store a file;
F the file withn× s sectors, i.e.,F = {mi,j}

i∈[1,n]
j∈[1,s] ;

� the set of tags, i.e.,� = {�i}i∈[1,n];
Q the set of index-coefficient pairs, i.e.,Q = {(i, vi)};
� the response for the challengeQ.

The structure of our index-hash table is similar to that of
file block allocation table in file systems. The index-hash
table consists of serial number, block number, version number,
random integer, and so on. Different from the common index
table, we must assure that all records in this kind of table
differ from one another to prevent the forgery of data blocks
and tags. In practical applications, it should been constructed
into the virtualization infrastructure of cloud-based storage
service [1].

A representative architecture for data storage in hybrid
clouds is illustrated as follows: this architecture is a hierar-
chical structureℋ on three layers to represent the relationship
among all blocks for stored resources. Three layers can be
described as follows:

∙ First-Layer (Express Layer): offer an abstract representation
of the stored resources;

∙ Second-Layer (Service Layer): immediately offer and man-
age cloud storage services;

∙ Third-Layer (Storage Layer): practicably realize data stor-
age on many physical devices;

This kind of architecture is a nature representation of file
storage. We make use of this simple hierarchy to organize
multiple CSP services, which involves private clouds or public
clouds, by shading the differences between these clouds. In
this architecture, the resources in Express Layer are splitand
stored into three CSPs , that have different colors, in Service
Layer. In turn, each CSP fragments and stores the assigned
data into the storage servers in Storage Layer. We also make
use of colors to distinguish different CSPs. Moreover, we
follow the logical order of the data blocks to organize the
Storage Layer. This architecture could provide some special
functions for data storage and management. For example, there
may exist overlap among data blocks (as shown in dashed
line) and skipping (as shown on a non-continuous color).
But these functions would increase the complexity of storage
management.

In storage layer, we define a common fragment struc-
ture that provides probabilistic verification of data integrity
for outsourcing storage. The fragment structure is a data
structure that maintains a set of block-tag pairs, allowing
searches, checks and updates inO(1) time. An instance for
this structure which is used in this scheme is showed in
storage layer: an outsourcing fileF is split into n blocks

{m1,m2, ⋅ ⋅ ⋅ ,mn}, and each blockmi is split into s sectors
{mi,1,mi,2, ⋅ ⋅ ⋅ ,mi,s}. The fragment structure consists ofn
block-tag pair(mi, �i), where�i is a signature tag of block
mi generated by some secrets� = (�1, �2, ⋅ ⋅ ⋅ , �s). In order
to check data integrity, the fragment structure implements
probabilistic verification as follows: given a random chosen
challenge (or query)Q = {(i, vi)}i∈RI , whereI is a subset
of the block indices andvi is a random coefficient. There exists
an efficient algorithm to produce a constant-size response
(�1, �2, ⋅ ⋅ ⋅ , �s, �

′), where�i comes from all{mk,i, vk}k∈I

and�′ is from all {�k, vk}k∈I .
Given a hash functionHk(⋅), we make use of this architec-

ture to construct a Hash Index Hierarchyℋ, which is used to
replace the common hash function in PDP scheme, as follows:

∙ Express layer: givens random{�i}si=1 and the file name
Fn, sets�(1) = H∑

s
i=1 �i(“Fn”) and makes it public for

verification but makes{�i}si=1 secret;
∙ Service layer: given the�(1) and the cloud nameCn, sets
�
(2)
k = H�(1)(“Cn”);

∙ Storage layer: given the�(2), a block numberi, and its index
record�i = “Bi∣∣Vi∣∣Ri”, sets�(3)i,k = H

�
(2)
k

(�i)
4, whereBi

is the sequence number of block,Ri is the version number
of updates for this block, andRi is a random integer to
avoid collision.

To meet this change, the index table� in the CPDP scheme
needs to increase a new columnCi to record the serial number
of CSP, that stores thei-th block. By using this structure, it
is obvious that our CPDP scheme can also support dynamic
data operations.

