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Abstract—Reducing the transmission cost is one of the most 

important issues in multi-hop ad-hoc networks. Considerable 

research has been done on efficient routing and data accessing 

algorithms. However, most previous research on routing schemes 

focus on topological structures, and not much attention has been 

made to data content distributions in ad-hoc networks. The 

exponential emergence of multimedia applications puts further 

challenges to the routing schemes. Due to the restrictions of ad-

hoc networks and the volume of multimedia data, efficient data 

accessing schemes are needed for various applications. Within the 

scope of ad-hoc network paradigm, a semantic-based framework 

– extended summary schemas model (ESSM) – is presented and 

analyzed. Within the scope of this new framework several 

techniques are further proposed to optimize the cost of searching 

multimedia data in ad-hoc networks. The proposed model is 

simulated and the simulation results are analyzed. 

Keywords- content-based retrieval, collaborative data accessing, 

ad hoc networks 

I.  INTRODUCTION 

Technical advances and new standards in wireless 
communications have stimulated the recent growth of wireless 
ad-hoc networks. An ad-hoc network is a collection of 
cooperative mobile nodes that communicate with each other 
without the intervention of infrastructures (centralized 
accessing points). Due to the lack of infrastructures, mobile 
nodes may not be directly connected to other nodes in the 
system. Hence, most research assumes ad-hoc network 
communications in a hop-by-hop fashion, where nodes behave 
as routers [2]. Stimulated by this unique communication pattern, 
various routing algorithms (proactive or reactive) are proposed 
to dynamically find reliable paths between mobile nodes [2]. 
However, research on routing schemes mainly focused on the 
topological structures, and not much attention has been made to 
data content distribution in ad-hoc networks. As an important 
hint of network status, data distribution may provide a novel 
guideline of routing and retrieving data in ad-hoc networks. In 
practical applications, several advantages can be achieved 
when considering the data distribution. We look at two 
different sample applications to motivate our research and the 
importance of data content analysis: 

1) Distributed data sources: Consider the information 
sharing among the members of a police team in an anti-
criminal action. Each member carries a mobile 
computer that is capable of receiving and sending 
images. At the same time, some of the team members 
may have the information of possible suspects ─ name, 
date of birth, height, blood type, and etc. Since the 
resources of mobile computers are limited, each 
computer may only contain a part of the complete list of 
criminals. If a suspect is found, more detailed 
information about this person may be needed for 
identification and proper action. Although, the picture of 
this person can be obtained immediately, the detailed 
information may not be readily accessible. And even 
worse, the location of the mobile host that contains the 
needed information could be an unknown question. 
Real-time determination of data source location is 
difficult in the traditional routing algorithms [11]. 
Without the knowledge of data distribution, 
broadcasting/multicasting seems to be the only choice. 
However, due to the sheer size of the multimedia data, 
broadcasting will drastically consume system resources 
─ memory space, network bandwidth, and battery 
power. In contrast, large amount of resources can be 
saved if the data source is accurately located. The 
knowledge of data sources requires organizing ad-hoc 
network according to the data distribution. 

2) Centralized data source: An ad-hoc network may 
comprise a commander and a group of soldiers. Each 
soldier carries a laptop, while the commander has a 
more powerful mobile computer connected to the 
satellite ─ the commander is clearly known as the data 
center. When a target is detected, the soldiers may need 
to request the commander for more detailed information, 
for the purpose of threat identification and further 
actions. However, this platform is not robust, scalable, 
or fault tolerant since the commander behaves as the 
data center and its movement within the area could also 
increase the network traffic. Operational support such as 
the nearest neighbors in response to a request reduces 
the network traffic and access latency; hence, a need for 
data-distribution-aware organization in the ad-hoc 
network. This work was supported in part by the Chesapeake Information Based 
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With the rapid growth of the wireless communication 
standards such as IEEE802.11, multimedia (image, audio, 
video, and etc.) applications are becoming more and more 
popular in mobile networks. Multimedia data are more 
powerful in expressing human thought than text information; 
however, they require large storage space, more computation 
capability, and higher network bandwidth. Indexing on 
multimedia data is rather difficult, which makes accessing or 
semantically organizing multimedia data more difficult to 
realize [3]. In ad-hoc networks, the autonomy and 
heterogeneity of mobile nodes introduce additional complexity 
to efficient representation and manipulation of multimedia data 
while minimizing computation and communication cost. 

