
An Asynchronous Based Approach to Improve
Concurrency Control in Mobile Web Servers

Sudipan Mishra, Siddharth Sarasvati, Shashank Srivastava, Xumin Liu
Department of Computer Science, Rochester Institute of Technology, USA

Abstract—The recent boom in mobile computing has created
a juncture where it is now possible to host web services on
a mobile web server. However, there remain challenges due to
limitations in available mobile hardware and software capable of
managing resource intensive applications. This paper addresses
the issues related specifically to concurrency control improvement
in mobile web servers. We propose a Dynamic Resource Man-
agement Strategy (DRMS), which uses an asynchronous based
approach to reduce the number of discarded incoming client
requests by a mobile web server. The DRMS strategy includes
identifying the incoming heavy requests from the clients, which
require relatively heavy system resources on the mobile server
to generate a response, and adding those requests to a heap
for them to be processed asynchronously. Based on I-Jetty we
designed and developed Dynamo, an implementation of DRMS,
for Android-based mobile devices. We conducted an experimental
study on Dynamo. Our results demonstrated the effectiveness of
DRMS with the improvement in Dynamo’s concurrency control
management as compared to the same in I-Jetty.

Index Terms—Mobile Web Services, Web Services, Mobile Web
Servers, Concurrency Control, Jetty, Asynchronous Handling.

I. INTRODUCTION

In 1990, Time Berners-Lee invented the World Wide Web
and the world’s first web server, CERN httpd, was born. More
than twenty years later most of our applications are driven
by web services hosted on variety of web servers [15]. The
spread of web applications has significantly altered the Web
landscape [7]. Leading Internet Technology (IT) companies
such as Google, Amazon, Facebook and Twitter provide a wide
array of web services such as Google Product Search, Amazon
eCommerce Application Programming Interface (API), Face-
Book API and Twitter API that use Representational State
Transfer (REST) or Simple Object Access Protocol (SOAP)
protocols supported on web servers to provide a great web
experience for the clients all over the world. Meanwhile,
the past years have witnessed a boom in wireless technolo-
gies [12]. Recent wireless broadband technologies, such as
Wi-Fi, WiMaX, UWB and 3G/UMTS, 4G, are bringing the
promise of large bandwidth everywhere. This has significantly
encouraged the usage of mobile devices across the globe. We
are going through a mobile evolution where the line between
mobile and traditional computing is getting thinner. New gen-
eration smartphones carry more processing and memory power
than the traditional servers did ten years ago. With the recent
innovations in the mobile device industry, the consumers are
moving towards a post-PC world, where a mobile device is
capable of performing most of the essential functions of a
traditional computer [6], [11] and with accelerated internet

adoption around the world, increasing accessibility of com-
munication services such as maps, instant messaging, social
networking, online shopping and news on mobile devices,
and improvements in mobile device features such as screen
size, internal processing power, and data speed transfers, more
consumers today prefer a mobile device over a traditional
desktop [5], [9].

Although first developed by Nokia in 2007 1, the concept
of mobile web servers is still new [13]. A mobile web server
is a software similar to Apache HTTP Server, or Apache Jetty
Server, that provides a mobile device, such as a smart phone or
a tablet, the capability, to host web sites, web applications, and
web services. Hosting web services on a mobile server will
bring flexibility, convenience, and potential to the consumers.
This will revolutionize the way we communicate, share data,
and gather information. Mobile web servers face unlimited
possibilities in the areas of enterprise mobile data access
and sharing for lucrative markets such as the military, music
and health care, to name only a few. Engineering mobile
devices around the world as mobile web servers would change
the internet landscape. It would fundamentally alter the way
we access web services such as maps with geo-location
information, documents, medical records and news, etc. Mass
transit systems could use a mobile server hosting a geo-
location service providing real-time location, scheduling and
route information to commuters. A mobile service such as
this would be beneficial to supply chain management systems,
where shipped products could be accurately tracked across the
world. In the military, solders in the battlefield would be able
to use smartphones with mobile servers to share information,
communicate and gather intelligence from other soldiers in the
vicinity, without depending on satellite communication which
may have a certain latency. Skilled people like doctors and
nurses can also use a mobile web server in remote areas, in
emergency and disaster situations, to obtain and share patient
information.