The above structure can be readily adopted into MAC-based,
ECC or RSA schemes [2], [13]. These schemes, built from
collision-resistance signatures and the random oracle model,
have the shortest query and response with public verifiability.
They have some common characters to implement the CPDP
framework in hybrid clouds: 1) the file is split inton × s
sectors and each block (s sectors) corresponds to a tag,
so that the storage of signature tags can be reduced with
increase ofs; 2) the verifier can verify the integrity of file
in random sampling approach, which is of utmost importance
for large or huge files; 3) these schemes rely on homomorphic
properties to aggregate the data and tags into a constant size
response, which minimizes network communication; and 4)
the hierarchy structure provides a virtualization manner to
conceal the storage details of multiple CSPs.

D. Homomorphic Verifiable Response for Collaborative PDP

A homomorphism is a mapf : ℙ→ ℚ between two groups
such thatf(g1⊕g2) = f(g1)⊗f(g2) for all g1, g2 ∈ ℙ, where
⊕ denotes the operation inℙ and ⊗ denotes the operation
in ℚ. This notation has been used to define Homomorphic
Verifiable Tags (HVTs) in [2]: Given two values�i and �j
for two messagemi andmj , anyone can combine them into
a value�′ corresponding to the sum of the messagemi+mj.

4The index record is used to support dynamic data operations.



When provable data possession is considered as a challenge-
response protocol, we extend this notation to the concept ofa
Homomorphic Verifiable Responses (HVRs), which is used
to integrate multiple responses from the different CSPs in
collaborative PDP scheme, as follows:

Definition 2 (homomorphic verifiable response). A response
is called homomorphic verifiable response in PDP protocol,
if given two responses�i and �j for two challengesQi and
Qj from two CSPs, there exists an efficient algorithm to
combine them into a response� corresponding to the sum
of the challengesQi

∪

Qj .

Homomorphic verifiable response is the key technique of col-
laborative PDP because it not only reduces the communication
bandwidth, but also conceals the location of outsourcing data
in hybrid clouds.

E. Collaborative Provable Data Possession

According to the above-mentioned architecture, four dif-
ferent network entities can be identified as follows: the
verifier (V), trusted third party (TTP), the organizer (O),
and some cloud service providers (CSPs) in hybrid cloud
P = {Pi}i∈[1,c]. The organizer is an entity that directly
contacts with the verifier. Moreover it can initiate and organize
the verification process.Often, the organizer is an independent
server or a certain CSP inP . In our scheme, the verification
is performed by a5-move interactive proof protocol showed
in Figure 4, as follows: 1) the organizer initiates the protocol
and sends a commitment to the verifier; 2) the verifier returns
a challenge set of random index-coefficient pairsQ to the
organizer; 3) the organizer relays them into eachPi in P
according to the exact position of each data block; 4) each
Pi returns its response of challenge to the organizer; 5) the
organizer synthesizes a final response from these responses
and sends it to the verifier. The above process would guarantee
that the verifier accesses files without knowing on which CSPs
or in what geographical locations their files reside.

Fig. 4. The flowchart of verification process in our CPDP scheme.

IV. SECURITY AND PERFORMANCEANALYSIS

A. Security Analysis for CPDP Scheme

The collaborate integrity verification for distrusted outsourc-
ing data, in essence, is a multi-prover interactive proof system
(IPS), so that the correspondence construction should satisfy
the security requirement of IPS. Moreover, in order to ensure
the security of verified data, this kind of construction is also
a Multi-Prover Zero-knowledge Proof (MPZKP) system [5],
[11], which can be considered as an extension of the notion
of an interactive proof system (IPS). Roughly speaking, the
scenario of MPZKP is that a polynomial-time bounded verifier
interacts with several provers whose computational power is
unlimited. Given an assertionL, such a system satisfies three
following properties: (1)Completeness: wheneverx ∈ L,
there exists a strategy for provers that convinces the verifier
that this is the case; (2)Soundness: wheneverx ∕∈ L, whatever
strategy the provers employ, they will not convince the verifier
that x ∈ L; (3) Zero-knowledge: no cheating verifier can
learn anything other than the veracity of the statement. Since
this construction is directly derived from MPZKP model,
the soundness and zero-knowledge properties can protect our
construction from various attacks as follows:

∙ Security for tag forging attack: The soundness means
that it is infeasible to fool the verifier into accepting false
statements. It is also regarded as a stricter notion of unforge-
ability for the file tags. To be exact, soundness is defined
as follows: for every “invalid” tag�∗ ∕∈ TagGen(sk, F ),
there doesn’t exists an interactive machineP ∗ can pass
verification with any verifierV ∗ with noticeable proba-
bility. In order to prove the non-existence ofP ∗, to the
contrary, we can make use ofP ∗ to construct a knowledge
extractorℳ, which gets the common input(pk,  ) and
rewindable black-box access toP ∗ and attempts to break
the computation Diffie-Hellman (CDH) assumption inG:
givenG,G1 = Ga, G2 = Gb ∈R G, outputGab ∈ G. This
means that the prover cannot forge the file tags or tamper
with the data if soundness property holds.

∙ Security for data leakage attack: In order to protect the
confidentiality of the checked data, we are more concerned
about the leakage of private information in the verification
process. In Section II, we have shown that data blocks
and their tags could be obtained by the verifier in some
existing schemes. To solve this problem, we introduce
Zero-Knowledge property into our construction. Firstly,
randomness is adopted into the CSP’s response in order
to resist Attack 2 and 4 in Appendix A and B, that is,
the random integer�j,k is adopted into the response�j,k,
i.e., �j,k = �j,k +

∑

(i,vi)∈Qk
vi ⋅ mi,j . This means that

the cheating verifier cannot obtainmi,j from �j,k because
he does not know the random integer�j,k. At the same
time, a random integer is also introduced to randomize
the verification tag�, i.e.,�′ ← (

∏

Pk∈P
�′
k ⋅R

−s
k ) . Thus,

the tag� cannot reveal to the cheating verifier in terms of
randomness.
Based on this idea, we need to prove the following theorem



according to the formal definition of zero-knowledge, in
which every cheating verifier has some simulator that,
given only the statement to be proven (and no access to
the prover), can produce a transcript that “looks like” an
interaction between the honest prover and the cheating
verifier. Actually, zero-knowledge is a property that captures
(private or public) CSP’s robustness against attempts to gain
knowledge by interacting with it. For our construction, we
make use of the zero-knowledge property to guarantee the
security of data blocks and signature tags.

B. Performance Analysis of Probabilistic Verification

In our construction, the integrity verification achieves the
detection of CSP servers misbehavior in a random sampling
mode (called probabilistic verification) in order to reducethe
workload on the server. In the probabilistic verification of
common PDP scheme (which involves one CSP), the detection
probabilityP of disrupted blocks is an important parameter to
guarantee that these blocks can be detected in time. Assume
the CSP modifiese blocks out of then-block file. The
probability of disrupted blocks is�b = e

n
. Let t be the number

of queried blocks for a challenge in the verification protocol.
We have detection probability

P (�b, t) = 1− (
n− e

n
)t = 1− (1− �b)

t.

Hence, the number of queried blocks ist = log(1−P )
log(1−�b)

≈ P ⋅n
e

for a sufficiently largen.5 This means that the number of
queried blockst is directly proportional to the total number
of file blocksn for the constantP ande.

For a PDP scheme withfragment structure, given a file
with sz = n ⋅ s sectors and the probability� of sector
corruption, the detection probability of verification protocol
has P ≥ 1 − (1 − �)sz⋅!, where ! denotes the sampling
probability in the verification protocol. We can obtain this
result as follows: because�b ≥ 1 − (1 − �)s is the prob-
ability of block corruption withs sectors in common PDP
scheme, the verifier can detect block errors with probability
P ≥ 1− (1− �b)

t ≥ 1− ((1− �)s)n⋅! = 1− (1− �)sz⋅! for
a challenge witht = n ⋅ ! index-coefficient pairs.

Next, we extend the one-CSP PDP scheme into multi-CSPs
CPDP scheme as follows: given a file withsz = n ⋅ s sectors
and ! denotes the sampling probability in the verification
protocol. For a hybrid cloudP , the detection probability of
CPDP scheme has

P (sz, {�k, rk}Pk∈P , !)

≥ 1−
∏

Pk∈P

((1− �k)
s)n⋅rk⋅!

