
On Data Provenance in
Group-centric Secure Collaboration

Jaehong Park, Dang Nguyen and Ravi Sandhu
Institute for Cyber Security

University of Texas at San Antonio
jae.park@utsa.edu, dnguyen@cs.utsa.edu, ravi.sandhu@utsa.edu

Abstract—In this paper, we explore data provenance in a
group-centric secure collaboration environment. In collabora-
tions, participating organizations are likely to want certain
trustworthiness on the data that are shared from other or-
ganizations and some assurance on how the shared data are
used by users regardless of their organizations. By utilizing
data provenance in group collaboration environment, we can
provide the participating organizations with various provenance
information that can establish trustworthiness and assurance on
the shared data.

To achieve this, we first identify what kind of operation
information can be and should be captured as provenance
data and how this information can be expressed in a formal
representation which can be queried via the provenance system
for certain utilities. We show the identified provenance data
for a group collaboration application can provide some unique
provenance utilities such as ability to trace the origins orusages
of a shared data object even if it was created in a different
organization. We utilize Open Provenance Model (OPM) [13] to
capture various group collaboration operations identifiedin [12]
and introduce a provenance system for a group collaborationen-
vironment that utilizes Resource Description Framework (RDF)
data representations [10] and GLEEN-enabled SPARQL query
language [7].

Index Terms—Provenance; Security; Collaboration; Group
Collaboration; Information Sharing; Access Control;

I. I NTRODUCTION

In this paper we focus on data provenance in inter-
organizational collaboration. More specifically, we utilize a
group-centric collaboration environment where information is
shared and created in a collaboration group. Here, the collabo-
ration groups are controlled by participating organizations. The
participating organizations assign members and add data re-
sources to a group. The concept of “group-centric” sharing has
been discussed in [11]. The main focus of [11] was in group
operations such as user join/leave and object add/remove. A
more recent study in [12] further discussed administrativeand
usage operations found in group collaboration and mainly
focused on authorization issues of information sharing in
collaboration groups that are created and administered by
multiple organizations.

In such an environment, each participating organization
shares its own data with other organizations in a collabo-
ration group. Also they may use data that are shared by
other organizations. This can cause certain concerns regarding
where the data came from and who influenced the data to
be in the current state. Therefore, in a group collaboration

environment, it is in each organization’s interest to be able to
retrieve information about how and by whom a shared data
object is created, modified or used in a group collaboration
environment.

To achieve this, we first need to identify what kind of
operation information can be and has to be captured and
expressed. In this paper, we utilize the Open Provenance
Model (OPM) [13] and Resource Description Framework
(RDF) to properly capture and express both administrative
operations and users’ (group members’) usage operations in
a group-centric secure collaboration specified in [12]. Once
captured, the provenance data can be utilized to compute
some data dependencies if applicable. Such information can
be retrieved by utilizing a query language. We introduce a
provenance system for a group collaboration environment that
utilize the GLEEN-enabled SPARQL query language to query
provenance data stored in RDF triples. We further show some
utilities of provenance by means of a group collaboration
example.

The remainder of this paper is organized as follows. In
section II, we discuss some characteristics and limitations
of data provenance and summarize some basic aspects of
OPM that are necessary to understand this paper. Section III
discusses a group-centric collaboration environment and adata
object versioning model that this paper is based on. In section
IV we present provenance data and data object dependencies
of various operations found in a group collaboration system
using OPM notations. Section V includes a discussion on how
the provenance data is expressed and queried in a provenance
system, and then discusses some utilities of provenance by
using a running example. Section VI discusses related work
and section VII concludes the paper.

II. DATA PROVENANCE

In this section, we discuss some characteristics of data
provenance and summarize OPM which we used to capture
necessary information of operations that can be found in a
group collaboration environment.

A. Some Characteristics of Data Provenance

In recent years, researchers have studied data provenance
issues extensively in various computing and application envi-
ronments. Generally speaking, many of these studies empha-
size that data provenance can provide pedigree, usage tracking,

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247192



versioning capability, etc. While this could be true in theory, in
a real world system, some of these utilities will be more critical
than others. Fundamentally, the utilities of provenance largely
depend on the kinds of provenance data that are captured in a
system. We believe that capturing complete provenance data
for all the operations occurred in a system is neither feasible
nor necessary.

In a provenance system, while many computing operations
and data dependencies can be captured by the system, there
are certain data object (or node) dependencies that can be
captured properly only by users’ manual declaration. For
example, if a user creates a new document from two existing
documents, only the user herself can tell whether the newly
created document is derived from any or all of the existing
versions or not. While this could be done automatically by a
system to a certain degree, for example, by comparing contents
of these documents, there is no guarantee for the accuracy of
the result since ultimately it is the user’s intention that defines
the dependency.

In addition, even with user’s manual input, capturing a
complete list of provenance data or data dependency is not
likely to be possible in a system. This is largely because
human memory is not capable of identifying all the source
information of their ideas or creations. Consider an example
where a researcher writes a scientific article with a list of
citations. While the author may try as hard as possible to
identify all the sources from where the ideas are derived, some
ideas could be simply based on years of study and experience.
Hence it is not likely to be possible to generate a complete
list of data dependencies.