Yet, mobile devices are still undergoing major changes and
thus, still lack resource capabilities. In addition, battery life is
limited in a mobile server. In addition to a slower processing
power (as compared to a desktop), less memory and limited
battery life, the concurrency control management on a mobile
server also faces several issues. For example, because of its
limited thread pool and memory capacity, if the number of
concurrent clients accessing a web service hosted on a mobile

1http://research.nokia.com/page/231

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250427



server increases, the device is unable to handle these multiple
requests. As a result, the mobile web server discards the client
requests. With better concurrency control, it is possible to
decrease the number of discarded requests and thus increase
the reliability and availability of the mobile servers. Motivated
by the new innovations in mobile technologies and by the
potential benefits of a mobile server, this paper outlines ideas
and strategies to address the concurrency issues of a mobile
web server.

Existing research in the field of mobile web services outlines
key components for building a framework for using a mobile
device to host mobile Web services. Mizouni, Serhani, Dssouli,
Benharref, and Taleb in [8] propose an architecture that
deploys Web services on mobile platforms. They were also
able to identify and evaluate factors that affect the quality of
service of mobile devices such as response time, availability,
throughput and scalability. In addition to their proposal of
a framework for hosting complex Web services on mobile
devices, Hassan, Zhao and Yang in [4] proposed a partitioning
framework that provides a high level design about how to
delegate heavy-duty tasks to distributed backend servers. Other
work in the field is more related to the comparison of perfor-
mance analysis of SOAP-based Web services and RESTful
Web services [2], [10]. A strategy for handling concurrent
requests from the clients on a mobile device hosting web
services was proposed by Gehlen and Pham in [3].

Our paper proposes an approach in improving the con-
currency control on mobile web servers by using an asyn-
chronous approach and Dynamic Resource Management Strat-
egy (DRMS). The DRMS provides a mechanism to identify the
heavy requests from the clients requiring significant processing
power, memory, concurrent threads, or processing time to
generate a response. Examples of such heavy requests are
transcoding a large movie, converting a large document into a
different format, or editing a large image file. Once the heavy
requests are identified by the DRMS, they are assigned to a
heap, where they are processed in an asynchronous manner
to generate responses for the clients. From our observations
we noticed that I-Jetty adopts a synchronous structure where
a thread is in a blocked state along with the requesting client,
until the mobile web server generates a response. As a result,
with more concurrent client requests, the number of available
threads in the thread pool decreases, the memory consumption
to process the heavy request also increases and subsequently,
client requests get discarded. Thus, we implemented an Asyn-
chronous approach, where the number of threads needed by
a servlet is dependent only on the time to generate each
response. With this approach, we significantly reduce the
number of discarded requests. For our research, we developed
an Android Web server based on an open source web container,
Jetty and its open source mobile container, I-Jetty. Various tests
were performed to evaluate the concurrency control on both
Dynamo and I-Jetty and the comparison of the results showed
significant improvement in the reduction of discarded requests
in Dynamo.

The remainder of the paper is organized as follows: Section

II presents related work in the area of mobile web servers;
Section III explores heavy requests, DRMS architecture, and
asynchronous request handling. Section IV provides an ex-
planation of test results and Section V presents a comparison
between Dynamo and I-Jetty. Finally, we conclude with future
work in Section VI.

II. RELATED WORK

Significant research has been conducted to determine a
framework and to develop the architecture for mobile web
services. Researchers in the field have worked to define two
parameters; designing a framework to develop mobile web
services, and b) comparing SOAP and REST technologies in
web services.

