
Ontology-based Policy Anomaly Management
for Autonomic Computing

Hongxin Hu1, Gail-Joon Ahn1, and Ketan Kulkarni2
1Arizona State University,2Intel Corporation

{hxhu,gahn}@asu.edu;{ketankulkarni29}@gmail.com

Abstract—The advent of emerging computing technologies
such as service-oriented architecture and cloud computing
has enabled us to perform business services more efficiently
and effectively. However, we still suffer from unintended
security leakages by unauthorized actions in business services.
Moreover, designing and managing different types of policies
collaboratively in such a computing environment are critical
but often error prone due to the complex nature of policies
as well as the lack of effective analysis mechanisms and
corresponding tools. In particular, existing mechanisms and
tools for policy management adopt different approaches for
different types of policies. In this work, we propose a unified
framework to facilitate collaborative policy analysis and
management for different types of policies, focusing on policy
anomaly detection and resolution. Our generic approach
captures the common semantics and structure of different
types of access control policies with the notion of policy
ontology. We also discuss a proof-of-concept implementation
of our proposed framework and demonstrate how efficiently
our approach can discover and resolve anomalies for different
types of policies.

Index Terms—Ontology, policy anomaly analysis, auto-
nomic computing.

I. I NTRODUCTION

We have witnessed explosive growth of the applications
adopting service oriented architecture (SOA) and cloud
computing on the Internet. SOA technology and Cloud
computing brought the concept of multi-tenancy for serving
various subscribers through a common pool of resources.
In such an environment, it is necessary to have a more
flexible and collaborative access control mechanism to
prevent unintended access of shared resources and private
user data. Therefore, the use of a policy-based approach
has received considerable attention to accommodate the
security requirements covering such large, open, distributed
and heterogeneous computing environments.

A policy, the basic building block of policy-based sys-
tem, is a set of rules that control the behaviors of a
system. Policy-based computing handles complex system
properties by separating policies from system implementa-
tion and enables dynamic adaptability of system behaviors
by changing policy configurations without reprogramming
the systems. Different types of access control policies
have been developed to support policy-based computing,
including application-level policies(e.g., XACML [25],
SAML [24], Ponder [17] and EPAL [11]),network-level

policies (e.g., firewall policy [15] and IPSec policy [16]),
and system-level policies(e.g., SELinux policy [23] and
AppArmor policy [1]).

Policies in modern systems are exponentially growing in
size and complexity. In a typical policy, multiple rules may
overlap, which means one access request may match several
rules. Furthermore, multiple rules within one policy may
conflict, implying that those rules not only overlap each
other but also yield different decisions. Conflicts in a policy
may lead to both safety problem (e.g. allowing unauthorized
access) and availability problem (e.g. denying legitimate
access). On the other hand, there might be some rules that
are redundant, meaning that an access request matching one
rule also matches other rules with the same effect. In such a
case, the performance of an access control system might be
degraded since it directly depends on the number of rules to
be evaluated within policies. Consequently, the increasing
complexity of policy-based computing strongly demands
automated policy analysis techniques. Without having such
analysis techniques in place, most benefits of policy-based
techniques may be in vain.

Recently, policy anomaly analysis has received a great
deal of attention [9], [10], [19], [18], [20], [26]. Corre-
sponding policy analysis tools have been introduced. For
example, Firewall Policy Advisor [9], FIREMAN [26] and
FAME [19] were designed with the goal of detecting policy
anomalies in firewall. Other tools, such as XAnalyzer [20],
were developed for helping policy administrators to dis-
cover and resolve policy anomalies in XACML policies.
However, most of these prior approaches handle policy
analysis and management focusing on a particular type
of policy. As a result, policy administrators have to get
familiar with each of these tools for analyzing and man-
aging different types of policies in their enterprise systems
and may get confused with those different policy analysis
methods. Therefore, a unified policy management mecha-
nism is desirable for seamlessly managing different types
of access control policies, which is especially critical for
collaborative policy analysis in a heterogeneous computing
environment.

In this paper, we present a unified anomaly management
framework for representing and analyzing different types
of access control policies in terms of policy ontology. Our
approach employs a policy-based segmentation technique to

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247119

facilitate not only more accurate anomaly detection but also
effective anomaly resolution. Furthermore, we implement a
proof-of-concept tool based on our proposed framework. To
evaluate the practicality of our approach, our experiments
deal with a set of firewall and XACML policies.