At the same time, capturing some information of the activ-
ities that occurred in a system may not provide any additional
utility of provenance. For example, attribute update operations
could be critical for authorization process, but capturingthese
operations in provenance data may not provide any additional
utility. Also, we do not need to capture provenance data of
all activities if they do not contribute in achieving particular
goals of a provenance system. Depending on the goals of a
provenance system, some activities are not necessary to be
considered in the provenance system.

Having these constraints, it is our interest to identify the
kinds of operations that can be and need to be captured as
provenance data, how the captured provenance data can be
used in a provenance system and what utilities of provenance
can be achieved with the given provenance data. To properly
discuss these issues, we need a specific computing application
environment where a set of operations can be specified and
expressed and some reasonably significant utilities of the
provenance data can be identified.

B. Open Provenance Model

Recently, the OPM core specification v1.1 has been pro-
posed by a group of researchers based on various requirements
associated with the usage and employment of provenance in
various application domains that are identified in a series of

Fig. 1. A Sample Diagram of OPM Components

information provenance challenges [13]. The OPM provides a
technology-agnostic definition of provenance.

The main concern of OPM is to represent the execution
process that led to a particular state of a data object. In
essence, OPM aims to capture the causality dependencies
of the computing operations, data objects, and execution
context between any two of such states. In an associating
OPM graphical representation, there are three main types
of nodes: artifact which represents a state of a data
object, process which represents an operation, and agent
which represents an execution context. The direct causality
dependency relationships between any pair of these nodes
are captured by five different types of edges:used(Role),
wasGeneratedBy(Role), wasControlledBy(Role),
wasTriggeredBy, andwasDerivedFrom, which altogether
form a directed acyclic graph. Figure 1 demonstrates how
the above nodes and edges interact in a generically captured
use case. The three types of nodes are differentiated
with different graphical representations: artifacts are
represented by ellipses, processes by rectangles, and agents
by octagons. Theused(Role), wasGeneratedBy(Role)
and wasControlledBy(Role) edges are used to express
the system-captured relationships between the nodes.
They are represented by solid lines, differentiated by the
annotations on the edges. Roles are used to give additional
semantics to the associated edges. ThewasTriggeredBy,
and wasDerivedFrom edges are represented by dashed
lines. They are used to provide additional dataflow-oriented
and process-oriented views of the provenance data. They may
not be fully captured by the system and may require user’s
manual declaration in such cases. Figure 1 can be described as
follows. The agentAg controlled the processp1 which used
the artifacta1 to generate the new artifacta2 which was then
used by the processp2. Notice the direction of the arrows
specifies a causality relationship instead of a data flow. The
source of the arc represents the effect while the destination
represents the cause. Also, the fact thatp1 used a1 and
generateda2 does not guarantee thata2 was derived froma1,
hence that needs to be asserted with thewasDerivedFrom
edge froma2 to a1. The wasTriggeredBy edge in Figure
1 shows the dependency of processes. We do not utilize this
kind of edge in this paper.



Fig. 2. A Conceptual View of Provenance Systems in A Group-centric
Collaboration Environment

To distinguish nodes of the same type that are captured
within the same graph, OPM assigns each of the nodes a
unique identifier. For example, two instances of a process that
perform the same operation are differentiated by their unique
identities. The usage of assigned identities is also applied to
other components of OPM where distinguishability is required
under the same context.

OPM is also capable of describing multiple views of the
same process at different levels of abstraction within the same
graph. A specific abstraction view and its associated semantics
are captured in an abstract form of a series of operations which
are called “accounts” in OPM. The use of accounts to provide
all ranges of description between abstract and detailed levels
gives the users efficient utilizations of provenance data.

To capture the unique semantics of the operations within
a particular application domain, OPM allows more detailed
descriptions to be associated with the nodes and edges in
the provenance graph. This is enabled through the annotation
framework. The framework allows subtypes of edges to be de-
fined and properties of nodes to be annotated. These subtypes
of edges or node dependencies are defined in an OPM profile
for a specific application domain.

III. A G ROUP-CENTRIC COLLABORATION ENVIRONMENT

AND OBJECT VERSIONING

A. Review of a Group-centric Secure Collaboration Frame-
work

Collaboration comes in many different forms and sizes. To
facilitate scenarios where a well-defined collaboration group
exists, the concept of a Group-Centric sharing framework
was recently introduced [12]. In this inter-organizational col-
laboration framework, the participating organizations collab-
orate through an agreed structure defined as a group. In a
collaboration group, organizations share resources, which are
termed objects. A version control system is applied on these
shared objects. Users, who are granted access, can perform
collaborative work on these objects. Organizations can create
as many collaboration groups as necessary.

In [12], the administrative and operational aspects of the
framework are addressed separately with two component sub-

models. The models are specified following the attribute-
based UCON model for usage control [15]. The administrative
sub-model is responsible for the management of groups as
well as users and objects in the collaboration groups. The
set of corresponding operations include: Establish/Disband
for managing the group, Join/Disband/Substitute for manag-
ing users/admins, and Add/Remove/Export/Import/Merge for
managing objects that are shared or natively created within
the groups. The usage or operational sub-model, in contrast,
is concerned with the management of users’ activities within
the collaboration groups as well as the respective organiza-
tions. The set of operations corresponding to these group-
centric entities include: CreateRO/CreateRW/Kill for data flow
control, Read/Update/Create for usage of objects/versions, and
Suspend/Resume for controlling usage of objects/versions.