Hassan, Zhao and Yang in [4] propose a framework for
hosting complex web services on mobile devices. They also
proposed a partitioning framework that provides a high level
design for how to delegate heavy-duty tasks to the backend
servers. The concept of a Context Manager responsible for
monitoring and computing the resources available on the
mobile device is described in [4]. Such a Context Manager
can be extremely useful in monitoring the available resources
on a mobile device and to determine whether a specific client
request is a heavy request or not. Their proposed architecture
is based on the concept of distributed systems, where the heavy
tasks are distributed to a backend device, whereas for our
research, we focus on optimizing the resource handling on
a single mobile device.

Mizouni, Serhani, Dssouli, Benharref, and Taleb in [8]
propose an architecture that allows deployment of web services
to mobile hosts. They tested the performance of web services
hosted on mobile devices and identified and evaluated the
different factors affecting the QoS of the web services, such
as response time, availability, throughput and scalability. They
applied their experiments to both SOAP and RESTful web
services. From their evaluations they determined that RESTful
web services required a lower memory footprint than SOAP
based services. The authors however, do not propose any
provision to identify or evaluate requests with heavier payloads
from the clients.

Gehlen and Pham in [3] introduced a server building block
of a mobile web service based middleware. Their server
was integrated in the wireless SOAP in terms of a HTTP
server binding to SOAP. They provided a strategy for handling
concurrent requests where ’n’ number of threads are generated
to handle ’n’ client requests in parallel, and no more threads
are created until the nth thread finishes. Their research was
only limited to SOAP based services.

Tergujeff, Haajanen, Leppanen, and Toivonen in [14] dis-
cussed a proposal to extend the Service-Oriented Architecture
(SOA) to mobile devices. They outlined the challenges as-
sociated in developing web services on mobile devices and
they offered the extension of SOA to lightweight devices as a
solution to these challenges. Their research does not provide
any method to identify or evaluate requests based on the type
of request or the size of the request.



Aijaz, Ali, Chaudhary, and Walke in [2] performed a
comparison of REST based mobile web services (MobWS)
provisioning with a similar SOAP architecture in terms of
HTTP payload. They also presented a resource oriented ap-
proach for optimizing HTTP payload. However, they provide
no methodology for identifying or handling any requests based
on their size. They also do not provide a methodology for
identifying or handling heavy client requests.

While research has been done in providing a framework for
hosting web services on lightweight devices and comparing
RESTful and SOAP services, very few of them [4], [8] address
the concurrency issues pertaining to a mobile device. Due to
limited processing power, memory, and limited thread pool to
run simultaneous requests, concurrency handling remains one
of the major challenges in deploying an effective, efficient
and fully functional web server on a mobile device. This
paper addresses the issues related to handling concurrent
incoming client requests, proposes strategies to reduce the
number of rejected requests from the clients, and implements
the proposed strategies in Dynamo to evaluate and confirm the
performance benefits and improvement in concurrency control
through the DRMS and Asynchronous approach.

III. DRMS ARCHITECTURE

DRMS strategy involves taking the heavy requests and
adding them to a queue where they will be handled in an
asynchronous manner. The DRMS Architecture consists of
identifying the heavy requests and assigning them to a heap
where they can be processed asynchronously. Once the re-
sponse is generated, the server sends it to the client. The Figure
1 outlines a summarized DRMS strategy. Heavy requests are
the requests from the client that need significant amount of
resources on the mobile server to generate a response.

Heavy requests can be identified by calculating the size of
the response payload produced by the server with the cost
associated with computing needed to generate such a response.
Once the heavy request is identified from response payload
size and computational cost, the request is then assigned to a
heap where it is processed using an asynchronous approach.
Non-heavy requests are processed in a synchronous manner.
Once the requests are processed, the server then sends the
generated response back to the client.

The DRMS architecture consists of six core components in-
cluded in the server: a) Request Divider, b) Heap, c) Resource
Manager, d) Asynchronous Request Processor, e) Synchronous
Request Processor and f) Response Generator.

The remainder of this section describes the process of
identifying a heavy request, the functionality of the six core
components of the DRMS and how asynchronous request
handling works.