The rest of this paper is organized as follows. Section II
overviews policy anomalies in both firewall and XACML
policies. We describe our generic ontology-based anomaly
management framework in Section III. In Section IV, we
discuss the implementation of our tool and the evaluation
of our approach. Section V overviews the related work and
we conclude this paper in Section VI.

II. BACKGROUND

In this section, we overview policy anomalies in two
typical kinds of access control policies, firewall policy
and XACML policy, which are used to demonstrate our
approach in this paper.

A. Anomalies in Firewall Policies

Firewalls are a widely deployed security mechanism to
ensure the security of private networks in most businesses
and institutions. The effectiveness of security protection
provided by a firewall mainly depends on the quality of
policy configured in the firewall. A firewall policy consists
of a sequence of rules that define the actions performed
on packets that satisfy certain conditions. The rules are
specified in the form of〈condition, action〉. A condition

in a rule is composed of a set of fields to identify a certain
type of packets matched by this rule. Table I shows an
example of a firewall policy, which includes five firewall
rulesr1, r2, r3, r4 andr5. Note that the symbol “*” utilized
in firewall rules denotes a domain range. For instance, a
single “*” appearing in the IP address field represents an
IP address range from 0.0.0.0 to 255.255.255.255.

We articulate firewall policy anomalies based on follow-
ing classification:

• Conflict: One rule is conflicting with other rules, if a
rule overlaps with others but defines a different action.
In this case, the packets matched by the overlap of
those rules may be permitted by one rule, but denied
by others. In Table I,r2 correlates withr5, and all
UDP packets coming from any port of 10.1.1.* to
the port 53 of 172.32.1.* match the intersection of
these rules. Sincer2 is a preceding rule ofr5, every
packet within the intersection of these rules is denied
by r2. However, if their positions are swapped, the
same packets will be allowed.

• Redundancy: A rule is redundant if there is another
same or more general rule available that has the same
effect. For example,r1 is redundant with respect to
r2 in Table I, since all UDP packets coming from any
port of 10.1.2.* to the port 53 of 172.32.1.* matched
with r1 can matchr2 as well with the same action.

Fig. 1. An example XACML policy.

B. Anomalies in XACML Policies

XACML has become thede factostandard for describing
access control policies and offers a large set of built-in
functions, data types, combining algorithms, and standard
profiles for defining application-specific features. Figure1
shows an example XACML policy. The root policy set
PS1 contains two policies,P1 andP2, which are combined
usingFirst-Applicablecombining algorithm. The policyP1

has three rules,r1, r2 and r3, and its rule combining
algorithm isDeny-Overrides. The policyP2 includes two
rulesr4 andr5 with Deny-Overridescombining algorithm.
In this example, there are four subjects:Manager, Designer,
Developerand Tester; two resources:Reportsand Codes;
and two actions:ReadandChange. Note that bothr2 and
r3 define conditions over theTime attribute.

An XACML policy may contain both policy components

2

TABLE I
AN EXAMPLE FIREWALL POLICY.

Order Rule Protocol Source IP Source Port Destination IP Destination Port Action
1 r1 UDP 10.1.2.* * 172.32.1.* 53 deny
2 r2 UDP 10.1.*.* * 172.32.1.* 53 deny
3 r3 TCP 10.1.*.* * 192.168.*.* 25 allow
4 r4 TCP 10.1.1.* * 192.168.1.* 25 deny
5 r5 * 10.1.1.* * * * allow

and policy set components. Often, a rule anomaly occurs in
a policy component, which consists of a sequence of rules.
On the other hand, a policy set component consists of a set
of policies or other policy sets, thus anomalies may also
arise among policies or policy sets.

• Anomalies at Policy Level:A rule is conflicting with
other rules, if this rule overlaps with others but defines
a different effect. For example, thedenyrule r1 is in
conflict with the permit rule r2 in Figure 1 because
rule r2 allows the access requests from a designer
to change codes in the time interval [8:00, 17:00],
which are supposed to be denied byr1; and a rule is
redundantif there is other same or more general rules
available that have the same effect. For instance, if we
change the effect ofr2 to Deny, r3 becomes redundant
sincer2 will also deny a designer to change reports
or codes in the time interval [12:00, 13:00].