B. A Group Collaboration Environment for Data Provenance

In group-centric collaboration, in general there could be
multiple organizations and these organizations could establish
multiple collaboration groups for different purposes. Forsim-
plicity, here we assume that two participating organizations
org1 andorg2 have established one collaboration groupcg1.
As identified in [12], there are two types of operations.
Administrative operations are performed to establish/disband
groups together with group administrators, substitute group
administrators, join/leave group members in a group, add/re-
move organization data to and from a group, etc. This means
provenance data includes operations not only on shared data
but also on groups and users. Usage operations are performed
against data objects accessed via either an organization ora
collaboration group. Also, there are two types of data objects
in a collaboration group. Firstly there are pre-existing data
objects shared by organizations in the collaboration group, and
secondly there are data objects that are natively created inthe
collaboration group.

We also assume, as shown in Figure 2, that conceptually
each organization facilitates its own provenance system which
captures provenance data for usage operations against data
objects managed within the organization and shared by the
organization in a collaboration group as well as data objects
that are natively created in the group. The provenance system
also captures provenance data for administrative operations
against the collaboration group, group members and data
objects in the organization and in the collaboration group.1

If mutually agreed, the participating organizations can query
the other organization’s provenance data using the overlapping
provenance data as connectors.

1There can be several different ways to structure the overallprovenance
system in a group collaboration environment. For example, it is possible that
org2 is only allowed to capture provenance data for its own user’soperations
or operations on their local data objects whileorg1 captures as discussed
above. This could make sense, for example, in case a government organization
collaborates with a contracting company where the contracting company’s
access to provenance data is restricted by the government. Another example
could be that each participating organization and shared group maintains
its own provenance system. In this case, the provenance datacaptured and
maintained by a collaboration group may need to be accessible by the
participating organizations even after the collaborationgroup is disbanded.



C. Data Object Versioning Model

In the paper, we use the terms objects, versions and copies.
We assume that one object can have multiple versions, and
each version can have multiple identical copies. The versions
of an object form a rooted tree structure, relating a parent
version to its immediate children versions. For provenance
purposes each copy (identical in content) is considered as a
separate “object.” Each copy of a version of an object is shown
as an artifact node in the OPM graph.

IV. PROVENANCE DATA FOR GROUP-CENTRIC SECURE

COLLABORATION

In order to discuss utility of provenance data, we first have
to identify operations that can be performed on data objects
and dependency of the data objects that are formed as a
result of an operation or a set of operations. In this paper
we utilize OPM notations to show these operations and data
object dependencies.

As mentioned earlier, [12] identified various administrative
operations on groups, administrators, regular users, and data
objects as well as regular users’ usage operations on data
objects in a group. It is not necessary to capture all these
operations in provenance data. Many of these operations are
for authorization purpose and are not meaningful for prove-
nance. Note that how much information of an operation can
be or should be captured in provenance data depends on the
participating organizations’ agreement and provenance system
design details. Hence, there could be many variations of the
general theme of this section. Also, in the system of Figure
2 the provenance data captured inorg1 could be different
from those captured inorg2 for the same operation. Further,
there could be other operations (e.g., object duplication and
deletion) or the existing operations could be refined to capture
richer semantics (e.g., update operation can integrate some
content of another data object into the updating object). Here
we mainly focus on the operations identified in [12].

A. Provenance Data of Administrative Operations

In this subsection, we discuss how administrative operations
identified in [12] can be expressed in OPM.

Establish(uSet, cg): Establish collaboration groupcg. In
general, a collaboration group is established together with a set
of administrative users who represent their own organizations.
While there could be multiple ways to do this depending
on how participating organizations agree, we assume that
one of these administrative users establishes a collaboration
group on behalf of other users.2 Figure 3a) illustrates that
the establish process “wasControlledBy” (shown as an
arrow labeled “c”) org1.admin and “used” (shown as arrows
labeled “u”) org1.admin and org2.admin. The artifactcg1
“wasGeneratedBy” (shown as an arrow labeled “g”) the

2We do not attempt to identify an exhaustive list of the possible scenarios
for establishing a collaboration group. Rather we show a couple of possible
ways how provenance data for a collaboration group establishment can be
expressed using OPM and further discuss the captured provenance data. This
also applies to the other operations discussed here.

Fig. 3. OPM Diagrams for Establish/Disband Operations

establish process. In other words, an administrator of an
organizationorg1.admin established a collaboration group
cg1 together with two group administratorsorg1.admin and
org2.admin. Here, we have a subtype ofwasDerivedFrom
(shown in dashed arrows) named ashadAdmin to show
more meaningful dependency of provenance data artifacts.
The provenance data of theestablish operation can be also
captured in a way discussed in [12]. This is shown in Fig-
ure 3c). Here,org1.admin created auSet, added a set of
administrative users to theuSet and then used it to establish
a collaboration groupcg1. In addition, [12] discussed that,
as shown in Figure 3d), firstlyassoc attribute of cg1 was
created/updated to include the participating organizations (all
organizations found inuSet) and secondly participating users’
cgadmin attributes were updated to includecg1 as part of the
groups they administer.