A. Identifying Heavy Request

As heavy requests consume substantial resources to generate
responses, addressing them without a concurrency manage-
ment strategy adversely affects the performance of the mobile
web server. In processing the heavy requests in synchronous

manner, the threads used for handling the incoming request are
in a blocked state until a corresponding response is generated.
This results in a scarcity of available threads in the thread-
pool necessary to address other incoming concurrent requests
resulting in the discarding of requests from the mobile web
server. Thus, evaluating, identifying and handling the heavy
requests in an asynchronous manner in a heap is necessary
for improving the concurrency control and performance of the
mobile web server, thereby, reducing the number of discarded
incoming requests.

Two important factors define heavy request: response pay-
load size, Rpz , and computational cost, Cc. The product of
response payload size and computational cost can determine
heavy request.

The response payload size is defined by the size of the
response after processing the request payload. A typical heavy
request - such as conversion of a video file into a new format
- involves a higher payload size than average responses. This
requires more processing power and memory resources than
mobile devices typically have and constrains the ability of a
mobile device to generate a response. Thus, isolating requests
that result in high response payload size is justifiable.

Computational cost is also a factor that determines whether
a request is heavy or not. Computational cost is the cost to
generate the response for a given request. Computational cost
is determined by the amount and type of resources consumed
by the mobile device to generate a response. Typical resources
are hardware-based resources such as memory, processing
power, or software-based such as geolocation API or movie
streaming API. As described in [4], certain requests such as
document conversion or image processing and conversion to
adapt to the screen of a mobile device, usually requires more
resources than requests to generate recommendations based on
user preferences or location. Aijaz, Ali, Chaudhary, and Walke
in [1] also describe how requests from REST-based services
have less computational cost than SOAP-based services with
higher payload.

We determine the average for the response payload size
by evaluating a sample size of average-sized requests. The
average payload size is given by,

ARpz =

∑n

i=1
Rpz

n

Once the average payload size is determined, and on receiv-
ing a set of N new requests, we normalize the response payload
size of the new requests by taking a standard deviation of
their response payload sizes. We take standard deviation of the
response payload sizes in order to determine the variation in
the response payload size of N new requests from the average-
sized requests. A set of small or average requests will have
a lower standard deviation than the requests required from
heavier response payloads. The average response payload size



Figure 1. DRMS Architecture

is given by,

σRpz
=

√
1
N

∑N
i=1(Rpzi −ARpz)2

Similarly, we determine the average for the computational
cost by evaluating a sample size of requests with average
computational costs. The average computational cost is given
by,

ACc =
∑n

i=1
Cc

n

Once the average computational cost is determined, and on
receiving a set of N new requests, we normalize the computa-
tional cost of the new requests by taking a standard deviation
of their computational costs. This allows us to determine how
much variation exists in the computational costs associated
in processing N new requests and from that of average-sized
requests. A set of requests with higher computational cost
will have a higher standard deviation, which can help us in
identifying heavy requests. The average computational cost is
given by,

σCc
=

√
1
N

∑N
i=1(Cci −ACc)2

We then compute heavy requests in standard operating
condition where the mobile device is running normal services.
Since there is a processing time associated in running services,
we include a small ∆ t in processing those services. For most
cases, (and for our research), we assumed ∆ t to be zero.

Thus, heavy request is given by,

HReq = σRpz
∗ (σCc

+ ∆t)

with ∆t > 0, and where ∆t = time taken by mobile device
to process the requests.

If the heavy request is higher than a certain threshold HReq ,
we classify that as a heavy request. The threshold may vary
depending on certain condition such as device type, version
of the operating system, and also session type.

B. DRMS

Our DRMS strategy consists of the following components
that are implemented within the mobile web server:

1) Request Divider: The Request Divider is responsible for
handling incoming requests and identifying the heavy
requests from the non-heavy requests. Once the heavy
requests are identified, the Request Divider forwards
them to the Heap. The Request Divider then sends
the remaining non-heavy requests to the Synchronous
Request Processor for further handling.