• Anomalies at Policy Set Level:Anomalies may also
occur across policies or policy sets in an XACML pol-
icy. For example, considering two policy components
P1 andP2 of the policy setPS1 in Figure 1,P1 is
conflicting with P2, becauseP1 permits the access
requests that a developer changes reports in the time
interval [8:00, 17:00], but which are denied byP2.
On the other hand,P1 denies the requests allowing a
designer to change reports or codes in the time interval
[12:00, 13:00], which are permitted byP2. Supposing
the effect ofr2 is changed toDenyand the condition
of r2 is removed,r4 is turned to beredundant with
respect tor2, even thoughr2 and r4 are placed in
different policiesP1 andP2, respectively.

III. O NTOLOGY-BASED ANOMALY MANAGEMENT

FRAMEWORK

Our ontology-based policy anomaly management frame-
work is composed of three core functionalities:policy
ontology extraction, policy ontology populationandpolicy
anomaly analysis, as depicted in Figure 2. First, the general
policy domain concepts, policy structure and semantics are
captured from diverse access control policies for the con-
struction of a policy ontology. Then, the generated policy
ontology can be employed by different types of access
control policies to populate corresponding policy ontology
instances, which are in turn utilized by a unified policy
analysis mechanism adopting a policy-based segmentation
technique to facilitate effective anomaly detection and res-
olution.

Fig. 2. Ontology-based policy anomaly management framework.

A. Policy Ontology Extraction

Generic access control policy representation enables the
policy analysis and management mechanisms to be inde-
pendent of different types of access control policies. We
examined a variety of existing access control policies, and
observed that following characteristics should be extracted
to capture a generic policy representation for building our
policy ontology.

• Policy Domain Concepts: Policy domain concepts can
be considered as the terms that are generally used to
describe the access control policies.

• Policy Structure: Policy structure depicts how policy
components are arranged within policies.

• Policy Semantics: Policy semantics represent the rela-
tionships among policy components and also describe
the behaviors of policies.

In order to achieve a uniform policy analysis and man-
agement, generic policy representation should successfully
capture above characteristics from different types of poli-
cies. Then, the generated policy ontology can be reused
by different types of policies for policy analysis. However,
the policy ontology may need further refinement whenever
changes are made to the existing policy specifications or
a new type of policy is considered in our generic policy
management.

3

1) Capturing Policy Domain Concepts:Capturing ac-
cess control policy domain concepts can be considered as
the first step towards the capturing generic policy repre-
sentation. We analyzed the specifications of several typical
access control policies and enlisted the terms used for spec-
ifying those policies. After that, we classified these terms
from different types of policies under common classes that
can be treated as access control policy domain concepts.
For example, we first enlisted terms such as rule, policy,
policy set, access control list, subject, action, resource,
effect, combining algorithm, conflict resolution strategyand
so on from different policies. Then, we classified them
under common concepts, such as Policy, Policy Group, Pol-
icyRule. To give an example of our classification process,
consider XACML has a notion ofcombining algorithm,
which indicates the behavior of a policy in case of conflicts.
However, firewall policy utilizes aFirst-Match strategyfor
conflict resolution. Both of them can be classified into one
classMeta-Policy.

2) Capturing Generic Policy Structure:We examined
the structures of different access control policies. For ex-
ample, XACML policy structure has the notion of<Rule>,
<Policy> and<PolicySet>. PolicySet is the container for
other policies as well as policy sets. Policy defines the list
of rules. Considering other access control policy such as
firewall policy, it has the concept ofAccess Control List
(ACL), which includes a list of firewall rules. A typical
firewall policy may contain a number of ACLs. Thus, each
ACL in a firewall policy is similar to thepolicy node
containing a group of rules, and a firewall policy can be
also treated as a group ofpolicy nodes.

Fig. 3. Generic access control policy structure.