In this paper, we introduce a novel semantic-based 
multimedia-accessing scheme – Extended Summary Schemas 
Model (ESSM) – as the platform for multimedia retrieval. The 
hierarchical structure of the ESSM meta-data organizes 
multimedia data based on concise, abstract description of their 
semantic contents and allows content-based navigation through 
multimedia data sources. With the help of the ESSM meta-data, 
the multimedia retrieval in ad-hoc networks becomes a clearly 
aimed searching process that offers reduced network traffic, 
energy consumption, and response time, regardless of the 
distribution, heterogeneity, and autonomy of the multimedia 
data sources. 

The remaining part of this paper is organized as follows: 
Section 2 overviews the background materials. Section 3 
introduces the representation and manipulation of multimedia 
data within the scope of the summary schemas model. Section 
4 addresses the clustering of multimedia objects in ad-hoc 
networks based on semantic contents. Section 5 analyzes the 
performance of the proposed platform. Finally, section 6 draws 
the paper to a conclusion. 

II. BACKGROUND 

2.1 Content-based multimedia retrieval 

Multimedia data sources usually comprise large volume of 
data whose contents cannot be defined and organized 
efficiently using traditional text-based indexing models [3].The 
demand of multimedia data management, as a consequence, 
has motivated the research on content-based retrieval models 
[3]. The content-based multimedia retrieval models that have 
advanced in the literature can be categorized into three classes: 
partition-based models, region-based models, and 
human/computer integrated models. 

The partition-based indexing models recursively divide the 
multimedia objects (or k-dimensional feature spaces) into 
disjoint partitions, with clustering or classifying algorithms, 
while generating a hierarchical indexing structure on these 
partitions. The earlier models in this class include Quad-tree [4], 
K-D-tree [5], and VP-tree [5]. The recent research has focused 
on models based on clusters [6]. The partition-based models 
normally employ very complex computations on features, 
which make these models inefficient for real-time multimedia 
applications. Moreover, the partition-based models do not 
consider feature spaces of different dimensions ─ i.e., 
multimedia objects from heterogeneous data sources [5]. 

The region-based indexing models employ small regions 
(either in the form of Minimum Bounding Rectangles or 
Spheres) to cover all the multimedia objects. Based on these 
bounding regions, a balanced tree is constructed as the indexing 
structure. This class of indexing models includes the R-tree and 
its variations (R*-tree, R

+
-tree) [7], and SR-tree [8]. Relative to 

partition-based models, this indexing model improves storage 
utilization by avoiding forced splits. However, due to the 
shapes of the regions, this model has the born weakness of 
overlapping [7]. Furthermore, the data objects grouped in the 
same region may not share common semantic contents. 

Some recently proposed models in the literature try to make 
use of human intelligence to facilitate accurate indexing. 
Benitez et al. [9] exploited the manual annotations to extract 
semantic contents. Cox et al. [10] used relevance feedback 
from users to improve the accuracy of similarity comparisons. 
Because of the human intervention in query processing, this 
class of indexing models achieves high accuracy in selecting 
similar multimedia objects. However, because of the very same 
reason, this approach requires comparatively longer response 
time and hence, is not suitable for real-time applications. 

Due to the node mobility and data distribution, the 
traditional content-based retrieval methods cannot guarantee 
satisfactory performance in ad-hoc networks: First, unlike the 
wired systems, ad-hoc networks consist of mobile nodes that 
are not limited to certain spatial locations. Hence, it is not 
practical to partition the mobile nodes into spatial regions for 
purpose of efficient retrieval. Second, the traditional content-
based retrieval models usually employ quite complex 
computations (such as minimum bounding rectangles, spheres, 
and vantage points), which puts unbearable burden to the 
mobile nodes. Finally, as shown in the aforementioned 
examples, data distribution plays an important role in 
multimedia retrieval in ad-hoc networks. The traditional 
models do not consider data distribution, which leads to the 
increased searching cost. 

2.2 Object detection and recognition 

Object detection and recognition have been playing 
important roles in multimedia applications such as video 
surveillance, object-based information retrieval, and human / 
computer interaction. The main challenge to object detectors is 
how to efficiently identify objects of various visual 
appearances from diversified backgrounds [15]. Many effective 
object-recognition algorithms and techniques have been 
reported in recent years. Considering the application domains 
and recognition rationales, the object-recognition methods as 
advanced in the literature can be divided into two main 
categories: invariant-shape recognition and flexible-shape 
recognition. 