2) Heap: The Heap is generally a priority queue where the
heavy requests are added. The priority queue follows the
First-In-First-Out strategy where a new heavy request is
added to the back of the queue, and the heavy request
at the front of the queue is scheduled to process first.
Each of the heavy requests is assigned a timer, often
in milliseconds, so as not to keep a heavy request in
the queue for a substantial amount of time. The Heap
coordinates with the Resource Manager in determining
when to dequeue a heavy request.

3) Resource Manager: The Resource Manager identifies
whether there are enough resources (memory, threads,
and processing power, etc.) available to process the
heavy request at the front of the priority queue in the



Heap. If there are enough resources, then the heavy
request at the front of the queue is dequeued and
sent to the Asynchronous Request Processor for further
processing. If however, resources are not available, the
heavy request is not dequeued from the Heap. In a worst
case scenario, if no resources are available after a certain
time threshold, the heavy requests in the Heap need to
be discarded.

4) Asynchronous Request Processor: The Asynchronous
Request Processor is responsible for handling the Heavy
Request using an asynchronous approach. By using an
asynchronous approach, the threads required to handle
the request are only necessary at the time of generating
each response. Thus, a thread is no longer in a blocked
state while the server is waiting to generate a response
for the client. This reduces the required number of
threads in processing heavy requests and thus allows the
server to handle additional incoming requests without
discarding them. Once a request is processed, the Asyn-
chronous Request Processor forwards it to the Response
Generator to generate a response for the client.

5) Synchronous Request Processor: The Synchronous Re-
quest Processor is responsible for handling the non-
heavy requests using a synchronous approach. We used
synchronous approach in handling non-heavy requests
since such requests don’t require significant computa-
tional resource costs, and time in generating a response.
Once a request is processed, it is sent to the Response
Generator by the Synchronous Request Processor.

6) Response Generator: The Response Generator is re-
sponsible for parsing the response and sending it back
to the client. If necessary, a response may need to be
aggregated from multiple incoming processed requests
from Asynchronous Request Processor and Synchronous
Request Processor for instance, if the server needs to
handle a combination of small and heavy requests to
generate a response.

C. Asynchronous Request Handling

Asynchronous servlets are mainly used when waiting for
non-IO events and resources. Many of the web-services are
required to wait at a certain point, especially during the
processing of a request. Examples of such scenarios are:

1) a web service or application waiting for a resource such
as database connection or synchronized thread before
processing a request

2) a web service or application that needs to wait for a
certain event, such as stock price update, or reply of a
message in a chat application

3) a web service or application waiting for a response from
another remote remote web service

Older versions of the servlet API (versions of, or earlier
than, 2.5) only support synchronous call handling. As a result,
any wait time required by the web server is accomplished
by blocking, whereas, threads responsible for handling the

requests are allocated and held during the wait time. Conse-
quently, all the resources including stack memory, application
context, and kernel thread are held by these threads during the
wait time. This mechanism of holding dedicated threads over
a wait time results in waste of valuable resources, and this is
especially a concern for mobile devices where the resources
are already limited and scarce. To improve the quality of
service and achieve better scalability, the waiting of resources
needs to be done in an asynchronous manner, where the
threads are not blocked during the entire wait time.

To demonstrate the benefits of asynchronous waiting over
synchronous waiting, let us consider a web application that
needs to remotely access a web service. The web service can
be either a SOAP-based or a RESTful service. Under normal
conditions, a remote web service usually takes up to few
hundred milliseconds to generate a response for the request.
An example is eBay’s RESTful web service that provides a
list of auctions matching a certain query 2. This web service
typically takes up to 350 milliseconds to generate a response,
although the time to process the request locally and generate
a response is less than 100 milliseconds.

