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Abstract—In modern healthcare environments, healthcare
providers are more willing to shift their electronic medical record
systems to clouds. Instead of building and maintaining dedicated
data centers, this paradigm enables to achieve lower operational
cost and better interoperability with other healthcare providers.
However, the adoption of cloud computing in healthcare systems
may also raise many security challenges associated with authen-
tication, identity management, access control, trust management,
and so on. In this paper, we focus on access control issues
in electronic medical record systems in clouds. We propose a
systematic access control mechanism to support selective sharing
of composite electronic health records (EHRs) aggregated from
various healthcare providers in clouds. Our approach ensures
that privacy concerns are accommodated for processing access
requests to patients’ healthcare information. We also demonstrate
the feasibility and efficiency of our approach by implementing a
proof-of-concept prototype along with evaluation results.

Index Terms—Cloud Computing; Electronic Health Record;
Access Control; Security

I. INTRODUCTION

In modern healthcare domain, electronic health records
(EHRs) [5] have been widely adopted to enable healthcare
providers, insurance companies and patients to create, manage
and access patients’ healthcare information from anywhere
and at any time. Typically, a patient may have many different
healthcare providers including primary care physicians, spe-
cialists, therapists, and miscellaneous medical practitioners.
Besides, a patient may have different types of insurances, such
as medical insurance, dental insurance and vision insurance,
from different healthcare insurance companies. As a result, a
patient’s EHRs can be found scattered throughout the entire
healthcare sector. From the clinical perspective, in order to
deliver quality patient care, it is critical to access the integrated
patient care information that is often collected at the point
of care to ensure the freshness of time-sensitive data. This
further requires an efficient, secure and low-cost mechanism
for sharing EHRs among multiple healthcare providers. Par-
ticularly, in some emergency healthcare situations, immediate
exchange of patient’s EHRs is crucial to save lives. However,
in current healthcare settings, healthcare providers mostly
establish and maintain their own electronic medical record
(EMR) systems for storing and managing EHRs. This kind
of self-managed data centers are very expensive for healthcare
providers. Besides, the sharing and integration of EHRs among
EMR systems managed by different healthcare providers are
extremely slow and costly. Such an inefficient usability and

low cost-effective fashion become the biggest obstacles for
moving healthcare IT industry forward [22]. A common and
open infrastructure platform can play a vital role in addressing
and changing such a situation.

Cloud computing has become a promising computing
paradigm drawing extensive attention from both academia and
industry [15]. This paradigm shifts the location of computing
infrastructure to the third-party service providers who handle
the management of hardware and software resources. It has
shown tremendous potential to enhance collaboration, scale,
agility, cost efficiency and availability. As such, healthcare
providers along with many other software vendors are more
and more willing to shift their EMR systems into clouds
instead of building and maintaining dedicated data centers.
Cloud computing, as cornerstone, can not only increase the
efficiency of medical data management and sharing process,
but also enable us to access healthcare services ubiquitously
since patients’ healthcare-related data ought to be always ac-
cessible from anywhere at any time. It is noted that managing
healthcare applications in clouds would make revolutionary
changes in the way we currently deal with healthcare infor-
mation.

It is tremendously beneficial for both healthcare providers
and patients to have EHR applications and services in clouds.
However, such an adoption may also cause various secu-
rity challenges associated with identity management, access
control, policy integration, compliance management and so
on [2], [19], [20], [21]. If those challenges cannot be properly
resolved, it hinders the successful deployment of EMR systems
in clouds. Among those challenges, this paper mainly focuses
on access control issues when EHRs are shared with various
healthcare providers in cloud computing environments. The
sharing process is complex and involves multiple entities.
Due to the potential disclosure of medical records, patients’
privacy concerns need to be considered in security and privacy
mechanisms that should be well-integrated into healthcare
systems and enforceable across a variety of heterogeneous
systems in clouds, where patients fully lose control over their
EHRs. In particular, a shared EHR instance may consist of
sensitive healthcare information such as demographic details,
allergy information, medical histories, laboratory test results,
and so on. Access control solutions must be in place to
guarantee that access to such sensitive information is limited
only to those entities who have a legitimate need-to-know
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Fig. 1: Approach Overview

privilege authorized by patients. For example, a patient may
not be willing to share his medical information on a particular
disease with a dentist unless a specific treatment is required.
Therefore, a systematic and flexible security mechanism is
desirable to selectively share EHRs based on access control
requirements.

