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Abstract—Devising a uniform paradigm for the representation of 

multimedia data contents in distributed systems in the presence 

of heterogeneity, distribution, and semantic gap is a difficult task. 

When adding technological limitations to this mix, the problem 

becomes more complex. In this paper, we present a logic-based 

model for representing the semantics of complex multimedia data 

objects. The model employs first-order logic to describe the 

semantic contents of multimedia data, such as visual objects and 

color/texture features. The aim of this model is to provide general 

multimedia content representation that can be used in object-

oriented information systems. The novelty of this framework 

comes from (1) its mathematical capability to represent semantic 

contents, (2) the hierarchical organization and classification of 

multimedia data objects according to their semantic contents, 

and (3) the ease of nearest-neighbor searching through synonym 

links. Finally, the simulation results are presented and analyzed 

based on various performance metrics. 

Keywords- collaborative computing, multimedia retrieval, logic-

based representation 

I.  INTRODUCTION 

Peer-to-Peer networks are becoming popular in 
situations where the infrastructures are either destroyed 
or too expensive to be built. In a P2P network, each node 
behaves as a router, forwarding messages for other nodes. 
The previous researches in P2P networks mainly focuses 
on designing routing protocols that adapt to the 
dynamically changing network topology [1-2], and 
relatively few works have been reported on the data 
accessing issue [3]. Although the study of routing 
protocols is important for successful network 
communications, data accessing is an equally significant 
issue in the applications of P2P networks, since the 
ultimate task of a network is to support timely and 
reliable information retrieval and data sharing among 
data sources. 

One important data accessing application for P2P 
networks is the content-based image retrieval (CBIR). 
The recent technical advances enable mobile devices to 
capture and store images, which provide the foundation 
for image retrieval in P2P networks. The capability of 

accessing images can drastically enrich the 
communications between mobile users, improving the 
quality of P2P data services. However, efficient retrieval 
of image data in P2P networks is challenging due to the 
multiple constraints such as node mobility, computation 
capability, memory space, and bandwidth. Generally, the 
impact of P2P networks on image retrieval can be 
categorized as follows: 

1) In a P2P network, the nodes communicate with 
each other in a hop-by-hop fashion; however, the 
paths between these nodes are constantly changing 
due to node mobility. An image query may require 
traversing of the whole network, because the data 
source nodes are unknown at the requesting node. 
However, this flooding policy drastically 
consumes system resources — memory space, 
network bandwidth, and battery power. 
Considering the sheer size of image data, the 
performance of traditional flooding-based policy is 
even more deteriorated. 

2) Scalability and robustness may vary due to 
different network configurations. A practical P2P 
network may consist of several data server nodes 
(data centers) and a collection of client nodes that 
request data from the data centers [3]. However, 
this network configuration is not robust or scalable 
since the data centers behave as hotspots and their 
movements within the area could also increase the 
network traffic. 

In response to the query, nodes in a P2P network can 
be partitioned into two groups: the nodes containing 
relevant data (relevant nodes) and the nodes that do not 
contain relevant data (irrelevant nodes). In the flooding-
based information processing approaches, the query is 
communicated to all nodes in the system. Alternatively, 
to improve the performance, one should attempt 
communication with relevant nodes. This strategy 
reduces the network traffic and consequently, improves 
system performance. This paper is intended to address a 



scheme that limits the communication to the relevant 
nodes during the course of query processing in a P2P 
network. 

An adaptive semantic-based caching strategy is 
introduced that keeps track of the recently issued queries 
and their resolutions. The proposed caching scheme — 
Semantic-based Ad hoc Image Caching (SAIC) — is 
used to facilitate the resolution of semantically generated 
queries without unnecessary network traffic. Simulation 
results show that the proposed scheme can significantly 
reduce the search cost in terms of query delay and 
message complexity. 

The remaining part of this paper is organized into four 
sections: Section 2 introduces the background knowledge 
and related work. Section 3 outlines the preliminary 
concepts of the caching scheme. Section 4 evaluates the 
proposed scheme using experimental analysis. Section 5 
draws the paper into conclusions. 