In order to handle 2000 requests per second for such a web
service in a synchronous manner, with every request taking
300ms, the web server would need 2000*(300+30)/2000 = 330
threads and close to 165MB of stack memory to process the
request. This may lead to thread scarcity and starvation, espe-
cially if the server has a limited thread pool, as usually is the
case with mobile web servers. Thread starvation and scarcity
would lead to performance degradation in the web service,
where the server may become slower or even unresponsive.
However, handling such requests in an asynchronous manner,
the server wouldn’t need to block a thread while waiting
to generate a response. If an asynchronous call would cost
20ms, then the web server would need 2000*(20+30)/2000 =
50 threads and 25MB of stack memory. From this example,
using asynchronous waiting resulted in a reduction of 85%
of required resources and 140MB of stack memory. These
extra resources could be used to handle additional concurrent
requests, which would lead to reduction in discarded requests.

IV. EXPERIMENTAL STUDY

In this section, we describe our experimental set up, the
architecture of Jetty and our experiment that shows how
asynchronous waiting approach in Jetty can be used to improve
web services.

A. Experimental Set up

For our experiment we use Jetty web server that runs
a servlet using eBay API both synchronously and asyn-
chronously. We installed Jetty on a Mac OS X Lion operating
system with a 2 GHz Intel Core i7 processor and 8 GB 1333
MHz DDR3 RAM. The web application 3 was set up on
Eclipse running Jetty as its web server. The client was a PC

2http://docs.codehaus.org/plugins/viewsource/eBay
3http://repo1.maven.org/maven2/org/mortbay/jetty/example-async-rest-

webapp/7.0.2.v20100331/



running Windows 7 32-bit operating system with 2.9 GHz Intel
Core i7 processor and 4 GB RAM. Google Chrome was used
as the browser on the client.

The eBay web application was used because it is a very
simple API that allows the client to enter one or more product
key words to search for and returns those results back to the
clients. The ability to search for multiple product key words
allows us to test the effect of the size of the client request on
Jetty’s synchronous and asynchronous handling.

B. Jetty

Jetty is an open source project that provides a HTTP server,
a HTTP client and a javax.servlet container, written in Java
language. All the components are full-featured, based on
standards, use a small foot print, are embeddable, scalable and
provide asynchronous operations. Jetty finds its application in
many products and projects such as in Google App Engine,
GWT framework, and I-Jetty, etc. An overview of Jetty’s
architecture is shown in figure 2.

Figure 2. Jetty’s Architecture 4

In Jetty, the server acts as a liaison between the connectors
and the handlers using threads from the thread-pool to gener-
ate responses. The collection of connectors accept incoming
HTTP connection from the clients, parse requests and are
responsible in sending responses to the clients. The incoming
requests are sent to a collection of handlers for processing
and retrieving a response. The handlers use available threads
from the thread-pool to process the requests. The handlers may
process the request, or forward the request to another handler,
or to a servlet for further processing. It may also modify the
request before passing it on to another handler. The servlets are
mapped to a ServletHandler responsible for generating content.
However, a Jetty server can be built by using a collection of
connectors and handlers and without using servlets.

C. Experiment

In our experiment, we show the difference between the
duration of time a thread is blocked to generate a response
using synchronous and asynchronous operations. For our ex-
periment, we use a servlet using Servlet 3.0 API on Jetty
that supports asynchronous HTTP clients. Our servlet makes

4http://jetty.codehaus.org/jetty/

a call to eBay’s RESTful web service both synchronously and
asynchronously and the eBay’s web service responds back
with items matching the keywords specified in the servlet.
This example demonstrates how the servlet processing is
suspended by Jetty using asynchronous waiting approach such
that the threads are not blocked during the generation of a
response. As a result, fewer threads are used from the server’s
thread-pool allowing it to handle additional incoming requests
from the clients, thereby, reducing the number of discarded
requests. This asynchronous technique typically increases the
performance by at least ten folds.

Figure 3. API Call with single keyword.

Figure 4. API Call with three keywords.

Figure 3 shows the result of the web service making a
call to eBay’s web service API using a synchronous and an
asynchronous approach. It displays the durations for a thread
blocked for a single key word query. The results show that
for the synchronous call, a thread is held for 410ms (shown in
red color) during the entire wait time to generate a response.
If there are 100 threads in a thread-pool, then the maximum
amount of requests the server can handle in a synchronous
manner will be (1000/410)*100 = 243 requests per second.
When the same call is made asynchronously, the thread is held



only for 1.2ms even though the wait time was 305ms (shown
in green color). With a thread-pool of 100 threads, using
asynchronous calls, the server can handle up to (1000/1.2)*100
= 83,333 requests per second.