The invariant-shape object-recognition models focus on the 
detection and identification of objects of fixed shapes, such as 
face detection and digit recognition. Previous work on 
invariant-shape object recognition normally employs 
discriminative classifiers to facilitate fast detection. 
Scheinderman et al. adopted Adaboost confidence-weight 
prediction to minimize the classification error [15]. Viola et al. 



used cascaded classifiers to reduce computation complexity by 
quickly discarding the background regions [16]. 

The need for detecting objects of various shapes and 
stances motivated the research on flexible-shape object 
recognition. Recent studies in the literature have proposed 
using either probabilistic models (e.g. Markov models and trees) 
or discriminative approaches (e.g. Support Vector Machine) to 
determine the contents of multimedia data. Ioffe et al. used 
mixtures of tree-structured probabilistic models for human 
tracking [18]. Felzenszwalb introduced MRF-based pictorial 
structures to represent the spring-like connections between 
object parts [17]. Mahamud et al. proposed combining simple 
discriminators for a multi-class classifier [19].  In contrast with 
invariant-shape object recognition, these models provide a way 
to general-purpose detection of objects from multimedia data 
collection at large. 

In practice, the object-recognition methods made it possible 
to grasp the multimedia contents at an object level. Since one 
of the ultimate goals of object recognition is to provide content-
based access of multimedia data with high accuracy and 
efficiency, the discussion in this paper will focus on 
representation and organization of multimedia data that make 
full use of the object-level contents obtained from object 
recognition. 

2.3 Summary schemas model 

The Summary Schemas Model (SSM) is an intelligent 
search engine that allows imprecise access to data sources in a 
multi-database environment. It is a global layer sitting on top of 
multiple preexisting autonomous and heterogeneous local 
databases [1]. 

The ESSM fulfills the indexing task through its hierarchical 
meta-data ─ summary-schemas hierarchy ─ which comprises 
three major components: a thesaurus, a collection of 
autonomous local nodes, and a set of summary-schemas nodes 
(Figure 1). 

 

Figure 1. The summary schemas model. 

 

SSM organizes the multimedia objects in a hierarchical 
fashion based on synonym, hypernym, and hyponym 
relationships among these objects. Synonyms are semantically 
similar objects in different data formats or same-format objects 
in different physical locations. A hypernym is the generalized 
description of the common characteristics of a group of 
multimedia objects. As the counter concept of hypernym, a 

hyponym is the specialized description of the characteristics of 
multimedia objects. More details about ESSM can be found in 
[1]. 

2.4 Proposed methodology 

Considering the aforementioned weaknesses of traditional 
content-based retrieval models, we propose a ESSM-based 
multimedia retrieval scheme for ad-hoc networks. The 
rationale of employing ESSM as the platform of multimedia 
retrieval is because of the following reasons: 

 The ESSM provides comparatively more efficient 
content-based indexing capability: In the traditional 
content-based approaches, due to the lack of semantic 
analysis, semantically similar objects may be scattered 
in different regions, while semantically different objects 
may be grouped together. In contrast, ESSM represents 
a multimedia object according to its semantic content 
and clusters it with its semantically nearest neighbors, 
which drastically reduces the searching cost. 

 SSM integrates heterogeneous data sources into a 
unified logical system: ESSM organizes multimedia 
objects regardless of their representation (data formats 
such as JPEG, TIFF, or MPEG); uniformly, according 
to their contents. In addition, different media types 
(video, audio, image, and text) can be integrated under 
the ESSM umbrella, regardless of their physical 
differences. Hence, ESSM provides good scalability and 
robustness in heterogeneous distributed environments 
such as ad-hoc networks. 

In this paper, we present a multimedia retrieval mechanism 
for ad-hoc networks. The novelty of our approach stems from 
the following factors: 

 Content-based organization of the ESSM allows users to 
submit imprecise queries. We have developed a 
Graphical User Interface (GUI) that facilitates 
submission of the queries. 