While these additional updates on related attributes are
discussed in [12], these activities may not need to be captured
in provenance data. This is because capturing the “establish”
operation as shown Figure 3a) might be enough to provide
sufficient provenance utility. Capturing additional details of
creation/update activities on attributes may not provide any
additional significant provenance utility. Specifically, Figure
3a) will be enough to identify who created the group or who



Fig. 4. OPM Diagrams for Join/Leave Operations

were the participating organizations or administrative users of
the group. Capturing howuSet, accoc or cgadmin attributes
were created/updated can be useful only if we need to verify
some specific aspects such as who added a certain user in
uSet, which administrative user is added first, etc.3 At the
same time, attribute updates shown in Figure 3c) and d) are
just one way of conducting the details of the operation and
can be subsumed in the approach shown in Figure 3a).

Disband(uSet, cg): Disband group. The provenance data of
this operation allows users to query who disbanded the collab-
oration group. While [12] requires agreement of all adminis-
trative users for this operation, provenance data only captures
who actually conducted the operation and does not reflect the
authorization processes. Figure 3b) shows an administrative
userorg1.admin who disbanded collaboration groupcg1 and
a set of administrative usersuSet. Capturing provenance data
of theestablish anddisband operations allows users’ to query
pedigree and disposition of the collaboration group. This also
means that the group is considered an OPM artifact.

Join/Leave(u1, u2, cg): Join/Leave user to/from group.4

Suppose an administrative useru1 from a participating organi-
zation included a useru2 as a member of collaboration group
cg1. The provenance data of this operation can be expressed
in OPM as shown in Figure 4a). Here, “join/leave” operation
processes were controlled byu1 and usedu2 andcg1, and a
new cg1 was generated from the “join/leave” processes. In
[12], a necessary update activity on the attributeucg of u2
is captured to reflect the fact that the user is now a member
of cg1 (see Figure 4b)). However, as similarly discussed in
theestablish operation above, this update can be seen as one
of multiple ways of performing the “join/leave” operations.
For example, instead of using theucg attribute of a user,
we can utilize theucg′ attribute of cg1 to capture all the
group members. Therefore, Figure 4b) can be subsumed in

3Further, note that provenance data can also capture variouscontextual
information (e.g., timestamp, location, computing platform, etc.) to provide
additional utility. In this paper, we do not consider such contextual information
since it can be simply added to provenance data without worrying about data
flow or node dependency.

4Although join and leave operations are shown in a single process in
Figure 4 for convenience, they are two separate operations and occurrence of
each operation should be captured by a separate process.

Fig. 5. OPM Diagrams for Add/Remove Operations

Fig. 6. OPM Diagrams for Substitute/Import Operations

a more general operation description shown in Figure 4a). In
the Figure 4a), two subtypes of “wasDerivedFrom” named
“hadJoinedCgMember” and “hadLeftCgMember” were
introduced to capture the dependencies of provenance data
artifacts.

Add(u, o, v, org, cg,): Add object version from org to group.
Theadd operation creates a copy of an object version from an
organization to a collaboration group. In Figure 5a),u1 added
a copy of an objectorg1.o1v1 from an organizationorg1
to a groupcg1. A subtype of “wasDerivedFrom” named
“wasCopyOf ” is identified to show a node dependency. Here,
org1 is used as a source entity andcg1 is used as a target
entity. While both source and target entities are captured
here, if this provenance data is captured byorg1, the source
entity information may not need to be captured since it is
always org1. However, if this provenance data is captured
by organizations other than the source entity, sayorg2, the
provenance data inorg2 will need to include both the source
and target entities information. While the source organization
information could be found in source data object, we do not
assume that this is always the case. Hence the source entity
information is shown explicitly in the OPM diagram.

Remove(u, o, v, cg): Remove object version from group.
The remove operation deletes a copy of an object version
from the entity where it is located. In Figure 5b),u1 removed
cg1.o1v1 from cg1.

Substitute(u1, u2, cg): Substitute group admin. The
substitute operation removes an existing administrative
user and add another administrative user in a collaboration
group. In Figure 6a),u1 substituted herself withu2 as an



Fig. 7. OPM Diagrams for Merge Operation

administrative user incg1. The roles of theseused edges
are captured inu(role) format. In Figure 6a),cg1, u1 and
u2 are used with rolesadminGroup, removedAdmin
and addedAdmin, respectively. Two subtypes of
“wasDerivedFrom” named “hadRemovedAdmin”
and “hadAddedAdmin” are identified to show the node
dependencies. The OPM diagram also shows a generic
“wasDerivedFrom” arrow to capture dependency between
the previous and current state ofcg1.

Import (u, o1, v1, o2, cg, org): Import a version from group
to organization. Theimport operation copies a version of an
object that was natively created in a collaboration group into
an organization. In Figure 6b), an object versioncg1.o1v1
was copied fromcg1 to an organizationorg1 and named as
org1.o2v1. While org1.o2v1 is an exact copy ofcg1.o1v1,
org1.o2v1 is treated as a new object. The “wasCopyOf ”
shown in Figure 6b) shows the dependency of the two data ob-
jects. While these two copies are considered different objects
and cannot be connected in a version control system, using
the dependency arrowwasCopyOf , users in a collaboration
group or in an organization can trace the usage information of
a particular object version that are imported to another orga-
nization even if the user does not belong to the organization.
While [12] discusses “export” operation to capture the fact
that all the administrative users should agree to make an object
version exportable, this operation is identified for authorization
purpose, hence not included in this paper.