Figure 4 shows the results of the API call with a query
of three words made by the server synchronously and asyn-
chronously. Here, we observe that for three keywords, ad-
ditional time is taken to process the request to generate a
response. As a result, a thread is held for 715ms, when called
synchronously during the time to generate a response. With
100 threads in a thread-pool, the server may only be able
to handle up to (1000/715)*100 = 140 requests per second.
Alternatively, when called asynchronously, the thread is held
for only 1.5ms even though the wait time (in green) was
347.6ms. With 100 threads in a thread-pool, the server will
be able to handle up to (1000/348)*100 = 66,667 requests per
second.

The stark contrast in the blocking times of the threads and
the number of additional requests that can be handled per sec-
ond show that less incoming client requests will be discarded
if the server is using asynchronous mechanism to handle these
requests. Thus asynchronous handling of RESTful requests
can significantly improve the capacity of a server to process
additional requests and to avoid any thread starvation.

V. TEST RESULTS & COMPARISON

For our experiments, Jetty, and its open source Android
mobile container, I-Jetty, inspired us. Based on Jetty, we
developed our own Android web server, Dynamo (Dynamic
Web Server), as our improvement upon I-Jetty, in that it uses
asynchronous waiting for handling incoming requests. We
implemented the DRMS architecture inside Dynamo, where
we handled the calls asynchronously. We tested both of the
mobile web servers, I-Jetty and Dynamo, for the number
of concurrent requests handled and discarded on a Droid
phone running Android 2.1 operating system with 512 MB of
RAM and a single core ARM Cortex A8 600 MHz processor.
The results from the experiments were then compared and
shown in Figure 5A and 5B. The evaluations were done using
LoadUI software 5. Figure 5A shows the our test results with a
payload size of 100 KB. When the tests were performed on I-
Jetty without DRMS, we observed that with 10,000 incoming
client requests per second, the server discarded up to 9000
requests and was only able to respond to 1000 requests.
However, when the tests were performed on Dynamo with
DRMS architecture, only 4984 requests were discarded out of
10,000 incoming client requests. Thus, with DRMS, for 10,000
incoming requests per second, Dynamo was able to respond
to 5 times more incoming client requests.

Figure 5B shows our test results with twice the payload
size of 200 KB. With payload size doubled, when the tests
were performed on I-Jetty without DRMS, we observed that
with 10,000 incoming client requests per second, the server
discarded up to 9700 requests and was only able to respond to

5http://www.loadui.org

300 requests. With Dynamo implementing DRMS architecture,
only 5450 requests were discarded out of 10,000 incoming
client requests. Thus with DRMS, for 10,000 incoming re-
quests per second, Dynamo was able to respond to 15 times
more incoming client requests.

Figure 5A. Results with Payload size p.

Figure 5B. Results with Payload size 2*p.

From our test results, we were able to obtain significantly
better results with DRMS architecture implemented on Dy-
namo web server. This improvement in results was a result of
adding heavy requests into a heap where they were processed
in an asynchronous manner. Since the blocking time for each
thread on an incoming request is significantly less when
the request is processed asynchronously, more threads were
available in the thread-pool to handle additional incoming



requests. Therefore, requests were processed faster on Dynamo
than they were when processed synchronous manner on the I-
Jetty server.

VI. CONCLUSION AND FUTURE WORK

Our objective was to improve the concurrency control so
as to minimize the number of discarded requests. To achieve
this, we implemented our DRMS strategy where we to took
the heavy requests and handled them using an asynchronous
approach. We implemented this strategy on our Dynamo
Mobile Web Server and from our tests we observed that as the
number of requests from the clients increases, the number of
discarded requests decreased from at least 90% to at least 50%
of the total requests. From our evaluations, we also noted the
requests were processed faster in Dynamo than in I-Jetty. This
can be explained by the ability of an asynchronous approach
to handle the heavy requests allowing the thread pool to be
available to handle additional incoming requests rather than
being locked on the single current request.

