
Bootstrapping Operation-Level Web Service
Ontology: A bottom-up Approach

Xumin Liu
Department of Computer Science
Rochester Institute of Technology

Email: xl@cs.rit.edu

Hua Liu
Xerox Research Center at Webster

Xerox Corporation
Email: hua.liu@xerox.com

Abstract—Ontology is the key ingredient of semantic Web
service technologies, which support systematic management of
Web services, such as automatic service discovery, servicecom-
position, and change management. It is crucial and challenging to
reduce the human efforts for developing ontologies. We propose
a bottom-up approach that bootstraps operation-level service
ontologies from WSDL descriptions. The approach leveragesthe
techniques of information retrieval and machine learning. The
relevance and similarity between Web services are measured
based on the WSDL descriptions. The process of developing
service ontologies consists of two steps. First, we build service
ontologies based on the service relevance. We then construct
the structure of the service ontologies based on the service
similarity. We conduct an empirical study on real Web services
to demonstrate the effectiveness of the proposed approach.

Index Terms—Web services, Ontology, WSDL

I. I NTRODUCTION

The last few years have witnessed a plethora of activities
around Service-Oriented Computing (SOC). Many companies
have already started delivering their business functionalities
on the Web via Web services. Examples of these companies
include Amazon, Ebay, Facebook, Force.com, Google, HP,
IBM, Microsoft, and Yahoo. Meanwhile, the emergence and
popularity of cloud computing further impel the rapid growth
of Web services [1]. SOC has attracted considerable interests
from both academia and industry. Many research efforts have
been conducted aiming to make a full usage of Web services.
A Web Service Management System (WSMS) has been envi-
sioned that treats Web services as the first-class objects and
manages them as how a DBMS manages data [16].

Automation is one of the most important and challenging
research issues of Web service management. More specifically,
due to the large scale and heterogeneous Web service space,
realizing the full potential of Web services lies in the mini-
mization of human efforts for the usage of Web services, such
as service discovery, composition, and invocation. Semantic
support is always considered as the key enabler for automation.
The key idea of current semantic Web service technologies is
to add machine-understandable semantics to service descrip-
tions so as to allow software agents to capture the important
information of a Web service and take over the work.

Ontology is the key ingredient of current semantic Web ser-
vice technologies [4], [14]. The concept of ontology originally
came from the field of Artificial Intelligence for recognizing

objects and reasoning their relationships within a domain.
Later it has been adopted in many other fields, including
semantic Web services, to develop machine-understandable
knowledge. There are two types of ontologies that have been
proposed so far:domainontology andserviceontology. The
domain ontology mainly focuses on data-level semantics. It
describes concepts and their relationships in a certain domain
so as to add semantic markups to the terms (e.g., input
and output parameters) in a service description. The domain
ontology allows automatic matching between user requests
and service descriptions as well as improves the precision
and recall of the matching result. The limitation of domain
ontology is that the concept granularity is data in service
descriptions. It does not directly capture the semantics of
higher level objects, such as services and their relationships.
The service ontology, on the other hand, focuses on service-
level semantics. It treats services as the first-class objects when
describing them and their relationships [7], [9]. The service
ontology builds up a meaningful organization of Web services.
The services having similar functionality are classified into the
same categories, a.k.a.,service communities. This organization
gives a high-level and structured view of the important features
of Web services, such as their functionality and inter-service
relationships. Therefore, the service ontology allows a top-
down, disciplined way to discover and compose Web services
on a large scale [18].

The development and deployment of service ontologies have
been seriously hindered by the intensive human efforts re-
quired during the process of ontology construction. Traditional
approaches for ontology construction mainly rely on domain
experts who have a comprehensive and thorough view on the
concepts within a domain. It will be a very extensive, demand-
ing, and even impossible work in the context of Web services.
First, there is a large number of Web services available on the
Web. The number still keeps increasing. Second, these Web
services are offered by independent and autonomous service
providers. Most of these providers only publish the WSDL
descriptions of their services. However, it is not practical to
go through all the WSDL documents by domain experts. A
systematic support is needed to minimize the human efforts
during the process of ontology construction.