II. BACKGROUND 

2.1 Image content representation 

The representation of image content has been a 
fundamental problem in image retrieval systems. 
Considerable research work has been done on extracting 
and manipulating content information of image data, e.g. 
image segmentation, classification, and object 
recognition, to name a few. Most traditional feature-
based image retrieval systems employ three types of 
features in image representation: color, shape, and texture. 
Color features are widely used in CBIR systems for its 
simplicity and effectiveness. Typical color features 
include color histogram [7] and color moment [6]. Shape 
features are employed in distinguishing images when the 
contour lines evidently profile the visual objects [8]. 
Texture features are provided as an important tool for 
image retrieval. A variety of texture analysis methods 
have been studied in the past years, such as Daubechies 
wavelet [9]. 

However, the performance of feature-based systems is 
far from satisfactory due to the fact that images with 
similar features may not share common semantic contents, 
which is known as the semantic gap [10]. 

To bridge or narrow the semantic gap, one approach 
is to devise automatic semantic learning functions that 
map low-level feature space to high-level semantic space 
[6]. According to the principle of semantic learning, the 
methods can be categorized as inductive and transductive 
ones [6]: 1) The goal of inductive methods is to create a 
classifier which separates some training images based on 
semantic contents (e.g. annotations) and generalizes well 

on images without annotations. The most widely used 
inductive model is support vector machine (SVM) [11]. 2) 
On the other hand, transductive methods aim at 
accurately predicting the semantic relevance of the non-
annotated images which are attainable during the training 
process. Methods belonging to this category include 
latent semantic analysis (LSA) [12], principal component 
analysis (PCA) [6], and locality preserving projection 
(LPP) [12]. 

Although working with different principles, both 
inductive and transductive approaches provide methods 
for constructing and training classifiers that are capable 
of dividing the images (or semantic space) into partitions 
with linear boundaries. Each partition of the semantic 
space corresponds to a category of semantically similar 
images. Figure 1 illustrates the partitioning of the 
semantic space. 

 

 
 

Figure 1.     An example of semantic space partitioning. 

 

The partitioning of semantic space provides a means 
of representing and organizing images based on their 
semantic contents. Given a collection of semantically 
similar images, one can collectively represent them using 
the description of their semantic category. Basing on this 
observation, we will propose a semantic caching scheme 
in section 3, with the aim of facilitating CBIR in P2P 
networks. 

2.2 P2P caching 

Caching has been widely used in P2P environments to 
reduce network traffic and deal with disconnections. 
Although most of the previous study of caching for P2P 
networks focuses on the efficient exploration of routing 
information [2], there are a few caching schemes 
proposed in the literature that facilitate data accessing in 
P2P networks [3]. 
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2.2.1 Data caching 

The data caching approach, which is a natural 
extension from the caching schemes for wired networks, 
keeps a copy of the data item that has just been accessed. 
Traditional schemes let a node cache the results of its 
recent queries or the data that have been forwarded 
though it to other nodes [3]. The authors of [13] proposed 
a semantic caching scheme that allows the caching of 
queries as the semantic descriptions of the cached data. 
However, these caching schemes are efficient only for 
small-size data items, and cannot effectively deal with 
large-size data such as images in nodes. 

2.2.2 Path caching 

Another approach of caching is to record a path to the 
data source. This method is usually efficient when the 
data items are very large and the paths to them are 
relatively easy to be represented. The authors of [14] 
examined the allocation of cached data replications in 
P2P networks. The authors of [3] proposed a CachePath 
scheme, which dynamically caches the path information 
of passing-by data. However, the existing path caching 
schemes consider the data items as independent objects 
and do not utilize the semantic locality among them. As a 
result, the content distribution in the P2P network is not 
fully explored. 

Our work differs from the previous related work in 
that our goal is to devise a caching scheme that facilitates 
the content-based image retrieval in a dynamic 
distributed environment such as a P2P network. Hence in 
this paper, more emphasis is given on efficient locating 
of data sources that are related with the image query. 