In [11], [12], an access control mechanism was proposed to
support patient-centric selective sharing of composite EHRs.
However, this approach assumes that all healthcare providers
adopt a unified EHR schema. Since different healthcare
providers in clouds may utilize various EHR schemas to
represent their healthcare data, such an assumption cannot be
applicable in cloud environments. In this work, we attempt
to overcome such a limitation by proposing a comprehensive
access control mechanism to facilitate the selective sharing of
composite EHRs from multiple healthcare providers in cloud
computing environments. We present algorithms for EHRs
data schema composition and cross-domain EHR aggregation.
A proof-of-concept prototype system deployed in a cloud
environment demonstrates the effectiveness and efficiency of
our approach.

The rest of this paper is organized as follows. In Section II,
we present our broker-based authorization approach which
supports the selective sharing of composite EHRs in cloud
computing environments. Section III discusses the system
design of our prototype system with a case study. Section IV
describes implementation details and system evaluation fol-
lowed by the related work in Section V. We conclude the
paper and discuss the future research directions in Section VI.

II. BROKER-BASED COMPOSITE EHRS AUTHORIZATION

In this section, we present a broker-based authorization
approach to support selective sharing of EHRs, which manages
each access to composite EHRs that are integrated from vari-
ous healthcare providers in cloud computing. Fig. 1 shows an
overview of our approach. Healthcare providers from various
domains such as primary care, pharmacy, clinic lab, emergency
care and so on host their EMR systems in clouds to achieve the
features such as lower operation cost, higher interoperability,
and ubiquitous service delivery. They can reside in a single

cloud or multiple clouds (public cloud, private cloud, or
hybrid cloud) depending on their deployment needs. The
Composite EHRs Access Broker (CEAB) module consists of
two sub-modules: the EHR Aggregator sub-module retrieves
and aggregates distributed EHRs among clouds to construct
virtual composite EHRs; and the Policy Manager sub-module
supports the specification and enforcement of access control
policies to regulate sharing of composite EHRs. Three types
of stakeholders are involved: patients are the owners of EHRs
who specify access control policies to control who can access
which portions of EHRs. Healthcare practitioners access EHRs
and are usually associated with specific healthcare providers.
In addition, administrators perform administrative functions.

A. Logical EHR Model

A patient’s EHRs are typically dispersed over a wide range
of distributed EMR systems in clouds. Different EMR systems
have different data schemas to manage logical and semantic re-
lationships between data elements drawn from various medical
domains. Such medical domains include patient demographics,
labs, medications, encounters, imaging and pathology reports,
and a variety of other medical domains from primary, special-
ity and acute care settings. To support the selective sharing of
EHRs in clouds, we leverage a hierarchical structure proposed
in our previous work [11], [12] to represent EHRs from
various healthcare domains such as pharmacies, primary care,
clinic labs, healthcare insurance and so on. Each node in the
hierarchical structure is labeled and the root of the hierarchical
structure represents a particular EHR instance. There are two
types of nodes: field node and group node. Field nodes are
leaves of the hierarchical structure which represent elementary
information regarding the EHR. Related field nodes are placed
to each other to form an information group node. For example,
field node ‘name’, ‘address’, ‘birthday’ of a patient are very
often grouped together to construct an information group node
‘demographics’. Moreover, several related group nodes can
form a super-group node (Note that a super-group node is still
a group node). As an example, the group node ‘demographics’
of a patient is likely to be grouped together with other group
nodes such as ‘allergies’ and ‘drugs’ to form a super-group
node to represent an EHR object in pharmacy healthcare
domain. Thus, this bottom-up characterization reflects the
hierarchical nature of the logical EHR model. Formally, we
give the definition of the logical EHR model as follows:

Definition 1: [Logical EHR Model] An EHR object is
represented as a 3-tuple T = (r, V,E), where

• r is the root of the whole EHR object;
• V is a set of nodes within the hierarchical structure of

EHR object such that V = Vf ∪ Vg where Vf is a set of
field nodes which are leaves in the hierarchical structure
and Vg is a set of group nodes which are formed by a set
of leaves or a set of other group nodes in the hierarchical
structure.