Some research efforts have been conducted for automati-
cally bootstrapping domain ontology [15], [12]. The proposed

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247159

approaches start with a set of Web sites that are coupled
with Web services or WSDL documents. Machine learning
algorithms and information retrieval approaches are applied
to explore potential concepts and reason their relationships.
Inspired by these approaches, we propose an approach that
automatically extracts semantics from WSDL descriptions
and constructs service ontologies. The approach starts with
WSDL documents and identifies the functional features of Web
services. It then builds up a hierarchical structure of service
functionalities to form a service ontology. A Web service
provides its functionality via a set of operations, which are
unordered and unrelated to each other in a WSDL document.
Therefore, it will be more suitable to use service operations as
the granularity level to define basic functionalities than using
services.

This paper is an extension of our previous work [8]. We
present a two-phase process to construct service ontologies
by mining service operations based on WSDL descriptions.
During the first phase, we measure the functional relevance be-
tween service operations and use it to define service ontologies
on a high level. Based on the relevance, we classify operations
into functionally related groups. Each group corresponds to
an application domain. Within a domain, we further study
the similarity between service operations in the second phase.
We use a hierarchical clustering algorithm to mine service
operations based on their similarity. This process extracts
common functional features of similar operations, which can
be used to define abstract operations. The result of this
process is a hierarchical structure of the service ontology. This
service ontology reveals the relationship among services and
operations, which is not directly visible from WSDL files.
It allows to perform service discovery and composition in a
structured manner.

The remainder of this paper is organized as follows. In
Section II, we give an overview of the proposed process for
building operation-level ontologies for Web services. We lay
out and describe the key steps in the process. In Section III,we
present a two-phase process that measures relevance and sim-
ilarity, respectively, to mine service operations and construct
service ontologies based on WSDL descriptions. In Section IV,
we present a comprehensive experimental study to illustrate
the effectiveness of the proposed approach. In Section V, we
discuss some representative related work. We conclude our
paper and discuss future work in Section VI.

II. A N OVERVIEW OF ONTOLOGY DEVELOPMENT

PROCESS

In this section, we present the process of developing
operation-level service ontologies. This process takes WSDL
documents as input and generates a set of hierarchical service
ontologies as output. As depicted in Figure 1, the process
consists of several key steps, includingextract operations,
compute operation relevance, build service ontology, compute
operation similarity, and develop internal structure of ontol-
ogy. We elaborate on these steps as follows.

A. Extract Operations

The first step of service ontology construction is to extract
the descriptions of operations from WSDL documents. A Web
service provides its functionality via a set of operations.This
makes operations the right granularity level to define basic
functionalities of Web services. To analyze the functional
features of a service operation, it is important to get as much
information about the operation as possible from the WSDL
document. During this step, we parse WSDL documents and
store all the detailed description for each operation, including
the operation name and detailed description of input and output
messages. The message description includes the message name
and the description of each part, which consists of the part
name and its data type. Besides, we use the Web service and
the service interface as the context of an operation to improve
the accuracy of the analysis result. For this reason, service
name and portType name are included in the operation’s
description. The output of this step is the descriptions of
operations, which are stored in anoperation container.

B. Compute Operation Relevance

This step is to compute the relevance between operations.
The relevance between two operations measures how much
they are related to each other. Generally speaking, two opera-
tions in the same application domain have a higher relevance
than the ones in the different domains (e.g., travel, medical,
and finance). For example,flight reservation andfind hotel
are expected to have a higher relevance thanflight reservation
andget Medicine name. Although WSDL mainly describes a
service at the syntactic level, information retrieval techniques
can be adopted to extract semantics from WSDL descriptions.
This is due to the observation that some common naming con-
ventions are usually followed for Web service development,
especially for the WSDL documents which are automatically
generated from programming source codes. For example, an
operation usually has the name of the original function, such
asTemperatureConversion. Based on this observation, we can
analyze the functional features of a service operation from
the terms in its description. Following these lines, we extract
termsfrom an operation’s description to compute the operation
relevance.

It is very common that an element in a WSDL document
appears in a composite format. For example, an operation
may have a name likeget Map, sendPurchaseRequest, or
order1. Thus, tokenization is performed on an operation’s
description to extract simple terms. The tokenization process
decomposes a given expression into simple terms. It consists
of case change, suffix numbers elimination, word stemming,
andunderscore separator[10]. The output of the tokenization
process is a set of terms that are used to describe a service
operation.