= 1−
∏

Pk∈P

(1− �k)
sz⋅rk⋅!,

where rk denotes the proportion of data blocks in thek-th
CSP,�k denotes the probability of file corruption in thek-th
CSP, andrk ⋅! denotes the possible number of blocks queried

5In terms of(1 −

e
n
)t = 1−

e⋅t
n

, we haveP = 1− (1−

e⋅t
n
) = e⋅t

n
.

by the verifier in thek-th CSP. Furthermore, we observe the
ratio of queried blocks in the total file blocksw under different
detection probabilities. Based on above analysis, it is easy to
find that this ratio holds the equation

w =
log(1− P )

sz ⋅
∑

Pk∈P
rk ⋅ log(1− �k)

.

However, the estimation ofw is not an accurate measurement.
In most cases, we adopt the probability of disrupted blocks

to describe the possibility of data loss, damage, forgery or
unauthorized changes. When this probability�b is a con-
stant probability, the verifier can detect sever misbehavior
with a certain probabilityP by asking proof for a constant
amount of blockst = log(1−P )

log(1−�b)
= log(1−P )

s ˙log(1−�)
for PDP or

t = log(1−P )
s⋅
∑

Pk∈P
rk⋅log(1−�k)

for CPDP, independently of the total

number of file blocks [2].

C. CPDP for Integrity Audit Services

In actual practice, we introduce the collaborative PDP
scheme to construct an audit system architecture for outsourc-
ing data in hybrid clouds by replacing TTP with a third party
auditor (TPA) in Figure 2. In this architecture, data owner
and granted clients need to dynamically interact with CSP to
access or update their data for various application purposes.
However, we neither assume that CSP is trusted to guarantee
the security of the stored data, nor assume that data owner has
the ability to collect the evidence of the CSP’s fault after errors
have been found. Hence TPA, as a trust third party (TTP), is
used to ensure the storage security of their outsourcing data.
We assume the TPA is reliable and independent, and thus has
no incentive to collude with either CSPs or users during the
auditing process.

∙ TPA should be able to make regular checks on the
integrity and availability of these delegated data at ap-
propriate intervals;

∙ TPA should be able to organize, manage, and maintain
the outsourcing data instead of data owners, and support
dynamic data operations for the granted user;

∙ TPA should be able to take the evidences for the disputes
about the inconsistency of data in terms of authentic
records for all data operations.

To enable privacy-preserving public auditing for cloud data
storage under this architecture, our protocol design should
achieve following security and performance guarantee:

∙ Public auditability: to allow TPA (or the other clients with
help of TPA) to verify the correctness of the cloud data
on demand without retrieving a copy of the whole data
or introducing additional on-line burden to cloud users;

∙ Verification correctness: to ensure there exists no cheating
CSP that can pass the audit from TPA without indeed
storing users’ data intact;

∙ Verification transparency: to enable TPA with secure
and efficient auditing capability to cope with auditing
delegations from possibly large number of different CSPs
simultaneously;



∙ Privacy-preserving: to ensure that there exists no way for
TPA to derive users’ data from the information collected
during the auditing process;

∙ Lightweight: to allow TPA to perform auditing with mini-
mum storage, communication and computation overhead,
and to support batch auditing with a long enough period.

To validate the effectiveness and efficiency of our proposed
approach, we have implemented a prototype of an audit system
based on our proposed solution. We simulate the audit service
and the storage service by using two local IBM servers with
two Intel Core 2 processors at 2.16 GHz and 500M RAM
running Windows Server 2003. These servers were connected
via 250 MB/sec of network bandwidth. Our audit scheme
was also deployed in these servers. Using GMP and PBC
libraries, we have implemented a cryptographic library upon
which our scheme can be constructed. This C library contains
approximately 5,200 lines of codes and has been tested on
Windows and Linux platforms. The elliptic curve utilized in
the experiment is a MNT curve, with base field size of 160
bits and the embedding degree 6. The security level is chosen
to be 80 bit, which means∣p∣ = 160.

More importantly, we incorporated this prototype on CPDP
scheme into a virtualization infrastructure of cloud-based
storage service [1]. In Figure 5, we show an example of
Hadoop distributed file system (HDFS)6, which a distributed,
scalable, and portable file system [14]. HDFS’ architecture
is composed of NameNode and DataNode, where NameNode
maps a file name to a set of indexes of blocks and DataNode
indeed stores data blocks. To support the CPDP, the index-
hash table and the metadata of NameNode should be integrated
together to provide an enquiry service for the hash value�

(3)
i,k

or index-hash record�i. Based on the hash value, the clients
can implement the verification protocol via CPDP services.
Hence, it is easy to replace the checksum methods with the
CPDP scheme for anomaly detection in current HDFS.