• E ⊆ V × V is a set of links between nodes. eij ∈ E
represents the link between node i ∈ V and node j ∈ V .



Fig. 2: EHR Data Schema Composition Approach

As an example, the EHR data schema represented in the
logical EHR model for the pharmacy healthcare domain is
shown in Fig. 3. The root node ‘EHR instance’ consists of
three group nodes: ‘Demographics’, ‘Allergies’ and ‘Drugs’.
Group node ‘Demographics’ contains five field nodes in-
cluding node ‘Name’, ‘DoB’, ‘Age’, ‘Addr’ and ‘Gender’
to describe demographic information in this EHR instance.
Both group node ‘Allergies’ and ‘Drugs’ contain other group
nodes as well as field nodes to describe medical information
regarding allergies and drugs.

B. EHR Data Schema Composition

In this section, we discuss our approach for EHR data
schema composition. We assume all source EHR data schemas
to be integrated have already been represented in our defined
logical EHR model. As shown in Fig. 2, the input of our
approach includes multiple EHR data schemas from different
healthcare domains such as pharmacy, primary care, clinic lab
and so on. The output is the composite EHR data schema.
There are three major steps such as building ontology, merging
schemas, and polishing composite schema in our schema
composition approach.

TABLE I: Node Ontology
Class Label Class Nodes

Demographic Demographic, Demo, Profile
Gender Gender, Sex

DoB DoB, Birthday, Birth Date
... ...

In the first step, we build a node ontology based on ISO
EHR Standards [1] shown in Table I. More specifically, we
identify all semantically equivalent nodes from various EHR
data schemas using the approach introduced in [6], and then
construct classes with ontology labels defined in the ISO EHR
Standard. For example, ‘Demographic’, ‘Demo’ and ‘Profile’
represent three different nodes from schemas to be integrated
but they are semantically equivalent. They are categorized into
a class with a label of ‘Demographic’ since ‘Demographic’ is
referred in the ISO EHR Standard. Some ontology tools such
as Knoodl [13] and NeOn [16] can be utilized in this step to
build the node ontology.

In the second step, we merge multiple EHR data schemas
into a composite EHR data schema. The general merging
process is pair-based: for a set of source EHR data schemas to

Algorithm 1: MergeTwo(Ti, Tj) → Tc

Input: Two EHR data schemas Ti, Tj

Output: A composition EHR data schema Tc

1 if Ti and Tj are empty schemas then
2 return empty schema
3 else
4 if Ti is empty schema then
5 return Tj ;
6 else
7 if Tj is empty schema then
8 return Ti;
9 else

10 if depth(Ti) != depth(Tj ) then
11 Td ← largerDepth(Ti, Tj );
12 Ts ← the rest schema;
13 else
14 if numberOfFieldNodes(Ti) != numberOfFieldNodes(Tj )

then
15 Td ← moreFieldNodes(Ti, Tj );
16 Ts ← the rest schema schema;
17 else
18 Td ← randomChoose(Ti, Tj );
19 Ts ← the rest schema;
20 end
21 end
22 insertSubSchema(Td, rd, Ts, rs);
23 return Td;
24 end
25 end
26 end
27 /* Definition of insertSubSchema function:/
28 insertSubSchema(Schema T1, Node v1, Schema T2, Node v2)
29 begin
30 if Scan T1 from v1 heading to bottom level,
31 there exist node m such that m = v2 then
32 foreach n ∈ getImmediateChild(v2) do
33 insertSubSchema(T1,m, T2, n);
34 end
35 else
36 Insert sub-schema rooted at v2 in schema T2 into T1 rooted at v1;
37 return;
38 end
39 end

be integrated, the first two EHR data schemas are merged first.
Then, the intermediary composite EHR data schema generated
by the first two schemas is further merged with the third EHR
data schema. We continue this process until all EHR data
schemas are processed.