 The query processing is restricted within a very small 
subset of all mobile nodes in an ad-hoc network. When 
a query is submitted, instead of traversing throughout 
the ad-hoc network, our approach selects a small subset 
of mobile nodes (a cluster): this cluster includes all and 
only the nodes that contain multimedia objects related to 
the query. The nearest neighbors are generated within 
this cluster, which drastically reduces the searching cost. 

 A dynamically self-adjusting indexing structure – 
ESSM hierarchy – behaves as the spine for query 
processing. By summarizing the data contents of mobile 
nodes and organizing them into clusters, the ESSM 
hierarchy provides an effective way that dynamically 
identifies a cluster of mobile nodes for a query, 
regardless of their spatial locations in the ad-hoc 
network. 

III. SEMANTIC-BASED REPRESENTATION 

In multimedia retrieval systems, there are two types of 
features: granule-level features and object-level features. The 



granule-level features are those characteristics that directly or 
indirectly are derived from the original format of multimedia 
storage — i.e., the pixels, such as hue, textures, and saturation. 
The object-level features, in contrast, are obtained from the 
recognition of the higher-level understanding of the multimedia 
data — the semantic topics of the multimedia data. In this work, 
we analyze the semantic contents of multimedia objects by 
considering both types of features. 

To represent the contents of multimedia objects in a 
computer-friendly structural fashion, the ESSM organizes the 
multimedia objects into a hierarchical organization according 
to their semantic contents. A multimedia object, say, an image, 
can be considered as the combination of a series of elementary 
entities, such as animals, vehicles, and buildings. 

Definition 1: The Elementary Entity 
The elementary entities are those data entities that 

semantically represent basic objects (objects that cannot be 

divided further). Formally, the summary schema of an 

elementary entity (E) can be considered as a first-order logic 

expression. 

Let E = f1  f2  … fn, where fi = pi1  pi2 …  pim is the 
disjunction of some logic predicates (true/false values) and 
pi1 … pim form a logic predicate set Fi, ─ In the feature-based 
multimedia data sets, fi indicates the i

th
 feature of the 

elementary entity. The summary schema of an elementary 
entity can then be defined as: 

E =


n

i 1

(


m

j 1

pij),  for every pij  Fi. 

Note that in any term fi = pi1  pi2 …  pim, there is one 
and only one true predicate pij. For instance, if pi1, pi2 … pim 
correspond to all possible color patterns, the semantic content 
of fi at any time is a specific color pattern. Since fi is disjunction 
of pi1, pi2 … pim, the false predicates do not affect the final 
result. The content of an elementary entity is restricted by its 
conjunction terms f1, f2 … fn, which are the extracted features in 
application domains. 

Definition 2: The Multimedia Object 
A multimedia object is the combination of a series of 

elementary entities. Given a multimedia object including k 

elementary entities E1, E2, …, Ek, the summary schema of this 

multimedia object can be defined as: 

S = opt (
k

i 1

Ej),  

where opt is a function that converts a logic expression into a 

semantically equivalent and shorter form. 

The summary schemas provide a means to automatically 
define accurate description of complex objects: For a given 
multimedia object, say an image, a series of elementary entities 
can be recognized by utilizing some pattern recognition 
techniques [6]. These entities are then described using logic 
expressions, as noted in definition 1. Finally, the object is 
represented as the union of its contents (see Figure 2). 

 

    

E1: catwhitedot E2: doggreyplain E3: catwhiteplain 

E1 E2 E3:(catwhitedot)(doggreyplain)(catwhiteplain) 

opt(E1 E2 E3):[catwhite(dotplain)](doggreyplain)  
 

Figure 2.    Summary schema of an image. 
 

IV. COLLABORATIVE CLUSTERING 

The semantic-based representation presented in section 3 
provides a paradigm to describe multimedia data. Based on this 
paradigm, contents of the multimedia objects on mobile nodes 
can be automatically identified, summarized, and expressed as 
logic equations with strong mathematical backbone (summary 
schemas). Logic representation of semantic contents of 
multimedia data sources would also allow simple and efficient 
recognition of similar entities which assists classification and 
clustering of multimedia data. 

Definition 3: Content-Related Nodes 
Suppose a mobile node ni contains multimedia data objects d1, 

d2, …, dm, which are collectively denoted as D(ni). Based on 

the aforementioned ESSM representation of multimedia data 

object, each mobile node ni can obtain a summary schema S(ni) 

that abstracts the contents of data objects in D(ni). Given a pair 

of nodes n0 and n1, they are content-related iff: 

S(n0)   S(n1) ≠ S(n0)  S(n1),  

where S(n0)   S(n1) is defined as (S(n0)  ~ S(n1))  ( ~ S(n0) 

 S(n1)). 