The relevance of two operations is computed based on their
terms. We elaborate on the computation in Section III-A. The
operation relevance matrix that stores the relevance between
any pair of operations is generated as the output of this step.

WSDL

Documents

Extract

operations

Compute

operation

relevance

Build service

ontology

Compute

operation

simialrity

Develop internal

structure of

ontology

Operation

container

Domain

Knowledge

base

Operation

Relevance

Matrix

Operation

Similarity

Matrix

Flat Ontology

Description

Hierarchical

Ontology

Description

Fig. 1. The Ontology Construction Framework

C. Build Service Ontology

This step takes the operation relevance matrix as input and
identifies different domains and the corresponding services in
each domain. A service ontology is then created for each
domain. This step uses the matrix to cluster the service
operations by grouping the related operations together. Itis
elaborated in Section III-A.

D. Compute Operation Similarity

This step is to compute the similarity between two relevant
operations, i.e., the operations in the same domain. It is
different from measuring relevance between operations, where
only terms are considered. When computing the similarity, the
structure of an operation (e.g., input and output messages)
is also considered. The reason is that two similar operations
should have both similar syntactic features (i.e., names) and
structures, which need to be evaluated accordingly. For ex-
ample,get map andget route are expected to have a higher
similarity thanget map andflight reservation. The output of
this step is the operation similarity matrix, which stores the
similarity between any pair of operations in a service ontology.
This step is elaborated in Section III-B.

We use adomain knowledge baseto improve the accuracy
of computing service relevance and similarity. The knowledge
base describes a set of terms and their relationships. The
usage of the domain knowledge base is due to the syntactic
difference between synonyms. For example, althoughtrip
and journey share similar meaning, they will be treated as
two distinct terms. Wordnet1, a lexical database, has been
widely used to connect between synonyms. Another option is
to rely on Web search engines to compute the distance between
two terms [11]. Since Wordnet has been demonstrated to be
effective to retrieve synonyms for a term, we choose to use
Wordnet in our work.

E. Construct Internal Structure of Ontology

This step takes the operation similarity matrix as input and
generates the internal structure for each service ontology. A
hierarchical clustering approach is performed to cluster similar
operations and extract their common features. This processis
elaborated in Section III-B.

1http://wordnet.princeton.edu/

III. O NTOLOGY CONSTRUCTION

In this section, we present the process of constructing
operation-level ontologies. It follows two steps. First, we
create a service ontology for a certain domain by grouping
operations providing related functionalities together. Second,
we build up a hierarchical structure for the service ontology
based on the functional similarity between service operations.

A. Relevance-based Ontology Construction

The process of relevance-based ontology construction con-
sists of two steps. We first compute the relevance between
service operations and generate the relevance matrix. We then
define service ontology based on the relevance matrix.

The relevance between two operations is computed based
on their descriptions (e.g., name, input message, and output
message) and their context (Web service and portType). In
information retrieval techniques, terms are typically used as
the basic elements to compare between two documents. This
idea can also be applied to operation comparison. It is due to
the observation that the morerepresentative termsare shared
by the two operations, the higher relevance that these two
operations should have. The representative term refers to the
one that can represent the functionality of a service operation
and it tends to have high appearance frenquency among service
operations in the same domain. Therefore TF/IDF [2] can be
used to measure the degree of representativeness of a term. To
improve the precision and recall of the result, we use Wordnet
to solve the syntactic difference between synonyms.

Suppose thatT is the set of terms extracted from all WSDL
documents. It containsk terms with distinct meaning. We can
model an operation as ak dimensional term vector. Thus,
giving m operations, we can generate anm × k operation-
term matrixMOP , where each row represents an operation
and each column represents a term. More specifically, lettj
be thejth term andopi be a set of terms that are included in
the ith operation’s description or context, we have:

m
OP
i,j =

{

0 if tj /∈′
opi

TF ′(tj)/IDF ′(opi) otherwise
(1)

tj /∈′ opi means thattj or its synonyms does not belong to
opi. We also treat a term and its synonyms as the same term

when computing its TF/IDF. After generating the operation-
term matrix, we apply kmeans clustering to group related
operations together. The reason of choosing kmeans is that
it is very efficient with time complexityO(KIM) and it can
achieve high accuracy of the clustering result.