Similar to the add operation, provenance data for the
import operation may or may not include the source entity
information depending on whether the organization of the
provenance system is the one who performed the operation
or not.

Merge(uSet, cg, o, v, org): Merge a version from group to
organization. Themerge operation creates a newer object ver-
sion of an existing object in an organization. This new version
created in the organization is a copy of an object version that
is created in a collaboration group as a result of theupdate
operation on a version of the object that is previouslyadded
from the organization to the group. (Additional details on the
update operation will be discussed in the next subsection.)

Themerge operation needs some precedent operations that
should have occurred in advance. At least oneadd operation
and then oneupdate operation on the added version are
necessary to perform amerge operation on the updated
version. In Figure 7,org1.o1v1 was added tocg1 then the
added versioncg1.o2v1 was updated incg1.o2v2 which then
is merged back into the original organizationorg1 as a new
version of org1.o1v1 shown asorg1.o1v4. Here, the new
versionorg1.o1v4 is an exact same copy ofcg1.o2v2.5 Figure
7 shows that in themerge operation,cg1 was used as a source
entity (shown asu(se)) andorg1 was used as a target entity
(shown asu(te)). Two subtypes of “wasDerivedFrom”
named “wasCopyOf ” and “wasNewV ersionOf ” are used
to show the dependencies of object artifacts. Having the
dependency of data objects allows users to trace information
flow and usage history on the various versions of a particular
object as well as copies of the versions. For simplicity, agent
nodes foradd, update and merge operation processes are
omitted in Figure 7 though every process needs an agent.

B. Provenance Data of User’s Usage Operations

In this section, we discuss provenance data of user’s usage
operations identified in [12]. [12] assumes that a user repre-
sents a human who creates a subject in a system and a subject
exercises operations on behalf of the user. While user-subject
distinction is critical for information flow control in group
collaboration setting, provenance data only capture operation
events that already occurred in a system and does not worry
about how the operations are authorized. Therefore, thoughwe
use subjects as agents who controlled operations (as shown in
Figure 8), this is not necessarily critical in this paper.

Read(s, o, v, entity): Read an object version. Theread
operation occurred on an object version by a subject in an
entity. Entity information is captured if an object versionis
read in a collaboration group since there could be multiple
groups in a single provenance system. Provenance data of
read operation against an imported or merged object in an
organization is not likely to be captured by a provenance sys-
tem of another organization. However it may need to be traced
by another organization since the data object may have been

5Note that themerge operation creates an exact copy of an object version
in the collaboration group into an existing version tree in the organization
where the original version in the collaboration group isadded from. This
is different from merging two versions found in a same version tree of an
object within an organization. While the latter could be useful, we do not
consider this kind of “content merge” operation. For example, if org1.o1v1
was updated withinorg1 after it was added tocg1, org1.o1v4 is still a
new version oforg1.o1v1 but not a new version of the updated version of
org1.o1v1.



Fig. 8. OPM Diagrams for Read/Update/Create Operations

used or updated earlier by the tracing organization. For this,
provenance data needs to include source entity information.
This applies to bothupdate and create operations discussed
below.

Update(s, o, v, entity): Update an object version. Similar
to the read operation, theupdate operation occurred on an
object version by a subject in an entity but creates a new
version. In Figure 8b),cg1.o1v1 was updated and a new
versioncg1.o1v2 was created. In the diagram, two subtypes
of “wasDerivedFrom” named wasNewV ersionOf and
wasUpdatedIn were identified to show the node dependen-
cies. Note that, in themerge operation diagram (Figure 7),
theentity node andwasUpdatedIn arrow are not shown for
simplicity.

Create(s, o, entity): Create an object. Thecreate operation
creates a data object in an entity. This is an initial versionof
the object. In Figure 8c),cg1.o1v1 was created incg1 hence
cg1.o1v1 has awasCreatedIn edge tocg1.

In addition to these three operations, [12] identified
createRO andcreateRW operations as well askill, suspend
andresume operations. These operations are not discussed in
this paper since they are identified mainly for authorization
and information flow control purposes.

V. A PROVENANCE SYSTEM FOR GROUP-CENTRIC

SECURE COLLABORATION

In this section we describe how to express provenance data
using Resource Description Framework (RDF) data represen-
tation [10] and show how the node dependencies and roles
identified in the previous section can be stored in an OPM
profile for group collaboration. We further discuss the query
expression of the provenance system and then show three
query examples to show some utilities of provenance data in
group collaboration environment.

A. Provenance Data Expressions

We utilize the RDF data representation to express the
provenance data for group collaboration since RDF sup-
ports a directed graph structure. The list that we identify in
this section is not exhaustive. Specifically, we present the
subtypes ofwasDerivedFrom and the roles ofused and
wasGeneratedBy in triples.

As discussed earlier, OPM identified five basic causal
edges between three node types of artifact, process and agent.
They are expressed in RDF representation as follows.