In another words, if nodes n0 and n1 are content-related, 
they must have some common data entities D(n0) ∩ D(n1) ≠ Ø. 

Definition 4: The Content-Based Cluster 
Suppose an ad-hoc network N comprises k mobile nodes n1, 

n2, …, nk. Let ni  nj denote the content-related relationship 

between ni and nj, and ni nj denote that ni and nj are not 

content-related. Then a content-based cluster C is defined as 

follows: 

C = { ni |  nj C, njni;  nk   C, nkni} 

Based on the summary schemas generated from each node, 
the ad-hoc network is partitioned into clusters where each 
cluster contains mobile nodes with similar or overlapping data 
objects. The summary schemas within each cluster are 
integrated to form a summary schema that represents the 
semantic contents of each cluster. Cluster level summary 
schemas are then integrated and fused together (based on their 
semantic similarity) to form higher level clustering. This 
process is recursively performed until the whole network is 
represented as one cluster. 



Figure 3 represents a collection of mobile multimedia data 
objects located irregularly on the mobile nodes in the ad-hoc 
network. As can be observed, the semantically similar contents 
(say, cars) are scattered on nodes not spatially located together. 
However, these nodes can be treated collectively as a cluster 
based on the aforementioned discussion. For instance, node A, 
B, D, and J can be clustered together because of their semantic 
contents. Figure 4 depicts the application of our clustering 
procedure and formation of the summary schemas hierarchy on 
Figure 3. Note that in this organization, content-based clusters 
are semi-isolated from each other; as a result, queries based on 
their semantic contents are directed to the most relevant 
clusters rather being flooded through out the ad-hoc network. 
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Figure 3.    Data distribution in an ad-hoc network. 
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Figure 4.    The ESSM hierarchy based on clusters. 

 

V. PERFORMANCE EVALUATION 

5.1 Theoretical analysis 

The performance of the proposed scheme is impacted by 
several factors as such; the initialization overhead of building 
the indexing hierarchy (including clustering and centroid 
selection), the cost of performing content-based multimedia 
queries, the overhead of maintaining the indexing hierarchy 
when network status changes. To facilitate content-based 
retrieval, these factors need to be analyzed in details. 

Our analysis is based on the following notations: 

 r:  the number of nodes in the ad hoc network. 

 m:  the minimum number of children for an indexing 

node (minimum fan-out). 

 PJ: the probability of a node joining the network. 

 PR: the probability of a node leaving the network. 

 PM: the probability of a modify operation. 

 Q:  the query rate. 

A. Initialization Overhead 

In the initialization step, a node with highest computational 
power and largest communication capability, say ni, is chosen 
as the coordinator to construct the indexing hierarchy. The 
selection of the coordinator node takes θ(r) hops. The 
coordinator needs to send each node a message to notify the 
coordinator’s location and to collect data content descriptions, 
which takes O(r).r hops. In addition, the construction of the 
hierarchical infrastructure takes O(r) hops because the message 
cost is proportional to the number of edges (or links): the 
hierarchy has less depth than the binary search tree due to its 
minimum m, thereby possessing edges less than r+r/2+r/4+… 
= 2r-1. Hence, the initialization overhead amortized on each 

node is 
r

rOrrOr )()()( 
= O(r) hops, where r is the 

number of nodes in the ad hoc network. 

B. Search Cost 

Resolution of a query requires at most 2logm(r) logical steps 
to traverse the indexing hierarchy. Each forwarding operation 
takes at most r hops. Hence the average searching cost for a 
query is O(r logm(r)) hops. In contrast, the flooding strategy 
requires Ω(r

2
) hops to resolve a query, since a network of k 

mobile nodes can have θ(r
2
) connections, and a query may be 

transmitted on each connection at least once. 