The details of merging two EHR data schemas are shown
in Algorithm 1. Two EHR data schemas are fed as an input
and the output is a composite EHR data schema. The general
idea is to insert sub-schemas of one schema into proper
locations of the other schema. The sub-schema may consist
of one or more nodes. If both schemas are empty, an empty
schema is returned. If one of these two schemas is empty, the
other schema is returned. The main body of the algorithm is
executed when both schemas are not empty. In this case, we
first need to choose one of the two schemas as a destination
schema. This process is based on following three rules: (1) if
the two schemas are of different depths, the schema with more
levels is chosen as the destination schema; (2) for two schemas
of the same depth, the one with more field nodes is chosen as
the destination schema. (3) If the two schemas have the same
numbers of depths and field nodes, we randomly pick one as
the destination schema. The destination schema is denoted by
Td, and the other schema is the source schema denoted by
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Ts. Our algorithm works in a up-to-bottom fashion, starting
from root to the bottom level of the schema. Sub-schemas
in source schema Ts are recursively inserted to destination
schema Td rooted at a node v ∈ VTd

, if the parent node of
the sub-schema is equal to a node v and the node v does
not have any immediate child node, which is equal to the
root node of the sub-schema. Given two EHR data schemas
to be merged, n times of insertion functions are invoked
recursively for the worst case (n is the number of nodes in the
source schema). For each insertion function, m times of node
matching operations are conducted for the worst case (m is
the number of nodes in the destination schema). Hence, the
time complexity for Algorithm 1 is O(n2) for the worst case.

Consider Pharmacy EHR data schema and Primary Care
EHR data schema are merged: Primary Care EHR data schema
is chosen as the destination schema Td since it has more
depth and Pharmacy EHR data schema is the source schema
Ts. Function insertSubSchema is invoked and those two EHR
data schemas Td and Ts as well as their root nodes rd
and rs are passed as arguments. The core idea of function
insertSubSchema is to recursively insert sub-schemas of Ts

into proper locations of Td. In the top level of recursion, it
scans Td from its root node to bottom level to check whether
there exists a node m such that m = v2 where v2 is the
root node of Ts. The root node of Td is found as the node
m (m can be considered as the upper boundary in Td for
the scanning step in each recursion) since both root nodes
are represented using the same label ‘EHR instance’ and they
are semantically equivalent to each other. Since the node v2
which is the root node of Ts now has three immediate child
nodes such as ‘Demographics’, ‘Allergies’ and ‘Drugs’ nodes,
three insertSubSchema functions are invoked for each of those
immediate child nodes and current argument m is still an
‘EHR instance’ node, which is the root node of Td. In the

recursion of ‘Demographics’ node in Ts, Td is scanned from
m to bottom. The ‘Demo’ node in Td is found as m since
‘Demo’ and ‘Demographics’ nodes are semantically equivalent
to each other based on the ontology shown in Table I.
Then m in this recursion becomes a ‘Demo’ node in Td.
Since ‘Demographics’ node has five immediate child nodes,
insertSubSchema function is invoked for each immediate child
node. In the recursion of ‘DoB’ node in Ts, Td is scanned
from m which is ‘Demo’ node in Td to bottom. The ‘Birth
Date’ node in Td is found as m since ‘Birth Date’ and
‘DoB’ nodes are semantically equivalent to each other based
on the ontology shown in Table I as well. Similarly, other
recursions are conducted. As shown in Fig. 3, based on above
EHR data schema composition approach, three different EHR
data schemas for pharmacy, primary care and clinic lab in
clouds are integrated into a composite EHR data schema. After
identifying all semantically equivalent nodes and building an
ontology, pharmacy EHR data schema and primary care EHR
data schema is first merged. The result EHR data schema is
further merged with clinic lab EHR data schema. Primary care
EHR data schema is chosen as the destination schema when
merging the first two schemas. Sub-schemas of pharmacy EHR
data schema are inserted into primary care EHR data schema.