<opm:process><opm:used><opm:artifact>
<opm:artifact><opm:wasGeneratedBy><opm:process>
<opm:process><opm:wasControlledBy><opm:agent>
<opm:process><opm:wasTriggeredBy><opm:process>
<opm:artifact><opm:wasDerivedFrom><opm:artifact>

In addition to this, OPM introduced a notion of an
OPM profile to specify a specialized OPM for different
application domains. In the previous section, we identified
several subtypes of “wasDerivedFrom” edges to add more
semantics on the node dependencies so that more meaningful
queries can be available to users. These subtypes for group
collaboration provenance (gcp) are listed below. Using these
triples, one can express the node dependencies identified in
the previous section.

<gcp:artifact><gcp:wasCopyOf><gcp:artifact>
<gcp:artifact><gcp:wasNewVersionOf><gcp:artifact>
<gcp:artifact><gcp:HadAdmin><gcp:artifact>
<gcp:artifact><gcp:HadJoinedCgMember><gcp:artifact>
<gcp:artifact><gcp:HadLeftCgMember><gcp:artifact>
<gcp:artifact><gcp:HadRemovedAdmin><gcp:artifact>
<gcp:artifact><gcp:HadAddedAdmin><gcp:artifact>
<gcp:artifact><gcp:wasCreatedIn><gcp:artifact>
<gcp:artifact><gcp:wasUpdatedIn><gcp:artifact>

Provenance data forms a directed acyclic graph (DAG).
Once stored as provenance data, these triples can be queried
to construct a subset of the provenance graph that meets the
querying criteria. For example one can find all the previous
versions that show where an object version is coming from.
As identified in the OPM standard [13], a role designates
an artifact’s or agent’s function in a process so it can be
differentiated among several use, generation, or controlling
relations. The following is the list of triples that specifies
various roles ofused (or u in short) andwasGeneratedBy
(or g in short) edges that can be found in a group collaboration
environment.



<gcp:process><gcp:u(sourceEntity)><gcp:artifact>
<gcp:process><gcp:u(targetEntity)><gcp:artifact>
<gcp:process><gcp:u(adminGroup)><gcp:artifact>
<gcp:process><gcp:u(removedAdmin)><gcp:artifact>
<gcp:process><gcp:u(addedAdmin)><gcp:artifact>
<gcp:artifact><gcp:u(initialAdmin)><gcp:process>
<gcp:artifact><gcp:u(toJoin)><gcp:process>
<gcp:artifact><gcp:u(toLeave)><gcp:process>
<gcp:artifact><gcp:u(toAdd)><gcp:process>
<gcp:artifact><gcp:u(toRemove)><gcp:process>
<gcp:artifact><gcp:u(toImport)><gcp:process>
<gcp:artifact><gcp:u(toMergeTo)><gcp:process>
<gcp:artifact><gcp:u(toMergeFrom)><gcp:process>
<gcp:artifact><gcp:u(toRead)><gcp:process>
<gcp:artifact><gcp:u(toUpdate)><gcp:process>

<gcp:artifact><gcp:g(toEstablish)><gcp:process>
<gcp:artifact><gcp:g(toJoin)><gcp:process>
<gcp:artifact><gcp:g(toLeave)><gcp:process>
<gcp:artifact><gcp:g(toAdd)><gcp:process>
<gcp:artifact><gcp:g(toSubstitute)><gcp:process>
<gcp:artifact><gcp:g(toImport)><gcp:process>
<gcp:artifact><gcp:g(toMerge)><gcp:process>
<gcp:artifact><gcp:g(toCreate)><gcp:process>
<gcp:artifact><gcp:g(toUpdate)><gcp:process>

While the provenance data for the operations in a group-
centric collaboration can be expressed in the forms of the
above listed triples, not all operation information is expressed
in the above list. It is not our goal to identify a complete
list of these triples. Rather we show what kind of roles can
be identified for those operations discussed in the previous
section so they can be used to specify query statements. Also
note that some of these roles are not specified in the OPM
diagram for simplicity.

B. Query Expressions

Having the above subtype and role triples defined in
an OPM profile and having provenance data which are
stored in triples as described in the OPM profile, one can
utilize SPARQL [16] (a standard query language for RDF)
to query provenance information by stating a consecutive
path of specific triple types of subject, predicate, and object
in WHERE clause. For example, consider the following
SPARQL query statement.

SELECT ? ve r
WHERE{

gcp : cg1 o2v2 gcp : wasCopyOf ? ob j .
? ob j gcp : wasNewVersionOf ? ve r .}

Here, using thegcp : wasCopyOf predicate, the query
finds the original object ofcg1 o2v2 in a source entity. Then

it finds the previous version of the original object in the source
entity. The “?” symbol in front of a character sting denotes a
variable.