III. SEMANTIC-BASED IMAGE CACHING 

3.1 Caching rationality 

The basic idea of the caching scheme proposed in this 
paper, called Semantic-based Ad-hoc Image Caching 
(SAIC), is to allow the nodes record concise descriptions 
of the image query results passing by it. The descriptions, 
in the form of constraints, characterize the content 
distribution in the network and reduce the cost of query 
processing. Figure 2 illustrates the idea of SAIC. Suppose 
node R issues an image query Q and finds the data source 
node S through flooding. The query result returned from 
S will be relayed by a series of nodes (i.e. C, B, and A) to 
R, which forms a chain that divides the network into two 
partitions. Any later query may go across this chain and 
meet with one of the relaying nodes. Suppose a node R

*
 

issues a query Q
*
 semantically similar as Q, when Q

*
 is 

forwarded to one of the relaying node, say C, the data 
source nodes (i.e. S or R) will be determined immediately, 
and flooding can be avoided. In this sub section, we first 
define a constraint-based method that summarizes image 

contents, and then explain the rationality of SAIC in 
detail. 

 
 

Figure 2.   Image query processing and caching. 

 

A. Semantic image content 

To concisely describe the contents of a collection of 
images, a representation method is presented within the 
scope of semantic space. Suppose R

n
 is the n-dimensional 

image semantic space. Given a node containing q images 
{x1, x2, …, xq}R

n
 that belong to r semantic categories 

€1, €2, …,€r, we give the following definitions for the 
representation of the images. 

Definition 1: Semantic category boundary 

Given a semantic category €i, its boundary descriptor 

B(€i) can be denoted as a collection of functions showing 

the polygon boundary of €i, where images within the 

boundary are assigned 1, and outside images are 

assigned 0. 

B(€i) = {fs | fs: R
n
 → {1, 0}}  (1) 

Besides the Semantic category boundaries, we also 
give the definition of vicinity constraint to describe 
image contents more accurately. 

Definition 2: Vicinity constraint 

Given a set of images {x1, x2, …, xq}, each image xi can 

be represented as a semantic vector vi = (a
i
1, …, a

i
n). The 

vicinity constraint Cv is a function that generates a n-

dimensional region including all these images: 

Cv ({x1, x2, …, xq}) = ([min({a
1
1, …, a

q
1}), max({a

1
1, …, 

a
q

1})],…,[min({a
1
n, …, a

q
n}), max({a

1
n, …, a

q
n})])  (2) 

The semantic category boundaries and the vicinity 
constraints can be integrated together to form the 
description of a given set of images. Suppose node Ni 
contains an image set X = {x1, x2, …, xq}, the description 
can be obtained as follows: First, use the classifiers as 
mentioned in section 2 to map the images into semantic 
categories, which are described as P1, P2, …, Pt. However, 
the images of a category may not occupy the full 



semantic subspace of the category. Hence a more concise 
represented is needed. Let Cv1, Cv2, …, Cvt denote the 
vicinity constraints of the sub sets of X in the semantic 

categories, then P1Cv1, P2Cv2,…, PtCvt give more 
accurate descriptions of each sub set of images, which 
not only shows their semantic categories but also 
indicates the variation ranges of the image features. 
Figure 3 illustrates the representation of images. 

 

Figure 3.   The representation of a collection of images. 

 

B. Cache structure 

The aforementioned definitions depict images as data 
points in the semantic space, which can be collectively 
described using semantic category boundaries and 
vicinity constraints. Basing on this representation method, 
we propose to cache the constraints as the concise 
description of query results, with the aim of increasing 
cache hit ratio while decreasing cache space requirement. 

Logically, the local cache of a node Ni is divided into 
a set of cache entries — each entry indicates one or 
multiple nodes in the network. A cache entry is a tri-tuple 
(matching region, vacant region, node list). The 
matching region is the constraint-based description of 
resolved queries, which can be considered as n-
dimensional subspaces covering the data points of earlier 
query results. The vacant region shows the unresolved 
queries, which can be represented as a collection of 
subspaces where no query results are found (here we use 
the Euclidean distance as the semantic distance metric 
between data points). The node list shows the nodes 
whose data contents can be characterized by the matching 
region and the vacant region. Figure 4 illustrates an 
example of a cache entry. 

Physically, we store the constraint-based image 
content descriptions through paging. The constraints, in 
the form of polynomial inequations, are stored in one or 
multiple linked pages. Notice that there are three 
relationships between the regions described by the 
constraints: enclosure, overlapping, and isolation. Basing 
on these relationships, a hierarchical indexing structure 

can be built on the cache entries, which maintains the 
semantic descriptions as well as the physical storage 
information for every cache entry. 