Based on our observation and examination of different
types of policy specifications, we construct a generic access
control policy structure. An access control policy defines
what activities a member of thesubjectdomain can perform
on a set of objects in theResourcedomain. The basic node
or unit for defining a policy isPolicy Rule. These rules
either permit or deny access to the resource objects and
hence can be classified into two types:Positive Ruleand
Negative Rule, respectively. Rules that are applicable to the
same subject or resource objects can be arranged into a
Policy node as aRule List. Each Policy node may have
meta-policies associated with it, which specify the policy
behaviors with respect to the rule conflicts. For example,

conflict resolution strategy specified for policy node defines
the behavior of a policy in case of conflict. Multiple related
policies can be grouped together to generate a composite
Policy Group. For example, policies related to the same
department or same application may be grouped together
for policy organization and management. A policy group
may also have meta-policies associated with it. Access
control policy might containPolicy as root node or it might
have a hierarchical structure where root node isPolicy
Group containing other policies or policy groups. Figure 3
depicts a generic structure of access control policy.

3) Capturing Generic Policy Semantics:Access control
policies are defined in terms of the policy attributes. At-
tributes are named values of known items and are charac-
teristics of theSubject, ResourceandAction, in which the
access requests are made. Rules in an access control policy
are defined based on these attributes. A general semantic of
a rule in an access control policy can be described aswhich
subject(s) has access to which resource(s) and with what
action(s) (permit or deny)?Thus, a high-level semantic of
access control policies is typically based on the policy rule
expressed in terms of attributes ofSubject, Resource, Action
andEffect. Moreover, rules may have conditions that need
to be satisfied for making access decisions.

To capture the high-level semantics mentioned above in
generic policy representation, we need to identify attributes
of items, Subject, Resource, Action and Effect from dif-
ferent types of policies. In addition, we need to identify
more attributes considering other items, such ascondition
and conflict resolution strategy, for comprehensive policy
representation.

For example, considering a ruler2 from the example
XACML policy in Figure 1, we can easily extract following
attributes based on identified items:

Subject – Designer, Developer
Resource– Reports, Codes
Action – Read, Change
Condition – Time between 8:00 AM to 5:00 PM
Effect – Permit

Then, regarding a ruler4 in the example firewall policy
in Table I, we can identify rule attributes as follows:

Subject – 10.1.1.*: *
Resource– 192.186.1.*: 25
Action – Access (default action)
Condition – (Protocol == UDP)
Effect – Deny

In addition to the above rule level semantics, a policy
may also specify attributes such asconflict resolution
strategy which defines the behavior of a policy in case
of conflicts. For example, XACML defines four different
combining algorithms: Deny-Overrides, Permit-Overrides,
First-Applicable and Only-One-Applicable, while firewall
policy uses a defaultFirst-Match strategy. Those specific
attributes should be additionally identified and associated
with proper policy structure components such asPolicy or

4

������� ��	
������������������������� !"#
$%&'()*+,-./0123 45678958:;<

(a) Access control policy ontology.

=>?@>ABCDBEFGHFIJKLJ
(b) Ontology instance representation.

Fig. 4. Policy ontology and instance.

Policy Groupnode for generic policy representation.
4) Policy Ontology Generation:A generic representa-

tion of policy requires to identify the domain concepts,
policy structure and semantics shared by different types
of policies. We discussed the process of capturing these
characteristics previously. Then, a uniform format or tem-
plate is needed to store the generic information about policy
domain concepts, structure and semantics effectively and
accurately, so that the identified information is reusable for
different kinds of policies based on a generic policy analysis
mechanism. To this end, we adopt a method of modeling
the policy domain usingontology

Ontology is a formal representation of knowledge as a
set of concepts within a particular domain and relationships
between those concepts. It provides us the shared vocab-
ulary for modeling a domain, which includes the types of
concepts in the domain, their properties and relationships.
Creating access control policy ontology enables us to model
the access control policy domain by defining its vocabulary,
objects and their relations along with the properties. Pol-
icy ontology which represents shared domain knowledge
provides us a template which can be instantiated with the
information extracted from different types of access control
policies to enable a generic policy representation for policy
analysis.

Figure 4(a) shows a generic ontology created for the
access control policy domain. We utilize the policy domain
concepts, structure and semantics capetured from a variety
of policy specifications to generate this policy ontology.
Web Ontology Language (OWL) [4], which represents the
family of knowledge representation languages for authoring
an ontology, is adopted to represent our policy ontology.
To create the policy ontology using OWL, we use protege
tool [5].