C. Maintenance Overhead 

As noted before, the proposed indexing hierarchy does not 
change as long as the data source contents are intact. As a 
result, the indexing hierarchy changes if a data source is 
inserted/deleted in/from the network (including the removal of 
the centroid node) or a modification is made to the contents of 
an existing node. As noted before, content changes on each 
node is piggybacked with unresolved query and forwarded to 
the cluster centroid to potentially trigger maintenance overhead 
due to the reconstruction of the indexing hierarchy. Since the 
whole network is connected through the indexing hierarchy, the 
deletion or removal of any centroid node can be detected when 
a query cannot be resolved locally and forwarded to the 
centroid node. Therefore, the query resolution also provides a 
mechanism for checking the connectivity. 

A new node nr+1 joining the network requires at most r 
logm(r) hops to be included in its related cluster: joining any 
cluster from the bottom level of the hierarchy takes logm(r) 
hops, therefore comparing all possible clusters takes r logm(r) 
hops. Hence, the average cost for processing new nodes is (PJ) 
Q r logm(r) hops: with query rate Q, the node joining event 
happens (PJ) Q time, each time takes r logm(r) hops. Similarly, 
the processing of leaving nodes requires (PR) Q r logm(r) hops. 
The modification operation can be viewed as a deletion of a 
node followed by an insertion of a new node. Consequently, it 
requires ((PM) Q r logm(r) + (PM) Q r logm(r)) hops. Finally, the 

average modification cost is  ((2PM+PJ+PR) Q r logm(r)). 

5.2 Experimental evaluation 

In this section, we present the experimental analysis of the 
proposed content-based clustering model (called Extended 
SSM or ESSM in the following discussion) against the 



flooding-based search scheme. As noted earlier, in an ad hoc 
network with distributed multimedia data sources, flooding-
based blind search strategy may cause extra computational and 
communication overheads due to the forwarding of the queries 
to every node. In contrast with the flooding-based schemes, the 
ESSM organizes nodes with similar contents into clusters, and 
forwards query packets only to the content-related nodes. 

The evaluation consists of a series of experiments 
conducted using both real data set and synthetic data set. Our 
comparative analysis is based on various performance metrics 
such as accuracy, search cost, scalability, and physical 
characteristics of the mobile nodes. 

A. Experimental Setup 

The experiments were run on the basis of ad hoc network 
prototype with CMU extension to the ns-2 version 2.26. Since 
ns-2 does not support content-based information retrieval, a 
semantic-representation module was developed and added to 
facilitate multimedia data organization. In addition, the routing 
and data transmission processes were implemented under the 
framework of extended summary-schemas hierarchy. 

The experiment was initialized by assuming a default 
number of pre-existing nodes in the network with random 
connectivity among the nodes. A mixture of operations, 
including querying, node joining, and node leaving, were 
randomly generated and submitted to the network. The query 
generation time follows the exponential distribution, which is 
similar to the previous work [11]. The access pattern in the 
queries follows Zipf-like distribution, which is widely used to 
model non-uniformly distributed queries [12]. The input 
parameters are summarized in Table 1. Most of the parameters 
are self-explanatory. More details for some parameters are 
given below. 

Node Movement Parameters: Each node in the experimental 
environment randomly selects waypoints within a 670m * 
670m flat area. The node density can be adjusted by changing 
the number of mobile nodes in the range of 1 to 16,384 in the 
flat area. The node movement pattern follows the random 
waypoint movement model: Initially, the nodes are placed 
randomly in the area. Each node selects a random destination 
and moves toward the destination with a speed selected 
randomly from [0, vmax]. After reaching its destination, the node 
pauses for a period of time and repeats this movement pattern. 

Dataset Parameters: To examine both the accuracy and the 
scalability, we used two sets of experimental datasets as the test 
beds ─ the synthetic dataset and the real dataset as follows: 

 The synthetic dataset employed in the experiments is 
similar to the one used in [1], which includes up to 65,536 
data points in a 256-dimension feature space whose feature 
values are assigned by a random number generator abiding 
normal distribution in the interval [0, 1] on each dimension. 

 The real dataset we used consists of 2,560 images of 32 
semantic categories from the Corel dataset. Each image in 
the dataset is represented as a vector of 256 features (color 
histograms and texture wavelet coefficients) and 4 
annotation keywords. It is a large and heterogeneous image 
dataset. 2,048 images in the test dataset were used to train a 

semantic subspace learning module (i.e. LPP) integrated in 
the ESSM system that deduces the relationships among the 
keywords and the semantic categories. The extra 512 
images were used as the candidate pool for query examples. 