The result of the clustering process is a set of operation
clusters, where operations providing the related functionality
are grouped to the same cluster. Each cluster corresponds toan
application domain. A service ontology is generated from each
cluster. The operations in the cluster constitute the content of
the ontology.

B. Similarity-based Ontology Construction

The process of similarity-based ontology construction con-
sists of two steps. First, we compute the similarity between
two service operations within an ontology and generate the
similarity matrix. We exploit a similar strategy as developed
in [10] for measuring similarity between two service opera-
tions. Second, we build up the hierarchical structure of the
ontology based on the similarity matrix.

The similar service operations refer to the ones that provide
similar functionality, which can be described by their names,
input messages, and output messages. Therefore, we compute
the similarity between two operations by comparing them
using these three parameters, respectively. Different weights
can be assigned to them. More specifically, we define the
similarity between two operations as:

simOP (opi, opj) =

w1 × simName(opi.name, opj.name)+

w2 × simMsg(opi.in, opj.in)+

w3 × simMsg(opi.out, opj.out)

wherew1 + w2 + w3 = 1. (2)

Therefore, the similarity comparison between two operations
is decomposed to the comparison between names and the
comparison between messages. We elaborate on these two
comparisons as below.

It is typical that an operation has a composite name, such as
get PurchaseOrder orcarRentalReservation. Therefore, we
need to first tokenize the operation name and decompose it to
simple terms for comparison. LetTopi

be the set of terms
decomposed fromopi.name and Topj

be the set of terms
decomposed fromopj .name,

simName(opi.name, opj.name) = simTermSet(Topi
, Topj

).
(3)

We model the two sets of terms as two sets of nodes in a
bipartite graph and compute the maximum weight matching
as their similairity. A bipartite graphG = {N1, N2, E}. N1

and N2 are two disjoint sets of nodes in G.E is a set
of edges between the nodes inN1 and the nodes inN2.
There are no edges between two nodes from the same set.
A matchingM is defined as a subset of E, where there are
no two edges inM sharing a same end node. An edge in
M is weighted. The weight is assigned by the term similarity

function simTerm(t1, t2) → [0..1]. We calculate the term
similarity by leveraging the approach proposed in [3]. We first
compute the normalized compression distance (NCD) between
two terms. We then get the similarity as:

simTerm(t1, t2) = 1 − NCD(t1, t2) (4)

As depicted in Figure 2,Ti andTj are two sets of terms. The
maximum weight matching is the one that has the maximum
sum of weights of edges, i.e.,{< ti1, tj1 >, < ti2, tj2 >}.

Ti

Tj

ti1

ti2

tj1

tj2

tj3

tj4

0.9

0.5

0.1

0

0.8

0.7

0.2

0.1

Fig. 2. The bipartite graph model of two term sets

The weight of a matching is:

WM =

i=|M|
∑

i=1

simTerm(ei.from, ei.to) (5)

Suppose there aren matchings inG, i.e., M1, ..., Mn. There-
fore, the similarity between two sets of terms is defined as:

simTermSet(Topi
, Topj

) =
max1≤k≤n(WMk

)

min(|Topi
|, |Topj

|)
, (6)

We use Equation 3 and 4 to compute the similarity between
two message names. We compute the similarity between
two messages by comparing their names and parts. Different
weights can be assigned to these two aspects. More specifi-
cally, we define the similarity between two messages as:

simMsg(mi, mj) =

w1 × simName(mi.name, mj.name)+

w2 × simMsg(mi.Parts, mj .Parts)

wherew1 + w2 = 1. (7)

It is likely that two similar parts are defined with different
data type granularity, which will affect the result of compar-
ison. For example, the input message of aGeocode service
has one part,address, which has a complex data type.
Another service has four parts in its input message, including:
street_Info, city, state, andzip. To better compute
the similarity between parts, we first flatten each part to a set
of atomic parts, where each atomic part has an atomic (or
standard) data type. We then use the bipartite graph model
to compute the similarity between the parts of two messages.