OWL allows us to describe the domain in terms of

classes, properties andindividuals. Classes
represent a collection of objects, usually sharing some
common properties. We created the base classes for do-
main concepts such assubjectand action. Properties
represent the relationships between individual concepts.
There are two types of OWL properties used to define the
relationships:

1) Object Properties: An object property is a relation-
ship between two individuals or concepts of ontology
domain. We defined different object properties to
capture the generic structure as well as semantic
information of access control policies. For example,
an object propertyhasRulebetween conceptsAccess-
ControlPolicy and PolicyRulecaptures the structure
information that a policy node may contain one or
more rules.

2) Data Properties: A data property links an individual
concept to its literal value. For example, we use a
data propertyhasValueto assign a literal value to a
concept such asSubject.

Defining policy ontology enables us to capture the gen-
eral information of policy domain concepts, policy structure
and policy semantics. Policy ontology can be easily ex-
tended to support new characteristics introduced due to the
changes in the access control policy specifications. We can
easily add new data properties or object properties along
with the new domain concepts in our policy ontology to
reflect these changes.

B. Policy Ontology Population

To create a generic representation of a particular type
of access control policy, we instantiate the policy ontol-
ogy with the structure and semantic information extracted
from the particular policy. This method of instantiating
the basic ontology with the specific attributes, properties

5

and relationships extracted from a specific domain, is
calledOntology Population. Figure 4(b) shows an ontology
instance representation with respect to XACML and firewall
policies. A node is either labeled with an ontology concept
or an information instance obtained from the particular
policies. A link labeledinstance Of from an information
instance to an ontology concept represents an instance
generated for the corresponding policy ontology concept.

We use policy parsers to extract the information required
for ontology population. A parser understands the semantic
and structure information for a particular policy and abstract
the information, such asSubject, Resource, ActionandPol-
icyRule, required by policy ontology. For example, a parser
for the firewall policy parses outsource-ip information
in a rule as theSubjectfor that particular rule in terms of
the firewall policy semantics.

C. Policy-based Segmentation for Anomaly Detection

1) BDD-based Policy Representation:Our policy-based
segmentation technique introduced in subsequent sections
requires a well-formed representation of policies for per-
forming a variety of set operations. Binary Decision Dia-
gram (BDD) [14] is a data structure that has been widely
used for formal verification and simplification of digital
circuits. In this work, we leverage BDD as the underlying
data structure to represent policy ontology instances and
facilitate uniform policy analysis.

Given the ontology instance corresponding to a par-
ticular policy, we can useOWLOntologyWalker and
OWLOntologyWalkerVisitor provided by OWL API
to walk the asserted structure of the policy ontology to
obtain the information about required attributes such as
Subject, Resource, Action and Effect for each policy rule
object in an ontology instance. Once these attributes are
identified, all policy rule instances can be transformed into
Boolean expressions. Each Boolean expression of a rule
is composed of atomic Boolean expressions combined by
logical operators∨ and ∧. Atomic Boolean expressions
are treated as equality constraints or range constraints on
attributes.

Considering the attribute information extracted form an
ontology instance of the example XACML policy in Fig-
ure 1 in terms ofatomic Boolean expressions, the Boolean
expression for ruler1 is:

(Subject = “Designer” ∨ Subject = “Tester”) ∧
(Resource = “Codes”) ∧ (Action = “Change”)

Similarly, based on the ontology instance of the firewall
policy in Table I, the ruler4 can be represented in Boolean
expression as follows:

(Subject = “10.1.1.∗ : ∗”) ∧ (Resource =
“192.186.1.∗ : 25”) ∧ (Protocol = “UDP”)

We encode each of the atomic Boolean expression as
a Boolean variable. A list of Boolean encoding for the
example rules is shown in Table II. We then utilize the
Boolean encoding to construct Boolean expressions in
terms of Boolean variables for rules.

TABLE II
ATOMIC BOOLEAN EXPRESSIONS AND CORRESPONDINGBOOLEAN

VARIABLES FOR EXAMPLE RULES.