C. Cross-domain EHR Instance Aggregation

Patients’ EHR instances that carry actual medical informa-
tion are organized and stored in distributed EMR systems
based on their EHR data schemas. As shown in Figure 3,
EMR systems from different healthcare sub-domains such as
primary care, pharmacy and clinic lab adopt different EHR
data schemas. To support selective EHR sharing for a patient,
all related EHR instances residing in various EMR systems
need to be aggregated into a composite EHR instance. Some of
those EHR instances are based on the same EHR data schema
if they come from the same healthcare sub-domain. Some of
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them are based on different EHR data schemas if they are
from different healthcare sub-domains. Hence, we propose a
three-step cross-domain EHR instance aggregation approach:
first, all elementary medical information from each EMR
system are retrieved and corresponding EHR instances for
each EMR system are constructed based on their domain EHR
data schemas; second, intra-domain aggregation is performed.
EHR data instances from the same healthcare domains are
aggregated into domain EHR instances based on their common
EHR data schemas; and lastly, inter-domain aggregation is
conducted. All aggregated EHR instances across different
health domains are aggregated into a composite EHR instance
based on the composite EHR data schema. For example, as
shown in Figure 4, a patient’s EHRs are resided in seven EMR
systems. EMR 1 and EMR 2 are within the same healthcare
sub-domain Pharmacy; EMR 3, EMR 4 and EMR 5 are within
the same healthcare sub-domain Primary Care; EMR 6 and
EMR 7 are within the other healthcare sub-domain Clinic
Lab. First, EHR Instance 1, EHR Instance 2 and so on are
respectively retrieved and constructed from their correspond-
ing EMR systems and based on their EHR data schemas.
EHR Instance 1 and EHR Instance 2 are based the same
EHR data schema since they are from the same healthcare
sub-domain. They are integrated into the Domain Composite
EHR instance 1 in the 2nd step. Similarly, Domain Composite
EHR instance 2 and Domain Composite EHR instance 3 are
generated. Finally, a composite EHR instance is generated
from those three domain composite EHR instances by cross-
domain EHR instance aggregation. The EHR data schema
for the composite EHR instance is obtained by integrating
EHR data schemas of those three healthcare sub-domains
using the EHR data schema composition approach presented
in Section II-B.

D. Access Control Policy Specification

To enable an authorized and selective sharing of patients’
EHRs in clouds, it is critical for an authorization policy to
determine a subject’s access privileges for specific portion(s)
of a composite EHR instance. Our policy specification scheme
is built upon the defined logical EHR model such that access
policies can be effectively defined at different granularity
levels within the structure. To give a formal definition of
an access control policy, we first define following concepts:
Subjects, Objects, Purposes.

In healthcare domain, patients may give the access per-
mission of their EHRs to identified individuals. For instance,
a patient may want to indicate the following intent: “Dr.
Bruce is allowed to access my medical records”. In other
situations, authorizations can be issued to a role such as
‘dentist’, ‘general physician’, ‘pharmacist’, and ‘nurse’. As
healthcare practitioners are usually associated with certain
organizations, such a property may also be a constraint on the
subject. We give the formal definition of subjects as follows:

Definition 2: [Subject] Let U, R and O be the sets of user
IDs, roles and affiliated organizations. A subject sub is defined
as a tuple sub = < u, so > or sub = < r, so >, where u ∈
U , r ∈ R, and subjects’ affiliated organization set so ⊆ O.
Overall, the subject set Sub is defined as Sub = (U × 2O)

∪
(R× 2O).

To support the selective sharing of EHRs, the definition of
objects is based on the logical EHR model as follows:

Definition 3: [Object] Let V be a set of all nodes in a given
EHR instance represented according to an EHR logical model
denoted by T. An object objv where v ∈ V is a set of nodes
in a sub-schema of T rooted at node v such that the object set
Obj is defined as Obj = 2V .