We calculate the maximum weight matching of the message
part bipartite graph as the similarity. More specifically, we
use APp to denote the flattened set of the partp. In the
graph,N1 = ∪p∈mi.PartsAPp, andN2 = ∪p∈mj .PartsAPp.
The weight assignment function between two atomic part
simPart(ap1, ap2) → [0..1] is defined as:

simPart(ap1, ap2) =

w1 × simName(ap1.name, ap2.name)+

w2 × simType(ap1.type, apj.type)

wherew1 + w2 = 1. (8)

Till now, we have explained the process of calculating the
similarity between two operations. The similarity will be used
to construct operation-level ontologies using data clustering
algorithm

We choose to use SLINK algorithm [13] for ontology
construction for two reasons. First, SLINK is a hierarchical
clustering algorithm, which is suitable for constructing the
hierarchical structure of service ontology. Second, different
from other clustering algorithms, such as kmeans where “cen-
troids” need to be computed for clustering, SLINK algorithm
clusters objects based on the single-link distance, which is
the minimum distance (i.e., maximum similarity) between any
object in the first cluster and any object in the second cluster.
This fits for clustering operations since it is not feasible to
compute “operation centroids”. Although SLINK algorithm is
an expensive algorithm with time complexityO(M2lgM), it
achieves high accuracy on the result. Considering that we only
apply SLINK algorithm to cluster the operations in the same
ontology, the overall process is still efficient.

The result of the hierarchical clustering is a multi-level clus-
ter of service operations. Each cluster represents an abstract
operation, which contains the common functional features of
service operations grouped in the cluster.

IV. EXPERIMENTAL STUDY

We conducted a set of experiments to assess the effective-
ness of the proposed ontology construction framework. We
run our experiments on a Mac Pro with 2.66 GHz Quad-Core
processor and 6GB DDR3 memory under Mac OS X operating
system. The experiments are conducted on a set of real Web
services provided by2. To clearly present the experimental
results, we choose a set of representative services from each
of the five application domains in the given Web service data
set. More specifically, we include 19 medical services, 19
communication services, 18 food services, 20 travel services,
and 26 education services.

A. Performance of Relevance-based Ontology Construction

The operation ontologies are created by first clustering
service operations based on their relevance. The main objective
of this step is to group together operations that offer related
functionalities. Since the structure of the ontologies is not a
concern at this point, most existing clustering algorithmscan

2http://projects.semwebcentral.org/projects/owls-tc

be used for this purpose. We choose the widely used k-means
algorithm and setk as 5. Table I shows the operations that
are assigned to each ontology. We compute the precision and
recall based on the clustering results for each ontology. The
precision and recall are calculated as follows:

precision=

the number of correctly clustered operations

the total number of operations clustered into the ontology
(9)

recall=
the number of correctly clustered operations

the total number of operations from the given domain
(10)

As can be seen, perfect precision and recall are achieved
for three ontologies: communication, food, and education.The
algorithm mis-clusters 8 travel operations into the medical
ontology so the precision for the medical ontology is 70.4%
and the recall of the travel ontology is 60%.

B. Performance of Ontology Structure Construction

We present the performance on ontology structure construc-
tion in this section. We choose to use a hierarchical clustering
algorithm to further cluster the operations that are assigned
to the same ontology. This allows us to directly construct the
hierarchical structure of the service ontology. Comparingthe
ontologies generated by this algorithm and manual process,it
reveals a high similarity. Limited by space, we will only show
the resultant structure of the travel ontology. Other ontologies
present a very similar structure.

Figure 3 shows the travel ontology structure obtained from
hierarchical clustering of operations in the travel ontology. The
bottom level (i.e., level 0) corresponds to the indices of all the
operations that are assigned to this ontology. Table II gives
the detailed information of each of these operations, including
operation name, input message, and output message. Since
the input and output of an operation may consist of multiple
parameters, the name and data type of each parameter is also
listed in the table. Some parameters have a complex data type.
For example, ORGANIZATION has a complex data type
that includes multiple components, like the size, sub-unit, and
headed by etc. We omit these information for the sake of space.

