
Similarity Analysis of Shellcodes in Drive-by

Download Attack Kits

Manoj Cherukuri

Computer Science

New Mexico Institute of Mining and

Technology

Socorro, NM, USA

manoj@cs.nmt.edu

Srinivas Mukkamala

Computer Science

New Mexico Institute of Mining and

Technology

Socorro, NM, USA

srinivas@cs.nmt.edu

Dongwan Shin

Computer Science

New Mexico Institute of Mining and

Technology

Socorro, NM, USA

doshin@cs.nmt.edu

ABSTRACT - Drive-by downloads have become the primary

attack vehicle for malware distribution in recent years. With

the rise of targeted attacks, the vulnerabilities within the cloud

based services and web based collaboration frameworks might

end up as the principal targets for hosting drive-by download

attacks. In this paper, we studied the similarity of the

shellcodes among different attack kits. Shellcode is the

malicious code used as the payload in drive-by download

attacks. Specifically, we collected 15 different drive-by

download attack kits and identified shellcodes used in each

kit. As the shellcodes are transmitted to the browser as

Javascript strings, we measured the similarity between

regular strings and shellcodes defined in Javascript. We

disassembled the shellcodes and computed the mean of Cosine

Similarity, Extended Jaccard Similarity and Pearson

Correlation measures based on the frequencies of the opcodes.

Our analysis shows that the shellcodes, used as payloads,

across different attack kits were similar with other shellcodes

and dissimilar with benign Javascript strings. We observe that

some of the attack kits released across different years had

same shellcodes. The performance of similarity analysis was

compared to an emulation based approach and observed

reduction of 75% in the analysis time. Based on the results,

the similarity measure of the shellcodes could be an effective

static mechanism in detecting the shellcode based drive-by

download attacks.

Keywords-Cloud Services Security; Shellcodes Similarity;

Web Malware; Collaboration Frameworks Security;

I. INTRODUCTION

Client-side attacks hosted by targeting web applications

are ascending. As more and more people use web-based

collaborative systems, vulnerabilities within the web-based

collaborative systems might put the security of the entire

organization at risk. Exploitation of the vulnerabilities and

hosting a drive-by download campaign results in the spread

of malware across the entire organization and beyond.

Hosting of such attack campaigns has become easier with

the assistance of the attack kits. Client-side protection

ensures the security of the organizations using web-based

or cloud-based collaborative systems and services.

Attack kits are a set of exploits packed together to target

a set of vulnerabilities in computer systems and

applications. Attack kits are also referred to as do-it-

yourself (DIY) kits or crimepacks. According to a recent

report from Symantec [1], about 61% of the web-based

attacks observed until 2011 were from the attack kits and it

was believed that a significant portion of the remaining

39% was also from the attack kits but could not be related.

The attack kits make the job of launching a web-based

attack easier for the attackers, who often do not have any

knowledge about the internals of the kits. Attackers use the

graphical user interface to select the vulnerability,

operating system, and the browser to create a ready-to-use

attack webpage. The attackers then compromise legitimate

websites to either inject an iframe or redirect the web traffic

to the link pointing to the created attack webpage. Most of

the attack kits use payloads that bind a shell to the remote

machine under the control of the adversaries or that

download and execute a malware (drive-by download

attack).

Figure 1. The user interface of Fragus attack kit [2]

Fig. 1 shows the user interface where the attacker can

upload the malicious executable that gets installed on the

victim’s machine (on exploiting the vulnerability

successfully).The statistics in the “Files list” shows the

performance of the malware files that are used in the attack

campaign. The menu bar on the top offers administrative

functions like monitoring the statistics, the traffic that was

generated towards various links participating in the attack

campaign and options to setup the preferences of an

attacker. The statistics on the left portion of the image

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250507

shows the hit ratio of the launched attack campaign i.e. the

number of hosts that were exploited successfully to the

overall number of attempts.