To better protect a patient’s privacy when sharing his
medical information, an attribute, purpose, is specified in
the authorization policy so that we can confine the intended
purposes/reasons for data access in healthcare practice. Some
examples of purpose are payment, treatment, research, and so
on. Formally, the purpose is defined as follow:

Definition 4: [Purpose] Let P be a set of purposes for
business practices in healthcare domains. The purpose pur is
a sub set of P, Pur ⊆ P .

Definition 5: [Access Control Policy] An access control
policy is a 4-tuple acp= (sub, obj, pur, effect), where
• sub ∈ Sub is a subject;
• obj ∈ Obj is an object;
• pur ⊆ P is the purposes; and
• effect ∈ {permit, deny} is the authorization effect of

the policy.
Policies can be categorized into two types: local policy

and global policy in terms of residencies of the policy. Local
policies are enforced in a specific EMR system when it
shares EHR instances with other systems. Global policies
are enforced on the composite EHR instance in a centralized
way. Both types of enforcement of polices support different
granularity levels of EHRs’ disclosures. Three global access
control policy examples are given as follows:
• P1: (<GP, h1>, objEncounters, {treatment}, permit);
• P2: (<SP, h2>, objMedications, {treatment,research},

permit);
• P3: (<Dr.Lee, h2>, objLabs, {research}, deny);
In P1, a patient allows all general practitioners (GP) in

hospital h1 to view encounter information of his composite
EHR shown in the shaded scope in Fig. 3 for treatment
purpose; In P2, the patient allows all specialists (SP) in
hospital h2 to view medications information of his composite



Fig. 5: System Architecture

EHR shown in the dotted scope in Fig. 3 for treatment or
research purpose; and in P3, the patient disallows Dr. Lee
from hospital h2 to access his clinic lab information of his
composite EHR shown in the non-shaded scope in Fig. 3 for
research purpose.

III. SYSTEM DESIGN

A. System Architecture

Fig. 5 shows our system architecture. The bottom is an
infrastructure layer which provides computing and storage
capabilities to host various EMR systems. This can be
achieved by several cloud computing software solutions such
as XenServer [4], OpenStack [18], and Eucalyptus [7]. By
leveraging the cloud infrastructure, healthcare providers can
tremendously reduce their cost for building and maintaining
their own data centers to host EMR systems. The middle
box is the Composite EHRs Access Broker module includ-
ing User Interface, Security Service module, EHR Manager
module, Policy Manager module and CONNECT module. The
User Interface has three different views according to users’
identities: (1) healthcare practitioners are able to discover a
patient with at least 3 characters of the patient’s name. By
selecting the desired patient, they can submit the patient’s
EHRs access request. Based on the authorization result, the
request is either allowed or denied; (2) patients are able to
view their EHRs from particular healthcare providers they are
associated with or the composite EHRs aggregated from all
healthcare providers they obtained services from. They can
also specify policies for certain EMRs or on the composite
EHRs; and (3) administrators have the capability to manage
users and healthcare providers’ EMR systems registered in
the whole system. Security Service module consists of three
sub-modules: Authentication sub-module authenticates users
to make sure only legitimate users can access the system;
Access Control sub-module controls users’ access to EHRs

from particular registered EMR systems or portions of the
composite EHRs based on authorization results generated from
Policy Manager; and Audit sub-module maintains all system
logs. EHR Manager module retrieves distributed EHRs or
the composite EHRs from CONNECT and share them with
authorized users under the control of Access Control module.
Policy Manager module consists of two sub-modules: Policy
Specification sub-module provides capability for patients to
specify their access control policies based on the scheme
defined in Definition 5; and Policy Enforcement sub-module
enforces corresponding policies when receiving EHRs access
requests from users and generates authorization results to
Access Control module. Access control policies are stored
as records in a policy storage database. CONNECT mod-
ule includes four sub-modules: Registry Management sub-
module provides administrative functionalities such as adding,
deleting, listing and updating on EMR systems hosted in
cloud infrastructure; Patient Discovery sub-module enables
healthcare practitioners to discover patients from all registered
EMR systems and stores discovery results in a local database
for caching; EHRs Retrieval sub-module retrieves all related
distributed EHRs from registered EMR systems in clouds.
EHR data schemas from various healthcare domains such as
primary care, pharmacy and clinic lab are realized by this
module. Elemental healthcare information is retrieved and
constructed into EHR instances based on their EHR data
schemas; and Aggregator sub-module integrates all distributed
EHRs from EHRs Retrieval module to construct composite
EHRs. The composite EHRs data schema and aggregation are
performed as shown in Fig. 3 and Fig. 4, respectively.