TABLE I.    INPUT PARAMETERS TO THE EXPERIMENTAL SYSTEM 

Parameter Value 

Number of nodes 128 

Image dataset size 2,560 

Texture feature type-1 Daubechies wavelet coefficients 

Texture feature type-2 Tamura coarseness histogram 

Texture feature type-3 Pyramid wavelet coefficients 

Color feature type-1 Color histogram in HSV space 

Color feature type-2 Color coherence vector in LUV 

Color feature type-3 First and second moment in Lab 

Environment size 670m * 670m 

Transmitter range 100m 

Node mobility (vmax) 1 m/s 

Pause time 1s 

Bandwidth 1M bps 

Query packet size 512 bytes 

Query rate (Qrate) 10 query/s 

 

B. Retrieval Performance Evaluation 

As noted earlier, the simulator is intended to evaluate the 
performance improvement of the proposed clustering scheme 
based on metrics such as search cost and accuracy: 

 Accuracy is the percentage of the results generated by 
the search schemes (either the proposed clustering 
model or flooding) matching the results of centralized 
strategy. The higher matching percentage implies higher 
retrieval accuracy. 

 Search path length is the average number of hops 
spent on locating the data source node that contains the 
semantically nearest neighbors of the query image. 

 Search cost is the average number of messages incurred 
during the process of query resolution. Flooding-based 
schemes may have short search path length, but their 
search cost is high due to the duplicate query replies. 

 Maintenance cost is the number of messages spent on 
adjusting the indexing hierarchy according to the 
topology and content changes in the network. 

Retrieval Accuracy 

The retrieval accuracy is evaluated for different simulation 
settings, varying the number of mobile nodes, the speed of 
node movement, the rate of query submissions, and the number 
of hops, during the query resolution process. In these 
experimental runs, we assumed 2,048 real images randomly 
scattered on mobile nodes. The maximum fan-out of the 
indexing hierarchy was set to 10, and the number of nearest 
neighbors in the content-based search was set to 10. 



Figure 5 illustrates the impact of the number of hops on the 
retrieval accuracy for a network of 128 mobile nodes moving at 
maximum speed of 1m/s. Given a fixed setting of network 
scale (128 mobile nodes), the number of hops was varied from 
10 to 80. As can be observed the retrieval results generated by 
the ESSM are more semantically related with the query image. 
Also note that both schemes (ESSM and flooding) achieves 
better accuracy as queries are generated at lower rate. This can 
be explained by the following fact: as query rate increases, 
more query packets are added into the network traffic and 
thereby causing more packet loss, and more hops are required 
for resending and forwarding the queries. Therefore, the query 
results obtained from large hop counts are removed from the 
result list due to the limitation of hops in Figure 5. The superior 
performance of the ESSM in contrast with flooding stems from 
its content-based clustering capability, since the search domain 
is restricted to a few clusters that are semantically most 
relevant to the query. 

 

Figure 5. Impact of hop count (k = 10). 

 

 

Figure 6.    Impact of data density (query rate = 10q/s, k = 10). 

 

 

In a similar simulation run, we examined the impact of data 
density on the search accuracy. Using the same real image 
dataset, we varied the number of mobile nodes from 256 down 
to 32, increasing the average number of images per node from 
8 to 64. With the fixed mobility and query rate (moving speed 
is limited to 1m/s and an average of 10 queries per second), the 
number of hops was limited to 64. Figure 6 depicts the 
experimental results. Since the probability of finding 
semantically related results increases as the data density 
increases, both schemes offer better accuracy as data density 

increases. However, the accuracy of flooding-based schemes is 
still less than that of the ESSM. Also note that the ESSM 
achieves over 90% search accuracy at a relatively low data 
density (16 images per node). This implies that in a relatively 
large-scale network (2048/16 = 128 nodes), the ESSM almost 
achieves its peak performance with a small search cost (less 
than 64 hops). In the scope of wireless ad hoc networks, this is 
a significant observation since the mobile nodes usually have 
small storage and cannot support large data density. 

Search Cost 

In an ad hoc network, the search path length is usually 
calculated as the number of hops needed to deliver the query to 
proper mobile nodes that contain requested data. The real 
image dataset was used in this simulation run. Several factors, 
such as mobility, node density, and query rate, have direct 
impacts on the search cost; hence, we ran our simulator with 
different combinations of these parameters. 