Unique Atomic Boolean Expression Boolean Variable
Subject = “Designer” S1

Subject = “Tester” S2

Subject = “10.1.1.∗ : ∗” S3

Resource = “Codes” R1

Resource = “192.186.1.∗ : 25” R2

Action = “Change” A1

Protocol = “UDP” C1

The Boolean expression for XACML ruler1 is:
(S1 ∨ S2) ∧ R1 ∧A1

The Boolean expression for firewall ruler4 is:
S3 ∧R2 ∧ C1

BDDs are acyclic directed graphs which represent
Boolean expressions compactly. Each nonterminal node in
a BDD represents a Boolean variable, and has two edges
with binary labels, 0 and 1 fornonexistentand existent,
respectively. Terminal nodes represent Boolean valueT
(True) or F (False). Figures 5(a) and 5(b) give BDD
representations of above two rules, respectively.

MNO PQQ RST UV WX YZ[T\]^
_` _abc`X `d e

fbbb
fff MgO PQQ RST U RhT^iU]] T\]^

_jbcaY`d ebb
fff

Fig. 5. Unified BDD-based policy representation.

Once the BDDs are constructed for policy ontology
instances, performing set operations, such as unions (∪),
intersections (∩) and set differences (\), required by our
policy-based segmentation is efficient as well as straight-
forward.

2) Policy-based Segmentation for Anomaly Detection:
In order to precisely identify policy anomalies and enable
an effective anomaly resolution, we adopts apolicy-based
segmentation techniqueintroduced in [19], [20], which
utilizes the above-mentioned BDD-based data structure to
represent policies and perform various set operations, andto
convert a policy into a set of disjoint authorization spaces.

By adopting the policy-based segmentation technique, an
entire packet space can be divided into a set of pairwise
disjoint segments. We classify the policy segments as fol-
lows: non-overlappingsegment andoverlappingsegment,
which is further divided intoconflicting overlappingseg-
ment andnon-conflicting overlappingsegment. Eachnon-

6

TABLE III
ANOMALY ANALYSIS EVALUATION .

Policy
Partitions Conflict Analysis Redundancy Analysis

(#) Policy Group Time Policy Group Time
Level(#) Level(#) (s) Level(#) Level(#) (s)

XACML Policies
1 (CodeA) 6 1 1 0.095 1 0 0.096

2 (SamplePolicy) 8 0 2 0.106 0 2 0.109
3 (GradeSheet) 18 0 4 0.125 0 2 0.132
4 (SynPolicy-1) 205 8 14 0.364 7 4 0.359

5 (Continue) 439 9 14 0.621 10 7 0.597
6 (SynPolicy-2) 523 29 15 0.914 14 8 0.903

Firewall Policies
1 (A) 15 3 0 0.119 2 0 0.113
2 (B) 36 5 0 0.153 3 0 0.151
3 (C) 89 11 0 0.196 5 0 0.189
4 (D) 127 18 0 0.224 6 0 0.213
5 (E) 183 23 5 0.417 13 3 0.431
6 (F) 405 41 11 0.589 16 7 0.603

overlappingsegment associates with one unique rule and
eachoverlappingsegment is related to a set of rules, which
may conflict with each other (conflicting overlappingseg-
ment) or have the same action (non-conflicting overlapping
segment) indicating possible redundancies.

D. Policy Anomaly Resolution

An intuitive means for resolving policy conflicts by a
policy designer is to remove all conflicts by modifying the
policies. However, resolving conflicts through changing the
policies is remarkably difficult, even impossible, in practice.
In [20], we introduced a flexible and extensible conflict res-
olution framework to achieve a fine-grained policy conflict
resolution. In addition, we proposed a property assignment
mechanism, which performs three property assignment pro-
cesses, to effectively identify redundant rules in an exam-
ined policy. We adopt those anomaly resolution approaches
in our ontology-based policy anomaly management.

IV. I MPLEMENTATION AND EVALUATION

We have implemented a policy analysis tool called
Generic Policy Analyzer in Java based on our
ontology-based policy anomaly management framework.
We used protege [5] to extract and define the policy
ontology. To create ontology instances for specific policies,
we utilized Java-based OWL API [7]. To support policy
ontology population, our current implementation supports
the parsers for both XACML and firewall policies based
on SunXACML implementation [6] and FIREMAN [26]
implementation, respectively. JavaBDD [3], which is based
on BuDDy package [2], is employed by our tool to support
BDD representation and authorization space operations.