This architecture is a realization of our broker-based EHRs
sharing approach in cloud computing environments shown in
Fig. 1. Each hosted EMR system in clouds contributes as a
data source to construct composite EHRs for better healthcare
service delivery. CONNECT module realizes the notion of
EHR aggregator to interact with hosted EMR systems for
EHRs retrieval and aggregation. Access Control module and
Policy Manager ensure that only selective portions of compos-
ite EHRs are shared with healthcare practitioners who have
need-to-know privileges authorized by patients.

B. Case Study

In this section, we discuss a case study to show how our
approach supports the selective EHRs sharing of composite
EHRs. Suppose Bob is a veteran who had a bullet wound
in his abdomen during a battle before. He had a primary
surgery in a VA hospital at that time. However, he did
not be fully recovered due to severity of the wound. The
bullet wound badly affects his pancreas system. Since then,
he is suffered from diabetes and needs to periodically take
prescribed medicines from a pharmacy. And he has inherited
allergies to certain kinds of medicine. Hence, he has to take
a special prescription from his primary doctor. Every three
months, his homecare doctor needs to monitor the status of
his pancreas system. One day, he had a heart attack at home
and was sent to a nearby VA hospital where he usually obtains



Fig. 6: System Workflow

care services by an ambulance. On the way to the VA hospital,
the emergency medical technician (EMT) tried to access Bob’
medical related information and carried out some emergency
actions. The EMT also reported the information to the hospital.
When they arrived the VA hospital, his primary doctor, Dr.
Lee, had already collected all related medical information of
Bob and prepared a preliminary plan.

This scenario involves four healthcare providers from differ-
ent healthcare domains: primary care hospital, pharmacy, clinic
lab and emergency. Each domain manages their EMR systems
in clouds which store Bob’s EHRs since Bob has obtained
healthcare related services from them before. And their EHRs
are organized and stored based on EHR data schemas. Two
healthcare practitioners including Dr. Lee from the VA hospital
and the EMT are also involved in the workflow. Depending on
their different identities, they have different access privileges
on Bob’s composite EHRs. Fig. 6 illustrates how this scenario
can be realized in the workflow of our system.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation Details

To demonstrate the feasibility of our approach, we devel-
oped a secure selective EHRs sharing system in clouds based
on our design discussed in Section III. Our cloud infrastructure
environment is built using Citrix XenServer 6.0 and three Dell
PowerEdge R510 rack servers with 16 cores, 30 GB RAM
and 925 GB disk space for each one. We deployed Open-
MRS 1.8.2 [17] as EMR systems into VMs running on the
cloud infrastructure. The core EHRs aggregation and sharing
logic were implemented using Java and the presentation layer
was written in JavaSever Pages (JSP) technologies. We used
MySQL Community Sever 5.5 for database sever. Four sub-
modules, corresponding functionalities and related APIs of
CONNECT module shown in Fig. 5 were implemented. Some
of those APIs are developed with OpenMRS APIs. Registry
Management module provides functionalities to register new
EMR systems, update existing EMR systems with their IP

Fig. 7: System Time Overhead

addresses and domain types, list and delete EMR systems
in clouds. Patient Discovery module queries each registered
EMR system to discover patients with at least three characters
of patients’ names. EHR Retrieval module consists of eight
sub-modules: ConfigRetrieval sub-module configures EHRs
retrieval transactions with EMR systems. In particular, it sets
up the target EMR systems and identity information including
user name and password. It also manages session creation
and termination with EMR systems; RetrieveEHRInstance
sub-module constructs EHR instances based on healthcare
domains they are associated with; and other six sub-modules
retrieve healthcare information regarding patients’ demograph-
ics, encounters, observations, allergies, medical orders and
clinic lab results. Aggregator module conducts intra-domain
EHR instance aggregation and inter-domain EHR instance
aggregation. Our system also provides a web-based interface
for three different kinds of users including administrators,
patients and healthcare practitioners.