However, this approach is not ideal to express recursive
path patterns. For example, in the above query statement,
if we want to specify the query so it can capture all the
previous versions, it is not practical to list all the possible
combinations in the query statement. To address issue, [7]
developed the GLEEN path expression library as a plugin
for the ARQ query engine. ARQ is a query engine for Jena,
a semantic web framework for Java which supports the
SPARQL RDF query language [1]. The ARQ engine provides
a property function in which a custom triple matching
function can be used in the predicate position instead of
using a uniquely identified ontology property that is found
in standard SPARQL. In this paper, we utilize the SPARQL
query language together with the GLEEN OnPath property
function to express regular expression-based path patterns in
a query.6 This kind of path patterns are necessary to build
a query template for certain types of user inquiries so the
templates can be used to generate actual query statements on
the fly whenever a user’s inquiry is placed. The syntax of
GLEEN OnPath property function is structured as follows:

subject gleen:OnPath (pathExpression object)

Here, the subject and object may be either the URI (i.e
gcp:o1v1) or a variable (i.e. ?agent). The path expression is
a collection of representations of “opm” and “gcp” edges.
GLEEN supports the following regular expression: operators
‘?’ (zero or one), ‘*’ (zero or more), ‘+’ (one or more), ‘|’
(alternation), and ‘/’ (concatenation).

Using regular expression based path patterns, this GLEEN
query expression can be used to create all the direct and
indirect, further abstracted node dependencies at the time
operation information is captured as provenance data. For
example, when a merge operation occurred, a triple of direct
node dependency that includeswasCopyOf can be identified
using a standard SPARQL query. At the same time, all the
indirect (or further abstracted) node dependencies (also called
accounts in OPM) from the target object node can be identified
by utilizing the GLEEN OnPath function with the regular
expression based path patterns that are mapped to the subtypes
of wasDerivedFrom. Having these abstracted OPM accounts
identified, user inquiries on provenance information can rely
on the standard SPARQL query language without using any
regular expression based path pattern in the query statement.

Another way to support provenance information retrieval is
that node dependencies of a target object can be computed on
the fly at the time of a user inquiry on provenance information.
This approach does not require building all the identifiable
direct and indirect node dependencies. However the node
dependencies of a target object need to be computed which
can be done using the GLEEN OnPath function together with

6A similar approach is also used in [5].



Fig. 9. An OPM Diagram for Provenance Data example

regular expression based path patterns in the query statement.

Here, if inquiries on provenance information occurred more
frequently than the conducting operations that need to be
captured as provenance data, the first approach could be more
efficient than the second approach.

C. Query Examples

In this subsection, we utilize a provenance graph shown in
Figure 9 as a running example. The example shows operations
occurred in bothorg1 and cg1. The OPM diagram for the
running example does not show the agent nodes and edges
from them for simplicity. We assume that a query can access
the provenance data of bothorg1 andcg1.

Using the running example, we create three provenance
data retrieval cases to show how queries can be constructed
and what kind of node dependencies and roles in the OPM
profile are used for the queries. These provenance data
retrievals will show some possible utilities of provenancedata
in group collaboration system environment. In particular,the
provenance data of operations occurred in multiple entities
can be accessed to support an organization’s traceability
of shared object that are located in different entities. For
example, while versioning systems cannot relate objects
in different entities, by using provenance data this can be
easily achieved. Note that it is not our goal to identify
all the possible utilities of provenance system in a group
collaboration environment.

<Example 1>

SELECT ? ob j ? proc
WHERE{

gcp : cg1 . o2v3 g l e e n : OnPath (
” [ gcp : wasNewVersionOf ]∗ ” ? ob j ) .

? ob j [ gcp : g ( t o C r e a t e ) ]|
[ gcp : g ( toAdd ) ] ? p roc .}

Example 1. This query is to identify the very initial
version of an object version and whether it is created in the
current group or added from an organization. This is done
by first finding itself and all the previous versions (cg1.o2v3,
cg1.o2v2, cg1.o2v1) and then identifying one that is either
created or added. This will returncg1.o2v1 since it was
derived from anadd process.

<Example 2>

SELECT ? a g e n t
WHERE{

gcp : org1 . o1v2 g l e e n : OnPath (
” [ gcp : wasNewVersionOf ]∗ ” ? ob j ) .

? ob j [ gcp : g ( toUpdate ) ]|
[ gcp : g ( t o C r e a t e ) ] ? p roc .

? proc [ gcp : wasCont ro l ledBy ] ? a g e n t .}

Example 2. This query is to find out all the users who
influenced a current object version within an entity. This
may not identify all the versions of the same object. This
is because if a different version (org1.o1v3) is created from
a previous version (org1.o1v1) of the target object version
(org1.o1v2), this query statement will only returnorg1.o1v2
andorg1.o1v1 but notorg1.o1v3. We think this is acceptable
sinceorg1.o1v3 did not influenceorg1.o1v2.

<Example 3>

SELECT ? a g e n t
WHERE{

gcp : org1 o1v4 g l e e n : OnPath (
” ( [ gcp : wasNewVersionOf ]|

[ gcp : wasCopyOf ] )∗ ” ? ob j ) .
? ob j [ gcp : g ( toUpdate ) ]|

[ gcp : g ( t o C r e a t e ) ] ? p roc .
? proc [ gcp : wasCont ro l ledBy ] ? a g e n t .}

Example 3. This query is to verify users who may have
influenced (including update and create) an object content
regardless of the fact that whether the influence is done on a



version of the same object or a version of a copied object of
the object. This is particularly useful since the query findsall
the users even if they influenced the object in a different entity.