We evaluated the efficiency of our tool for policy analysis
on both XACML and firewall policies. We performed our
experiments on Intel Core 2 Duo CPU 3.00 GHz with 3.25
GB RAM running on Windows XP SP2. Table III summa-
rizes the policies used for our evaluation. Real-life XACML
policies utilized for evaluation were collected from different
sources. Two of the policies,CodeA and Continue are

XACML policies used in [18]; among them,Continue is
designed for a real-world Web application supporting a
conference management.GradeSheetis utilized in [12].
It is difficult to get a large volume of real-world policies
because they are often considered to be highly confidential.
Thus, we generated two large synthetic policiesSynPolicy-1
andSynPolicy-2for further evaluating the performance and
scalability of our tool. We also usedSamplePolicy, which is
the example XACML policy represented in Figure 1, in our
experiments. Similarly, firewall polices used for evaluation
were obtained from our campus networks and synthetical
generation.

Time required by our tool for policy anomaly analysis
highly depends upon the number of segments generated
for each policy. The increase of the number of segments
is proportional to the number of components contained
in an policy. From Table III, we observe that our tool
performs fast enough to handle larger size of policies, such
as firewall policiesE andF, even for some complex policies
with multiple levels of hierarchies along with hundreds of
rules, such as the real-life XACML policy,Continue, and
the synthetic XACML policy,SynPolicy-2. The time trends
observed from Table III clearly provide the evidence of
efficiency of our tool.

V. RELATED WORK

Many research efforts have been devoted to policy anal-
ysis. However, most existing research work only focus
on developing techniques for one specific policy. None
of them could design a uniform analysis mechanism to
accommodate policy analysis requirements for different
types of policies. We only overview some work closely
related to this paper.

In [13], the authors formalized XACML policies using
a process algebra known as Communicating Sequential
Processes (CSP). This work utilizes a model checker to for-
mally verify properties of policies, and to compare access
control policies with each other. Fisler et al. [18] introduced

7

an approach to represent XACML policies with Multi-
Terminal Binary Decision Diagrams (MTBDDs). A policy
analysis tool called Margrave was developed. Margrave
can verify XACML policies against the given properties
and perform change-impact analysis based on the semantic
differences between the MTBDDs representing the policies.
Ahn et al. [8] presented a formalization of XACML using
answer set programming (ASP), which is a recent form of
declarative programming, and leveraged existing ASP rea-
soners to conduct policy verification. Hu et al. [20] designed
an XACML policy analysis tool called XAnalyzer, which
ensures an accurate anomaly detection at both policy level
and policy set level, and a fine-grained conflict resolution.

Several work also presented policy analysis tools with
the goal of detecting policy anomalies in firewall. Al-Shaer
et al. [9] designed a tool called Firewall Policy Advisor
which can only detectpairwiseanomalies in firewall rules.
Yuan et al. [26] presented a toolkit, FIREMAN, which can
detect anomalies amongmultiplefirewall rules by analyzing
the relationships betweenone rule and the collections of
packet spaces derived from all preceding rules. However,
the anomaly detection procedures of FIREMAN are still
incomplete [10]. Hu et al. [19] developed a tool, FAME,
which could conduct a complete examination of policy
anomaly and provide more accurate anomaly diagnosis
information for firewall policy analysis.

VI. CONCLUSION

We have designed an innovative framework for manag-
ing policy anomalies for different types of access control
policies. This framework presents a unified policy anomaly
analysis approach in terms of policy ontology. We have also
described a proof-of-concept implementation of our method
and demonstrated how our approach can efficiently discover
and resolve policy anomalies. As part of future work, we
would like to leverage existing automatic ontology extrac-
tion tools for more accurate policy ontology generation. In
addition, we would further evaluate our approach with other
types of access control policies. Also, we would explore
how our ontology-based policy analysis approach can be
extended to handle more complicated scenarios in emerging
computing environments, such as multiparty access control
in online social networks [21], [22].