Fig. 5. An example of hash index hierarchy in Hadoop distributed file system
(HDFS).

6Hadoop can enable applications to work with thousands of nodes and
petabytes of data, and it has been adopted by currently mainstream cloud
platforms from Apache, Google, Yahoo, Amazon, IBM and Sun.

V. RELATED WORK

Traditional cryptographic technologies for data integrity and
availability, based on hash functions and signature schemes
[8], [9], cannot work on the outsourced data without a local
copy of data. Moreover, these traditional methods are not the
practical solutions for data validation by downloading them
due to the expensive communications, especially for large-
size files. To check the availability and integrity of the stored
data in cloud storage, researchers have proposed two basic
approaches called Provable Data Possession (PDP) [2] and
Proofs of Retrievability (POR) [15]. Ateniese et al. [2] first
proposed the PDP model for ensuring possession of files
on untrusted storages and provided a RSA-based scheme for
the static case that achieves theO(1) communication cost.
They also proposed a publicly verifiable version, which allows
anyone, not just the owner, to challenge the server for data
possession. This property greatly extended application areas
of PDP protocol due to the separation of data owners and the
users. However, similar to replay attacks, these schemes are
insecure in dynamic scenarios because of the dependence on
the index of blocks. Moreover, they do not fit for hybrid clouds
due to the loss of homomorphism in the verification process.

Unfortunately, none of these schemes is aware of dynamic
data operations such as query, insertion, modification, and
deletion. To support dynamic data operations, Ateniese et
al. have developed a dynamic PDP solution called Scalable
PDP [3]. They proposed a lightweight PDP scheme based on
cryptographic Hash function and symmetric key encryption,
but the server can deceive the owner by using the previous
metadata or responses due to lack of the randomness in the
challenge. The number of updates and challenges is limited
and fixed in a priori. Also, one cannot perform block insertions
anywhere. Based on this work, Erway et al. [4] introduced two
Dynamic PDP schemes with a Hash function tree to realize
the O(log n) communication and computational costs for a
file consisting ofn blocks. The basic scheme, called DPDP-I,
retains the drawback of Scalable PDP, and in the ‘blockless’
scheme, called DPDP-II, the data blocks{mij}j∈[1,t] can be
leaked by the response of challenge,M =

∑t

j=1 ajmij ,
where aj is a random value in the challenge. Juels and
Kaliski [15] presented a POR scheme which relies largely on
preprocessing steps the client conducts before sending a file
to CSP. Unfortunately, these operations prevent any efficient
extension to update data. Shacham and Waters [13] proposed
an improved version of this protocol called Compact POR,
which uses homomorphic property to aggregate a proof into
O(1) authenticator value andO(t) computation cost fort
challenge blocks, but their solution is also static and exists
the leakage of data blocks in the verification process. Wang
et al. [10] presented a dynamic scheme withO(log n) cost
by integrating the above CPOR scheme and Merkle Hash
Tree (MHT) in DPDP. Furthermore, serveral POR schemes
and models have been proposed recently including [16], [17].
Since the response of challenges has homomorphic property,
the above schemes (especially CPOR schemes) can leverage



the PDP construction in hybrid clouds.

VI. CONCLUSIONS

In this paper, we addressed the construction of collabo-
rative integrity verification mechanism for distributed data
outsourcing in hybrid clouds. Based on homomorphic ver-
ifiable responses and hash index hierarchy, we proposed a
collaborative provable data possession scheme to support dy-
namic scalability on multiple storage servers. Our performance
analysis indicated that our proposed solution only incurs a
small constant amount of communications overhead.
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APPENDIX

A. Attacks for Public Blocked Scheme

The client breaks a (possibly encoded) fileF into n blocks
m1, ⋅ ⋅ ⋅ ,mn ∈ ℤp for some large primep. Let e : G×G→
GT be a computable bilinear map with groupG’s support
beingℤp andH : {0, 1}∗ → G be the BLS Hash function.
A client’s private key issk = x ∈ ℤp, and her public key is
pk = (v, u), wherev = gx ∈ G andg, u is two generators in
G. the signature on blocki is �i = [H(i)umi ]x. On receiving
index-coefficient pair queryQ = {(i, vi)}i∈I for an indexI,
the server computes and sends back�′ ←

∏

(i,vi)∈Q �
vi
i and

�←
∑

(i,vi)∈Q vimi. The verification equation is

e(�′, g) = e(
∏

(i,vi)∈Q
H(i)vi ⋅ u�, v).