As can be seen in Figure 3, the clustering proceeds in a
hierarchical fashion. For example, at level 1, the most similar
operations are clustered into a set of very cohesive clusters.
Operations in the same level-1 clusters provide identical or
very similar functionalities. For example, operations 7 and 8
both are used to get surfing destination information for orga-
nizations. As the clustering process proceeds, more loosely
coupled clusters are generated. For example, operations 7,
8, 0, and 4 are grouped together as a level-2 cluster. These
operations are used to get the destination information for
either surfing or hiking. Obviously, the hierarchical ontol-
ogy structure captures more information than a flat ontology
structure. It not only provides the similarity between different
operations but also captures the similarity between different
operation clusters. Such a structure also greatly facilitate us in
identifying abstract operations which can be used to describe
the functionalities of the operation ontologies. As an example,

TABLE I
RESULT OFRELEVANCE-BASED CLUSTERING

Ontology name Operations Precision Recall
Communication ontology 19 communication operations 100% 100%
Food ontology 18 food operations 100% 100%
Medical ontology 19 medical operations

8 travel operations
70.4% 100%

Travel ontology 12 travel operations 100% 60%
Education ontology 26 education operations 100% 100%

we identify three abstract operationsA0, A1, andA2: A0 can
be regarded as a very generic travel related operation;A1

can be regarded as an abstract operation that provides surfing
and/or hiking related information; andA2 can be regarded
as an abstract operation that provides accommodation related
information. If needed, more abstraction operations can be
easily identified by just following the hierarchical ontology
structure.

The ontology hierarchy enables easy service discovery and
seamlessly dynamic service replacement. For example, if a
user looks for services that provide destination information
for either surfing or hiking, operations 7, 8, 0 and 4 are
returned according to the ontology hierarchy. Higher accuracy
can be achived using this ontology hierarchy based approach
compared to keywords based search. As another example,
operation 7 can be dynamically swapped with operation 0
without disruption to the workflow that operation 7 belongs
to, when operation 7 becomes unavailable. This is because
that operation 7 and 0 are clustered together at the same level
of the hierarchy reveals their replaceability.

V. RELATED WORK

Our work is related to two topics: developing ontology for
Web services and extracting semantics from WSDL docu-
ments. In this section, we discuss some representative related
works and differentiate our approach from them.

A. Ontology Development

The approach proposed in [12] aims to automatically
generate domain ontologies for Web services in a given
domain. The ontological bootstrapping process takes WSDL
descriptions and free text descriptions of Web services as
input. It first extracts terms from a WSDL document and
then computes the TF/IDF for each term. The terms having
high TF/IDF will be selected. Meanwhile, it also performs
Web context extraction to produce a set of context descriptors,
which have the most references in number of Web pages and
in number of appearances in the WSDL documents. The terms
that appear in the result of both the TF/IDF computation and
Web context extraction will be considered as potential concept
names. The concept relationships can be generated by using
context descriptors. The current ontology will be verified and
evolved by the free text description of the Web service.

In [15], a system, “DeepMiner” is proposed to automatically
derive domain ontologies for semantically marking up Web
services. It takes a set of web sites that potentially provide Web

services in a domain as input and uses machine learning ap-
proaches to incrementally learn domain ontologies. DeepMiner
observes the query interfaces and data pages of the web sites.
A base ontology is first generated from the query interfaces.
DeepMiner then grows the ontology by investigating more
information from the data pages. SLINK algorithm is used
to discover distinctive concepts over multiple interfaces.

The approaches proposed in [12] and [15] mainly focus on
domain ontologies, which capture the data-level concepts and
their relationships. The resource used for deriving ontology
consists of the query interfaces and data pages of web sites.
Our work focuses on service ontologies, which treats services,
more specifically, service operations as first-class objects and
capture their common functional features and relationships.

B. Semantic Extraction from WSDL

In [17], a co-clustering approach is proposed to generate
Web service communities based on WSDL descriptions. The
approach improves the precision and recall of community
generation by clustering Web services and operations together.
It builds up a service matrix and an operation matrix based on
their term TF/IDFs. The similarity between a Web service and
an operation is computed as a dot product of the service vector
and the operation vector. A co-occurrence matrix of services
and operations is modeled as an undirected bipartite graph
which consists a set of service nodes, a set of operation nodes,
and the edges between them. Each edge is weighted as the
similarity between the corresponding service and operation.
Based on the bipartite graph model, the Singular Vector
Decomposition (SVD) approach is used to group related Web
services and operations into the same communities.