 

 

Figure 4.   The structure of a cache entry. 

 

3.2 Caching management 

As discussed before, image data are cached according 
to semantic contents, which make the cache management 
more flexible than traditional schemes. In SAIC, we use a 
two-phase method to facilitate the effective management 
of caches, while at the same time avoiding unnecessary 
network traffic: 1) Initially, the local caches are empty 
and every query is flooded in the network. The result of 
the query is forwarded back thru a collection of relaying 
nodes, where the content description (i.e. the vicinity 
constraints) is cached for future query processing purpose. 
2) The cached description is used to obtain a content 
distribution overview of the network. When a query is 
issued to a node Ni, it will first be compared with the 
matching regions and vacant regions recorded in Ni, and 
then forwarded to the relevant nodes (i.e. whose 
matching regions overlap with the query and whose 
vacant regions do not cover the query). Algorithm 1 
shows the details of the cache management. 

Algorithm 1:   Semantic Cache Management 

Input:  a set of nodes SN = {N1, N2, …, Nm} 

           a set of queries SQ = { Q1, Q2, …, Qs} 

Initialization:  node Ni   SN, set its cache Ca(Ni) to  . 

Query processing: 

(A) When a query result Re(Qj) comes from Ni: 

       if (Qj is issued by the current node) then 

            cache Re(Qj) and update matching region of Ni. 

       else compare the requesting node and Ni, choose the  

            nearer one to the current node to cache 

(B) When cache replacement is necessary: 

       select two most infrequently visited matching regions,  

       merge the matching regions into a larger region, 

       compute the intersection of their vacant regions, 

       and concatenate their corresponding node lists 



(C) When cache consistency maintenance is necessary: 

       if (the data update is an insertion) then 

           notify the nodes whose vacant regions overlap the  

           inserted image data 

       if (the data update is an deletion) then 

           notify the nodes whose matching regions overlap the  

           deleted image data 

The main idea of the algorithm is to flood the query 
when a node does not have proactive knowledge about 
content distribution, and forward the query only to 
relevant nodes when enough knowledge is obtained from 
the cache. Due to the limitation of cache size, the local 
cache may not have enough space for new query results. 
Instead of simply dropping the less frequently visited 
data, we replace them with a coarse semantic description, 
which represents a larger space that is composed of 
several smaller subspaces. When data updates occur, we 
only notify the nodes whose cache validity is affected. 
Due to the semantic locality, in most cases the 
insertion/deletion occurs in a small region and the cache 
validity of other nodes is not affected, hence cache 
consistency maintenance only adds a trivial load to the 
network traffic. 

IV. PERFORMANCE ANALYSIS 

To evaluate the performance of the proposed SAIC 
caching scheme, we implemented a simulator in ns-2 
environment (version 2.26) [15]. Since ns-2 does not 
support content-based retrieval, a semantic-representation 
module was also developed and added to facilitate image 
data organization. The simulation results in this paper are 
based on AODV routing protocol. 

4.1 Simulation setup 

We used two sets of experimental datasets as the 
testbeds: a real dataset and a synthetic dataset: 

 The real dataset contains 1000 images obtained 
from various sources, including Corel and 
Groningen image databases. In the simulator, 50 
color histogram features are extracted from each 
image for the representation purpose. 

 To examine the scalability of SAIC in large 
datasets, we also constructed a synthetic dataset of 
16,000 data points whose feature values are 
assigned by a random number generator abiding by 
normal distribution in the interval [0, 1]. 

To allow more flexibility and comprehensive analysis, 
the simulator relies on a set of input parameters and 
conditions: The nodes are scattered randomly in an area 
of 1000m*1000m, moving at speeds randomly selected 
from [0, vmax]. The node density can be adjusted by 
changing the number of nodes in the flat area. The input 
parameters are summarized in table 1. 

TABLE I.  THE SIMULATION PARAMETERS. 