ACKNOWLEDGMENTS

This work was partially supported by the grants
from National Science Foundation (NSF-IIS-0900970 and
NSF-CNS-0831360) and Department of Energy (DE-
SC0004308).

REFERENCES

[1] AppArmor. http://de.opensuse.org/AppArmor.
[2] Buddy version 2.4. http://sourceforge.net/projects/buddy.
[3] Java BDD. http://javabdd.sourceforge.net.
[4] OWL Web Ontology Language Reference. http://www.w3.org/TR/

owl-ref/.
[5] Protege Ontology Editor. http://protege.stanford.edu/.
[6] Sun XACML Implementation. http://sunxacml.sourceforge.net.

[7] The OWL API. http://owlapi.sourceforge.net/.
[8] G. Ahn, H. Hu, J. Lee, and Y. Meng. Representing and reasoning

about web access control policies. In2010 34th Annual IEEE
Computer Software and Applications Conference, pages 137–146.
IEEE, 2010.

[9] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in
distributed firewalls. InIEEE INFOCOM, volume 4, pages 2605–
2616. Citeseer, 2004.

[10] J. Alfaro, N. Boulahia-Cuppens, and F. Cuppens. Complete analysis
of configuration rules to guarantee reliable network security policies.
International Journal of Information Security, 7(2):103–122, 2008.

[11] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter.
Enterprise privacy authorization language (epal). http://www.w3.org/
Submission/2003/SUBM-EPAL-20031110/.

[12] A. Birgisson, M. Dhawan, U. Erlingsson, V. Ganapathy, and
L. Iftode. Enforcing authorization policies using transactional
memory introspection. InProceedings of the 15th ACM conference
on Computer and communications security, pages 223–234. ACM
New York, NY, USA, 2008.

[13] J. Bryans. Reasoning about XACML policies using CSP. In
Proceedings of the 2005 workshop on Secure web services, page 35.
ACM, 2005.

[14] R. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on computers, 100(35):677–691, 1986.

[15] D. Chapman, E. Zwicky, and D. Russell.Building internet firewalls.
O’Reilly & Associates, Inc. Sebastopol, CA, USA, 1995.

[16] M. Condell, C. Lynn, and J. Zao. Security policy specification
language. Internet Engineering Task Force (IETF) Internet Draft,
2000.

[17] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder
policy specification language.Policies for Distributed Systems and
Networks, pages 18–38, 2001.

[18] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.Tschantz.
Verification and change-impact analysis of access-controlpolicies.
In ICSE ’05: Proceedings of the 27th international conferenceon
Software engineering, pages 196–205, New York, NY, USA, 2005.
ACM.

[19] H. Hu, G. Ahn, and K. Kulkarni. Fame: a firewall anomaly
management environment. InProceedings of the 3rd ACM workshop
on Assurable and usable security configuration, pages 17–26. ACM,
2010.

[20] H. Hu, G. Ahn, and K. Kulkarni. Anomaly discovery and resolution
in web access control policies. InProceedings of the 16th ACM
symposium on Access control models and technologies, pages 165–
174. ACM, 2011.

[21] H. Hu and G.-J. Ahn. Multiparty authorization framework for data
sharing in online social networks. InProceedings of the 25th annual
IFIP WG 11.3 conference on Data and applications security and
privacy, DBSec’11, pages 29–43. Springer-Verlag, 2011.

[22] H. Hu, G.-J. Ahn, and J. Jorgensen. Detecting and resolving privacy
conflicts for collaborative data sharing in online social networks.
In Proceedings of the 27th Annual Computer Security Applications
Conference, ACSAC’11. ACM, 2011.

[23] P. Loscocco and S. Smalley. Integrating flexible support for security
policies into the Linux operating system. InProc. 2001 USENIX
Annual Technical Conference REENIX Track, pages 29–40, 2001.

[24] OASIS. Security Assertion Markup Language. http://www.
oasis-open.org/committees/security/.

[25] XACML. OASIS eXtensible Access Control Markup Lan-
guage (XACML) V2.0 Specification Set. http://www.oasis-
open.org/committees/xacml/, 2007.

[26] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, P. Mohapatra, and
C. Davis. Fireman: A toolkit for firewall modeling and analysis.
In 2006 IEEE Symposium on Security and Privacy, page 15, 2006.

8