The work proposed in [5] applies a clustering algorithm,
Quality Threshold (QT), to cluster Web services into function-
ally similar service groups. It measures the similarity between
two services by comparing the elements in WSDL documents,
including service names, complex data types, messages, port-
Types, as well as terms.

The approaches in [17] and [5] generateflat service
communities. In contrast, our approach generates a service
ontology, which builds up a hierarchical structure on service
functionalities. In addition, the approach proposed in [5]
only considers two comparison results: matched or unmatched
when comparing between two elements. This does not conform
to the fact that two elements can also be partially matched.
When comparing between two sets of terms, it computes the
similarity between all pairs of terms from the two sets and
averages the sum as the final result. However, the comparison

TABLE II
OPERATIONS IN THETRAVEL ONTOLOGY

ID Operation name Input message Output message
0 get DESTINATION [SURFING, (xsd:string)] [DESTINATION, (xsd:string)]
1 get NATIONALPARK [SURFING, (xsd:string)] [NATIONALPARK, (complex)]
2 get CITY [GENERIC-AGENT, (xsd:string)],

[SURFING, (xsd:string)]
[CITY, (complex)]

3 get CITY [HIKING, (xsd:string)],
[SURFING, xsd:string)]

[CITY, (complex)]

4 get DESTINATION [HIKING, (xsd:string)],
[SURFING, (xsd:string)]

[DESTINATION, (xsd:string)]

5 get NATIONALPARK [HIKING, xsd:string)],
[SURFING, (xsd:string)]

[NATIONALPARK, (complex)]

6 get CITY [ORGANIZATION, (complex)],
[SURFING, (xsd:string)]

[CITY, (complex)]

7 get DESTINATION [ORGANIZATION, (complex)],
[SURFING, (xsd:string)]

[DESTINATION, (xsd:string)]

8 get DESTINATION [ORGANIZATION, (complex)],
[SURFING, (xsd:string)],
[PERSON, (complex)]

[DESTINATION, (xsd:string)]

9 get ACCOMMODATION [GEOPOLITICAL-ENTITY, (xsd:string)],
[TIME-MEASURE, (xsd:string)],
[CITY, (complex)]

[ACCOMMODATION, (xsd:string)]

10 get BEDANDBREAKFAST [GEOPOLITICAL-ENTITY, (xsd:string)],
[TIME-MEASURE, (xsd:string)],
[CITY, (complex)]

[BEDANDBREAKFAST, (xsd:string)]

11 get HOTEL [GEOPOLITICAL-ENTITY, (xsd:string)],
[TIME-MEASURE, (xsd:string)],
[CITY, (complex)]

[HOTEL, (xsd:string)]

7 8 0 4 1 52 3 6 9 10 11

A1

A2

A0

A0 An abstract operation that denotes the generic travel related functionalities

A1 An abstract operation that provides surfing and/or hiking related functionalities

A2 An abstract operation that provides accommodation related functionalities

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Fig. 3. The Hierarchical Travel Ontology Structure

between two unrelated terms may be meaningfulness. In our
work, we look into the internal structure of elements (e.g.,
messages and parts) when measure community and accept
partial matching. We also use bipartite graph model to improve
the accuracy of similarity calculation.

In [10], URBE (Uddi Registry By Example) is proposed to
intelligently retrieve Web services based on similarity between
Web service interfaces. The similarity between two WSDL
documents is computed based on the elements and the terms
included in the documents. It defines a maximization function
to calculate the similarity between the elements in two sets,
based on a bipartite graph model. It then uses the maximization

function to compute the similarity between names, operations,
names, and parts. The work also utilizes Wordnet to solve the
syntactic conflicts between synonyms. URBE is then extended
to compute similarity between semantically annotated Web
service descriptions, i.e., SAWSDL documents.

In [6], an approach for measuring similarity between two
WSDL documents is proposed aiming to improve the work
in [10]. The improvement has been made in two aspects. First,
it uses Web search engines to compute the similarity between
two terms, instead of relying on Wordnet, The purpose is to
improve the accuracy and flexibility, as well as to capture the
implied connections between two terms. Second, it proposes

two-phase similarity metrics to deal with unbalanced bipartite
graphs. This is due to the observation that the unmatched
terms in an unbalanced bipartite graph may have effects on
the similarity, which is ignored in work [10]. The first phase
similarity follows the same process proposed in [10]. In the
second phase, the unmatched terms and their weights are
considered to compute the similarity.