Parameter Default Range 
 

Environment size 1000m*1000m 104 to 108m2 

Transmitter range 100m 100m to 1,000m 

Bandwidth 1M bps  

Number of nodes 50 50 to 100 

Node mobility ( vmax ) 10 m/s 1 to 50 m/s 

Local cache size 5 MB 10 KB to 10 MB 

Query rate ( Qrate ) 1 query/s 1 to 100 query/s 

Feature vector size 1 KB  

Average image size 50 KB 1 to 100 KB 

Test dataset size 1000 1 to 16,000 

Semantic dimension 50 1 to 100 

Nearest neighbors 10 1 to 20 

 

4.2 Simulation results 

To evaluate the performance of SAIC, we compared it 
with two recently proposed P2P caching schemes — 
CacheData and CachePath [3] — on various metrics. 

Cache hit ratio is an important metric for evaluating 
the performance of caches. Traditional caching schemes 
rely on large caches and complex replacement policies to 
achieve high hit ratio. In contrast, SAIC employ vicinity 
constraints to describe a collection of data objects, which 
increases hit ratio without large cache size requirement. 
Figure 5 shows the minimum cache sizes required by 
CachePath and SAIC to achieve the specified hit ratios. 
The default parameters are used in this simulation run. In 
comparison with the CachePath scheme, SAIC has much 
less requirement on cache size, and does not drastically 
increase its requirement as the hit ratio increases. The 
better performance of SAIC in contrast with CachePath 
stems from its capability of exploiting the semantic 
locality with vicinity constraints. 
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Figure 5.   Comparison of cache space requirement. 

 

To analyze the effect of network topology, a series of 
simulation runs were conducted on various parameters, 



such as node density and mobility. Figure 6 shows the 
average query delay as a function of the number of nodes 
in the network. The delay of all three caching schemes 
increases as the node density increases, because more 
nodes compete for limited bandwidth. The paths change 
more frequently as the node density increases, thus 
costing the CachePath scheme more time to find the data 
sources than CacheData. However, with limited cache 
size, CacheData will incur more frequent cache misses, 
because it store large-size image data in the cache. SAIC 
requires much less average delay than both schemes 
because of its much higher cache hit ratio. 
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Figure 6.   The impact of node density. 

 

The impact of node mobility is shown in figure 7. 
Similar as the node density, the mobility also incurs more 
frequent network topology changes. As expected, SAIC 
resolves queries using relatively much less time than 
CacheData and CachePath. Notice the average query 
delay of SAIC only slightly changes as the node mobility 
increases, which indicates the steady quality of SAIC. 
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Figure 7.    The impact of node mobility. 

 

In a P2P network, the number of messages is often 
used to evaluate the cost of resolving a query. The 
messages involved in the query processing can be divided 
into two categories: the control messages used for 
transmitting image queries (i.e. feature vectors) and the 
data messages used for transmitting query results (i.e. 
image files). The data messages are comparatively much 
larger than control messages, thus causing more network 
traffic. The average number of control messages required 
to resolve a query is shown in figure 8, while figure 9 
depicts the average number of data messages per query. 
As shown in figure 8, CachePath and SAIC require more 
control messages than CacheData because they need to 
forward the query to the data source nodes. However, due 
to the limitation of cache size, CacheData incurs more 
cache misses, causing much more data messages. In 
contrast, SAIC incurs the least of data messages because 
of its capability of forwarding the query only to the nodes 
with relevant data contents. 
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Figure 8.    Average control messages per query. 
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Figure 9.    Average data messages per query. 

 

 



V. CONCLUSIONS 

Content-based image retrieval is a challenging task in 
P2P networks due to the mobility, the bandwidth, and the 
lack of infrastructure. In this paper we propose a 
semantic-based caching scheme SAIC to facilitate the 
efficient image retrieval in P2P networks. It employs 
vicinity constraints to represent image contents, 
increasing high cache hit ratio while reducing the cache 
space requirement. 

SAIC has several desirable features: It achieves high 
cache hit ratio without incurring much network traffic. 
The average query delay is reduced, which means better 
image retrieval service quality. The performance of SAIC 
does not change drastically with different network 
settings (e.g. node density and mobility), which shows 
the robustness and scalability of SAIC. 

We are tuning the performance of SAIC further and 
exploiting its application in other P2P environments such 
as sensor networks. In addition, although SAIC is 
proposed for the efficient retrieval of images, it can also 
be extended to accommodate other multimedia data (e.g. 
audio and video data), considering the similarity of 
retrieval approaches for different multimedia modalities. 
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