 

Figure 7.    Comparison on search path length (query rate = 10q/s, k = 10). 

 

 

Figure 8.    Comparison on search cost (query rate = 10q/s, k = 10). 

 

Figure 7 illustrates the number of hops needed during the 
query resolution for various network densities. As can be seen 
from Figure 7, the flooding scheme finds the data source node 
using less number of hops. This is due to the fact that flooding 
broadcasts the query to all its neighboring nodes and reaches 
the data source node using the shortest path. However, due to 
the broadcasting and duplicate replies, the search cost of 
flooding may be formidably high (see Figure 8). 

Figure 8 shows the search cost of both schemes in the same 
environment. As anticipated the ESSM resolves a query much 



faster than flooding-based scheme due to its content-based 
clustering characteristic. In addition, from Figure 8 it can also 
be concluded that as node density increase, the ESSM offers 
even better performance than the traditional flooding schemes 
— steady performance improvement as the network scales up. 
The better performance of ESSM in comparison to flooding 
can be explained by the fact that larger node density will incur 
heavier flooding overhead, while ESSM can utilize the denser 
node distribution to form larger size clusters, which increases 
the probability of resolving a query within one cluster. 

 

Figure 9. Impact of mobility (query rate = 10q/s, k = 10). 

 

We also evaluated the impact of node mobility on search 
cost. For an ad hoc network of 64 nodes the maximum speed of 
mobile nodes varied from 10 to 50 m/s. Figure 9 shows the 
simulation results. As can be concluded, the search cost of both 
schemes increases as the node mobility increases, since 
increased mobility can cause more frequent breaks of the 
connectivity among mobile nodes, leading to higher cost in 
creating and maintaining the routes; however, the ESSM 
resolves queries at comparatively much less cost than flooding. 
This is due to the very nature of the flooding scheme ─ higher 
network traffic and higher workload at mobile nodes. In 
contrast, the ESSM resolves the queries within the scope of 
content-related nodes, and avoids forwarding queries to 
irrelevant nodes. 

Scalability 

 

Figure 10.    Search cost in large-scale networks. 

(query rate = 10q/s, k = 10) 

 

In a separate simulation run, the search cost of both 
schemes was evaluated as the network scales up. In this 
simulation run, we varied the number of nodes from 128 to 512 
and randomly distributed 65,536 synthetic data points on the 
mobile nodes. Figure 10 illustrates the result. Similar to our 
earlier observation (Figure 8) one can conclude that the ESSM 
is scalable to large network sizes and large number of data 
objects. 

Maintenance Overhead 

 

Figure 11.    Search cost and maintenance cost 

(65,536 data points, mobility = 1m/s, query rate = 10q/s, k = 10). 

 

As mentioned before, self-adjustment capability of the 
proposed model incurs maintenance overhead that needs to be 
evaluated. In contrast to the ESSM, the maintenance cost of 
flooding scheme is very limited to the messages needed to 
update the neighborhood relationships between mobile nodes. 
Figure 11 shows the average search cost and the maintenance 
cost of both strategies as the network becomes denser. As one 
can conclude, even taking the maintenance overhead into 
account, the ESSM still offers a better overall performance than 
flooding. 

VI. CONCLUSIONS 

Data retrieval in ad-hoc networks is a challenging task due 
to the node mobility and the lack of infrastructure. The study of 
content-based multimedia retrieval puts further challenges to 
the research of data management in ad-hoc networks. In this 
paper we presented a semantic-based multimedia accessing 
model – ESSM – to reduce the searching cost in ad-hoc 
networks. It first clusters mobile nodes based on their data 
contents, then summarizes the data within a cluster, and finally 
forms a hierarchy of summary schema nodes to organize the 
data within the whole network. By carefully mapping summary 
schemas nodes to proper mobile nodes, this model avoids 
adding extra physical nodes or increasing the overhead of 
network traffic. 

With the summary schema hierarchy, the content-based 
multimedia retrieval in ad-hoc network becomes a fully aimed 
and determinate process that is performed within a small range 
of nodes. The query processing is performed by forwarding 
request packets only to the data sources most relevant to the 
queries, instead of flooding the network. Our simulation shows 
that ESSM approach achieves better performance than 



broadcasting method based on performance metrics, such as 
mobility, number of nodes, and cache size. 
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