The work proposed in [10] and [6] computes the similarity
between two WSDL interfaces to match user requests and ser-
vice providers or find a substitute service. Our work focuseson
constructing operation-based ontology for Web services, which
defines a hierarchical structure for service functionalities for
efficient usage of Web services. We consider both relevance
and similarity when comparing service operations. Based on
the relevance, we cluster related service together to define
service ontologies and generate their contents (i.e., the service
operations in a service ontology). Based on the similarity,we
build up the internal structure of service ontologies.

VI. CONCLUSION

We present a bottom-up approach to bootstrap operation-
level ontologies for Web services. The ontology construction
is based on the calculation of relevance and similarity of
service operations. We model service operations as term vec-
tors and apply kmeans algorithm to efficiently measure their
relevance. Service ontologies are formed and their contents
are determined based on the relevance. We then compute the
similarity between two operations in a service ontology and
apply SLINK algorithm to build up the internal structure of the
ontology. In the future work, we plan to apply our approach
to semantic service descriptions, such as OWL-S, where more
information (e.g., preconditions and effects) can be used to
better construct service ontologies.

ACKNOWLEDGMENT

This work is supported by Xerox research grant.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing.Communications of the ACM, 53:50–58, April 2010.

[2] R. A. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[3] R. L. Cilibrasi and P. Vitanyi. The google similarity distance. IEEE
Trans. on Knowl. and Data Eng., 19:370–383, March 2007.

[4] The OWL Services Coalition. Owl-s: Semantic markup for web services.
http://www.daml.org/services/owl-s/1.1B/owl-s/owl-s.html, July 2004.

[5] K. Elgazzar, A. E. Hassan, and P. Martin. Clustering wsdldocuments to
bootstrap the discovery of web services. InICWS 2010, pages 147–154,
2010.

[6] F. Liu, Y. Shi, J. Yu, T. Wang, and J. Wu. Measuring similarity of web
services based on wsdl. InICWS 2010, pages 155–162, 2010.

[7] X. Liu, C. Liu, M. Rege, and A. Bouguettaya. Semantic support for
adaptive long term composed services. InICWS 2010, Miami, FL, July
2010.

[8] X. Liu and H. Liu. Constructing operation-level ontologies for web
services. InICWS 2011 (Work-In-Progress), Washington DC, July 2011.

[9] B. Medjahed and A. Bouguettaya. A multilevel composability model
for semantic web services.IEEE Trans. on Knowl. and Data Eng.,
17(7):954–968, 2005.

[10] P. Plebani and B. Pernici. URBE: Web service retrieval based on
similarity evaluation. IEEE Transactions on Knowledge and Data
Engineering, 21:1629–1642, 2009.

[11] M. Sahami and T. D. Heilman. A web-based kernel functionfor
measuring the similarity of short text snippets. InProceedings of the
15th international conference on World Wide Web, WWW ’06, 2006.

[12] A. Segev and Q. Z. Sheng. Bootstrapping ontologies for web services.
IEEE Transactions on Services Computing, 99(PrePrints), 2010.

[13] R. Sibson. SLINK: An optimally efficient algorithm for the single-link
cluster method.The computer journal, 16:30–34, 1973.

[14] WSMO Working Group. Web Service Modeling Ontology (WSMO).
http://www.wsmo.org/, 2004.

[15] W. Wu, A. Doan, C. Yu, and W. Meng. Bootstrapping domain ontology
for semantic web services from source web sites. InIn Proceedings of
the VLDB-05 Workshop on Technologies for E-Services, pages 11–22,
2005.

[16] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed. Deploying and
managing web services: issues, solutions, and directions.The VLDB
Journal, 17:537–572, May 2008.

[17] Q. Yu and M. Rege. On service community learning: A co-clustering
approach. InICWS 2010, pages 283–290, 2010.

[18] Q. Yu, M. Rege, A. Bouguettaya, B. Medjahed, and M. Ouzzani. A
two-phase framework for quality-aware web service selection. Service
Oriented Computing and Applications, 4:63–79, 2010.