Future work in this topic would include the areas of security,
battery consumption, native deployment of Dynamo into other
mobile platforms, and addressing portability issues in 3G, LTE
and 4G networks. In terms of security, research is needed to
improve security on mobile web servers without burdening
the overhead of the web services. This may compromise
the performance and quality of service. Battery consumption
remains a big issue. Research is needed to design smart
batteries capable of implementing emerging technologies that
are energy aware, efficient and maximize idle power usage.
Research can also be done in optimizing the underlying
software framework of the mobile web service that can be
energy efficient without compromising required performance
goals. With distributed systems and cloud computing, it will
be possible to develop a framework where the incoming client
requests can be divided and distributed over the cloud network
using a Map-Reduce system to be dynamically processed in
parallel. This would decrease the workload on the lightweight
mobile device while improving the quality of services and
extend the battery life. Networking and portability issues in
3G, LTE and 4G networks can be resolved by the usage
of DynDNS and rendezvous servers, which can work with
a mobile server as if it has a static IP, address.

REFERENCES

[1] F. Aijaz, S. Z. Ali, M. A. Chaudhary, and B. Walke. The resource-
oriented mobile web server for long-lived services. In 2010 IEEE 6th
International Conference on Wireless and Mobile Computing, 2010.

[2] Vehicular Technology Conference Fall, editor. Enabling High Per-
formance Mobile Web Services Provisioning. Vehicular Technology
Conference Fall, September 2009.

[3] G. Gehlen and L. Pham. Realization and performance analysis of a
soap server for mobile devices. In 11th European Wireless Conference,
volume 2, pages 791–797, Nicosia, Cyprus, April 2005.

[4] M. Hassan, W. Zhao, and J. Yang. Provisioning web services from
resource constrained mobile devices. In 2010 IEEE 3rd International
Conference on Cloud Computing, 2010.

[5] IBM. Ibm study finds consumers prefer a mobile device over the pc,
Oct 2008.

[6] M. Lopez. Four ways the post-pc era differs from today, May 2012.

[7] M. Miller. Cloud Computing: Web-Based Applications That Change the
Way You Work and Collaborate Online. Que Publishing Company, 1
edition, 2008.

[8] Rabeb Mizouni, Mohamed Adel Serhani, Rachida Dssouli, Abdelghani
Benharref, and Ikbal Taleb. Performance evaluation of mobile web
services. In Gianluigi Zavattaro, Ulf Schreier, and Cesare Pautasso,
editors, ECOWS, pages 184–191. IEEE, 2011.

[9] Earl Oliver. A survey of platforms for mobile networks research.
SIGMOBILE Mob. Comput. Commun. Rev., 12(4):56–63, February 2009.

[10] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services
vs. ”big”’ web services: making the right architectural decision. In
Proceeding of the 17th international conference on World Wide Web,
pages 805–814, New York, NY, 2008.

[11] Malladi R. and D. P. Agrawal. Current and future applications of mobile
and wireless networks. Communications of the ACM, 45(10), 2002.

[12] J.A. Senn. The emergence of m-commerce. IEEE Computer, 33(12),
2000.

[13] Satish Srirama, Matthias Jarke, and Wolfgang Prinz. Mobile host: A
feasibility analysis of mobile web. In Service Provisioning, Proc. UMICS
2006, @ CAiSE06, pages 942–953, 2006.

[14] R. Tergujeff, J. Haajanen, J. Leppanen, and S. Toivonen. Mobile soa:
Service orientation on lightweight mobile devices. In IEEE Interna-
tional Conference, editor, Web Services, ICWS, pages 1224–1231. IEEE
International Conference, 2007.

[15] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed. Deploying and
managing web services: issues, solutions, and directions. The VLDB
Journal, 17:537–572, May 2008.