VI. RELATED WORK

Data provenance can be utilized in many different ways
depending on the characteristic of a particular application
domain within which the provenance is captured. For instance,
identifying the source of a piece of data and its connection
to other pieces in curated database [3] and the usage of
provenance for reproducibility of workflow in Semantic Web
[8] is a significant provenance utility in such domains. The
group-centric secure collaboration we study in this paper
is different from previously studied domains. Within this
collaboration domain, we describe a provenance system that
is able to capture and express data provenance that can be
beneficially utilized.

The design for capturing provenance in the form of causal
dependencies allows OPM to be employed in various different
systems. Previous proposals for provenance models in [2],
[3], [6], [9] are constrained to specific domains with different
forms and purposes. [14] proposes a XACML-based access
control policy language for data provenance requirements.[5]
extend the language in [14] but instead choose OPM for the
capability to use RDF and SPARQL with GLEEN-API for the
data provenance of medical records. In this paper, we adapt
OPM and RDF representation and SPARQL with GLEEN-API
queries to demonstrate certain provenance utilities in group
collaboration environment.

VII. C ONCLUSION

In this paper, we discussed what kind of operations can
be and need to be captured as provenance data in group
collaboration environment. We then showed how we can
express such provenance data in RDF triples so it can be
retrieved by utilizing a regular expression based path patterns
in the GLEEN-enabled SPARQL query language. We further
showed some utilities of data provenance in a group collab-
oration environment using a sample example. While this is
our initial step toward data provenance security and utility
in group-centric collaboration, we believe this paper captured
the necessary provenance data and querying mechanisms to
support some utilities for the secure group collaboration.We
anticipate further enhancements on this line of work for more
secure and trustworthy group collaboration.

ACKNOWLEDGMENT

This work is partially supported by NSF grant CNS-
1111925, AFOSR MURI and a research superiority grant from
the State of Texas.

REFERENCES

[1] ARQ - A SPARQL Processor for Jena, Available at:
http://jena.sourceforge.net/ARQ/

[2] Benjelloun, O., Sarma, A.D., Halevy, A.Y., Theobald, M., Widom, J.:
Databases with uncertainty and lineage. VLDB J. 17(2), 243-264 (2008).

[3] Buneman, P., Chapman, A., Cheney, J.: Provenance management in
curated databases. In: SIGMOD 2006, pp. 539-550 (2006).

[4] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and
K. Wilkinson, Jena: implementing the semantic web recommendations
Proceedings of the 13th international World Wide Web conference on
Alternate track papers & posters, pp. 74-83, ACM, 2004.

[5] T Cadenhead, V Khadilkar, Murat Kantarcioglu, Bhavani Thuraisingham,
”A language for Provenance Access Control” Proceedings of the CO-
DASPY11, February 21-23, 2011.

[6] Chapman, A., Jagadish, H.V., Ramanan, P.: Efficient provenance stor-
age. Proceedings of the ACM SIGMOD International Conference on
Management of Data. In: Wang, J.T.L. (ed.) SIGMOD 2008, SIGMOD
Conference, Vancouver, BC, Canada, June 10-12, ACM, New York
(2008).

[7] L.t. Detwiler, D. Suciu,and J.F. Brinkley, Regular paths in SparQL:
querying the NCI thesaurus AMIA Annual Symposium Proceedings, Vol.
2008, pp. 161, American Medical Informatics Association, 2008.

[8] Jennifer Golbeck. 2007. A Semantic Web and Trust Approach to the
Provenance Challenge. Concurrency and Computation: Practice and Ex-
perience

[9] Heinis, T., Alonso, G.: Efficient lineage tracking for scientific work-
flows. Proceedings of the ACM SIGMOD International Conference on
Management of Data. In: Wang, J.T.L. (ed.) SIGMOD 2008, SIGMOD
Conference, Vancouver, BC, Canada, June 10-12, ACM, New York (2008)

[10] Resource description framework (RDF): Concepts and abstract syntax,
Available at: http://www.w3.org/TR/rdf-concepts/, 2004.

[11] R. Krishnan, R. S. Sandhu, J. Niu, and W. H. Winsborough.Foundations
for group-centric secure information sharing models. In ACM SACMAT,
pages 115-124, 2009.

[12] R. Krishnan, R. S. Sandhu, J. Niu, and W. H. Winsborough.Towards a
framework for group-centric secure collaboration. In IEEECollaborate-
Com, pages 1-10, 2009.

[13] L. Moreau, B. Clifford, J. Freire Y. Gil, P. Groth, J. Futrelle, N.
Kwasnikowska, S. Miles, P. Missier, J. Myers, and others, The Open
Provenance Model Core Specification (v1.1) Future Generation Computer
Systems, Elsevier, 2009.

[14] Qun Ni, Shouhuai Xu, Elisa Bertino, Ravi Sandhu, and Weili Han.
An Access Control Language for a General Provenance Model. In the
Proceedings of the 6th VLDB Workshop on Secure Data Management
(SDM’09), August 28, 2009, Lyon, France.

[15] J. Park and R. Sandhu. The UCONABC Usage Control Model. ACM
TISSEC, Volume 7, Number 1, February 2004, pages 128-174.

[16] SPARQL Query Language for RDF. Available at:
http://www.w3.org/TR/rdf-sparql-query/, 2008.