The scheme is not secure due to the leakage of file infor-
mation and the forging of tags, as follows:

Attack 1. The adversary can get the file and tag information
by running or wiretapping then-times verification communi-
cation for a file withn blocks.

Proof: Let n be the number of blocks in the attacked file
and�(k) =

∑n
i=1 vi ⋅mi denote the response of thek-th user’s

challengeQ(k), where we fillvi = 0 to extend the challenge
coefficients, that is,vi = 0 for any (i, vi) ∕∈ Q. Such that the
adversary gets the responses{(�(1), �(1)), ⋅ ⋅ ⋅ , (�(1), �(n))}
after he finishesn times queries. These responses can generate
the equations

⎧





⎨





⎩

�(1) = v
(1)
1 m1 + ⋅ ⋅ ⋅+ v

(1)
n mn

...
...

�(n) = v
(n)
1 m1 + ⋅ ⋅ ⋅+ v

(n)
n mn

where,v(k)i is known for all i ∈ [1, n] and k ∈ [1, n]. The
adversary can computef = (m1, ⋅ ⋅ ⋅ ,mn) by solving the
equations. Similarly, the adversary can get all tags�1, ⋅ ⋅ ⋅ , �n
by the equation system�(i) = �1

v
(i)
1 ⋅ �2

v
(i)
2 ⋅ ⋅ ⋅ ⋅ �n

v(i)
n for

i ∈ [1, n].
Note that, the above attacks are not based on any kind of

assumption.

Attack 2. The server can deceive the client by forging the tag
of data block if the client’s private/public keys are reusedfor
the different files, the client modifies the data in a file, or the
client repeats to insert and delete data blocks.



Proof: This attack can be occurred in a variety of cases,
but they have a common feature that the same hash value
H(i) been used at least 2 times. For example, the adversary
gets two data-tag pairs(mi, �i) and (m′

i, �
′
i) with the same

H(i) from two file F andF ′, such that�i = (H(i) ⋅ umi)x,
�′
i = (H(i) ⋅ um

′

i)x. The adversary first computes�i ⋅ �′
i
−1

=

u(mi−m′

i)x and getsux = (�i ⋅�
′
i
−1

)
1

mi−m′
i by using extended

Euclidean algorithmgcd(mi −m
′
i, p). Further, the adversary

can capture theH(i)x (or H(k)x for ∀k ∈ [1, n]) by H(i)x =
�i

(ux)mi
= (�′

i
mi/�

m′

i

i )
1

mi−m′
i . Hence, for an arbitrary message

m∗
k ∕= mk, the forged tag is generated by

�∗
k = H(k)x ⋅ (ux)m

∗

k = �k ⋅ (�i ⋅ �
′
i

−1
)

m∗
k
−mk

mi−m′
i .

This means that the adversary can forge the data and tags at
any position within the file.

B. Attacks for Public Fragmented Scheme

Given a file F , the client split F into n blocks
(m1, ⋅ ⋅ ⋅ ,mn) and each blockmi is also split intos sec-
tors (mi,1, ⋅ ⋅ ⋅ ,mi,s) ∈ ℤs

P for some enough largep. Let
e : G × G → GT be a bilinear map,g be a generator of
G, andH : {0, 1}∗ → G be the BLS hash. The secret key is
sk = x ∈R ℤp and the public key ispk = (g, v = gx). The
client choosess randomu1, ⋅ ⋅ ⋅ , us ∈R G as the verification
informationt = (Fn, u1, ⋅ ⋅ ⋅ , us), whereFn is the file name.