B. Evaluation Results

We randomly deployed EMR systems into different VMs
in our cloud environment based on the scenario mentioned
in Section V. Those VMs have various configurations in
terms of CPU speed, memory and disk size to simulate real-
world healthcare domain. We create three types of VMs to
satisfy the different resource needs of healthcare systems. The
‘small’, ‘middle’ and ‘large’ types of VM are respectively
configured with different computing resources such as CPU,
RAM and hard disk capactity. The healthcare datasets are
obtained from OpenMRS software package. The management
module in Fig. 5 has been deployed into a ‘large’ type of
VM. Fig. 7 shows the time consumption for patient discovery,
intra-domain EHRs aggregation, inter-domain EHRs aggre-
gation and policy enforcement when the number of EMR
systems increases. The upper line shows the time used for
discovering patients is just about 78 milliseconds when the
number of EMR systems is 10. The next two lower lines
represent that the time consumptions of intra-domain and inter-
domain aggregation respectively increase very smoothly as the
number of EMR systems increases. The policy enforcement



time increases even more smoothly than both intra-domain
and inter-domain aggregation time increase. And when there
are 500 policies in the system, the policy enforcement time
takes about 5 milliseconds. Our experiments show that our
aggregation process is reasonably efficient and scalable.

V. RELATED WORK

In [11], [12], Jin et al. proposed a unified access control
scheme which supports patient-centric selective sharing of
virtual composite EHRs using different levels of granularity,
accommodating data aggregation and various privacy pro-
tection requirements. However, this approach assumes that
all healthcare providers adopt a unified EHR schema, which
is not applicable in cloud environments. In contrast, our
work supports EHRs aggregation from various healthcare
providers considering different EHR data schemas in cloud
environments. In [22], Zhang et al. identified a set of security
requirements for eHealth application Clouds and proposed
an EHR security reference model to support the sharing
of EHRs. In [10], Jafari et al. proposed a patient-centric
digital right management (DRM) approach to protect privacy
of EHRs stored in clouds based on the patient preferences.
However, those approaches are not fine-grained and cannot
accommodate selective EHR sharing requirements. Al Kukhun
et al. [3] examined mobile querying of distributed XML
databases within a pervasive healthcare system. Whereas their
approach is not cloud-based and does not consider the needs of
EHR integration from different healthcare providers. In [14],
Li et al. proposed a novel framework of access control to
realize patient-centric privacy for personal health records in
cloud computing by leveraging attribute based encryption
(ABE) techniques. Their approach mainly ensures that EHRs
are shared with a selective set of users. Our approach focuses
on sharing selective portions of access control objects with
authorized users.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have identified and articulated the selective
EHRs sharing issue in healthcare cloud computing environ-
ments. To address this issue, a broker-based access control
mechanism has been presented. We has also proposed an EHR
data schema composition approach to generate composite EHR
data schema. Based on this schema, distributed EHR instances
from various healthcare domains can be aggregated into a
composite EHR instance. By enforcing access control policies
specified by patients, selective portions of the composite EHR
instance are able to be shared with authorized healthcare
practitioners. A proof-of-concept EHR sharing system has
been implemented and evaluated to demonstrate the feasibility
of our approach.

As part of our future work, we would conduct more compre-
hensive evaluations on our system with a real-world healthcare
dataset. We would also investigate how to address policy
composition issues [8], [9] and how to support fine-grained
delegation mechanism for EHR sharing in cloud computing
environments. In addition, we would apply our approach to

support EHR sharing using consumer devices such as smart
phone and tablet to cover the whole healthcare ecosystem.
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