For each i ∈ [1, n], the tag at the i-th block is
�i = (H(Fn∣∣i) ⋅

∏s

j=1 u
mi,j

j )x. On receiving queryQ =
{(i, vi)}i∈I for an index setI, the server computes and sends
back �′ ←

∏

(i,vi)∈Q �
vi
i and � = (�1, ⋅ ⋅ ⋅ , �s), where

�j ←
∑

(i,vi)∈Q vimi,j . The verification equation is

e(�′, g) = e(
∏

(i,vi)∈Q
H(Fn∣∣i)vi ⋅

∏s

j=1
u
�j

j , v).

This scheme is not secure due to the leakage of outsourcing
data and the forging of tags, as follows:

Attack 3. The adversary can get the file and tag information
by running or wiretapping then-times verification communi-
cation for a file withn× s sectors.

Proof: The proof is similar to that of Theo-
rem 1. Let s be the number of sectors. Givenn
times challenges(Q(1), ⋅ ⋅ ⋅ , Q(n)) and their the results
((�′(1), �(1)), ⋅ ⋅ ⋅ , (�′(n), �(n))), �(k) = (�

(k)
1 , ⋅ ⋅ ⋅ , �

(k)
s ) and

Q(k) = {(i, vi)}i∈I , the adversary can solve the system
of equations,�(k)

i = m1,i ⋅ v
(k)
1 + ⋅ ⋅ ⋅ + mn,i ⋅ v

(k)
n for

k ∈ [1, n], to reach{m1,i, ⋅ ⋅ ⋅ ,mn,i}. After s times solving
these equations (i ∈ [1, s]), the adversary can obtain the whole
file, F = {mi,j}

i∈[1,n]
j∈[1,s]. Similarly, the adversary can get all

tags�1, ⋅ ⋅ ⋅ , �n by using�′(1), ⋅ ⋅ ⋅ , �′(n).

Attack 4. Let s be the number of sectors in each blocks. The
server can deceive the client by forging the tag of data block
if the client’s private/public keys and the file name are reused
for 2 different files with the number of blocksn ≥ 2s, the

client modifies at leasts data blocks in a file, or the client
repeats at leasts times to insert and delete data blocks.

Proof: The proof is similar to that of Theorem 2. Assume
two file F andF ′ have the same file nameFn. The adversary
choices2s different blocks randomly from the same position
in two files, without loss of generality,(m1, ⋅ ⋅ ⋅ ,m2s) and
(m′

1, ⋅ ⋅ ⋅ ,m
′
2s), such that�i = (H(Fn, i) ⋅

∏s

j=1 u
mi,j

j )x,

�′
i = (H(Fn, i) ⋅

∏s
j=1 u

′
j
m′

i,j )x for i ∈ [1, 2s]. The ad-

versary computesΔ1, ⋅ ⋅ ⋅ ,Δ2s by usingΔi = �i ⋅ �
′
i
−1

=
∏s

j=1(u
mi,j

j ⋅ (u′
m′

i,j

j )−1)x. These values can generate the
following system of equations

(Δ1, ⋅ ⋅ ⋅ ,Δ2s)
T =M ⋅ (ux1 , ⋅ ⋅ ⋅ , u

x
s , u

′x
1 , ⋅ ⋅ ⋅ , u

′x
s )T .

where,M denotes a2s× 2s matrix as

M =

⎛

⎜

⎜

⎝

m1,1 ⋅ ⋅ ⋅ m1,s −m′
1,1 ⋅ ⋅ ⋅ −m′

1,s

...
...

...
...

m2s,1 ⋅ ⋅ ⋅ m2n,s −m′
2s,1 ⋅ ⋅ ⋅ −m′

2s,s

⎞

⎟

⎟

⎠

Let D = M−1 = (di,j)2s×2s. The adversary can compute
uxi =

∏2s
j=1(

�j

�′
j

)di,j andu′xi =
∏2n

j=1(
�j

�′
j

)ds+i,j for i ∈ [1, s].

Such thatH(Fn, k)x = �k/
∏s

j=1(u
x
j )

mk,j for k ∈ [1, n].
Hence, for any messagem∗

k ∕= mk, the forged tag is�∗
k =

H(Fn, k)x ⋅
∏s

j=1(u
x
j )

m∗

k,j = �k ⋅
∏s

j=1(u
x
j )

m∗

k,j−mk,j .