A. Motivation

There has been growing interest in research on the topic

of drive-by download attacks. The lifecycle of web-based

malware was studied in [3][4], and the measurement of

web-based malware infection was conducted using billions

of webpages crawled by Google during the ten-month

period in [5]. About 3 million webpages of the analyzed

webpages were found to initiate some sort of drive-by

download attacks and approximately 1.3% of the Google

search results had at least one result that was labeled

malicious. Moreover, a recent study from Symantec shows

that an average of 2,305 webpages each day serve malware

or other malicious programs. Of the domains that were

blocked, 31.5% were registered in the same month which

proves the limitation of the blacklists based approaches [6].

Other interesting causal issues such as browser versions,

plugins, and patch management were studied in relation to

drive-by download attacks in [7][8].

Shellcodes used for drive-by download attacks are often

defined as strings in Javascript. The x86 instruction set is

so tightly packed that every byte sequence gets

disassembled into a set of instructions (i.e. every string gets

disassembled into a set of assembly instructions). Fig. 2

shows an example of the x86 assembly code obtained by

disassembling a regular string. The tightly packed x86

instruction set poses the challenge of differentiating

shellcodes from regular strings for countering such attacks.

Figure 2. The disassembled code generated on disassembling the string
“I OWN YOU!”

More interestingly, it is very common to obfuscate

shellcodes using Javascript functions, as to evade detection.

Fig. 3 shows the obfuscation used by the Eleonore attack

kit for hiding the malicious intent. Attackers take advantage

of different functions supported by Javascript to host these

attacks and evade the static detection approaches relying on

signatures. The obfuscated malicious code is initially

defined as the text elements in the webpage. The Javascript

code accesses the stored text elements using the element ids

and de-obfuscates the text using “sOmC9bC” and

“decryptor” functions. The variable names, function

names, and element ids are generated randomly to harden

the problem of defining a signature for the detection of the

attack. The last three lines of the script write the generated

new script onto the window. Attackers often employ

multiple levels of obfuscation using this technique.

B. Objective

In this paper we propose to analyze the similarity of the

shellcodes found in different attack kits for the purpose of

detecting shellcodes used for drive-by download attacks in

an efficient and effective manner. Our approach is based on

collection of drive-by download attack kits, extraction of

shellcodes from those attack kits, disassembling shellcodes,

and measurement of the similarity among those shellcodes.

Three different measures for computing the similarity are

used: Cosine Similarity, Extended Jaccard Similarity, and

Pearson Correlation.

//Storing the malicious code in encrypted form as text across different types of elements
<i id=ABnk> f2UCUCCUffPUClUf…</i>
. . .
<u id =l3lFNI5c9>f5UfffU35UCC…</u>

<script>
//Returns the encrypted text from the elements with the corresponding ids
function h0g8Gd2(e7T0W33, HqJ0FCc) {…}
…

//Splits the given string based on the delimiter and forms a new string from the resulting
array, which contains the numerical character codes. Returns the final decrypted code
function decryptor(vlBwpdW)
{
O5Bj2zl = vlBwpdW.split('N');
 for (var i=0;i<O5Bj2zl.length-1;i++) {
 O5Bj2zl[i]++;
 kBVDK1e += INgGEcQ(O5Bj2zl[i]);
 }
 return(kBVDK1e);
}

function sOmC9bC(V99xNCj)
{
//First level decoding of the encrypted text
 Var B59ILwD,LL91CyE,C9hL5gT,fHBmR4V="";
 q6FYBCL="0PyNUYuLodpXT9CJzS1fhrDcBn43gIGVksaiwt 8lZFHAMRjxb7WOmvQ6";
 for(B59ILwD=0;B59ILwD<V99xNCj.length;B59ILwD++) {
 LL91CyE=V99xNCj.charAt(B59ILwD);
 C9hL5gT=q6FYBCL.indexOf(LL91CyE);
 if(C9hL5gT>=0) {
 if(C9hL5gT==0) {
 C9hL5gT =55
 } else {
 C9hL5gT =C9hL5gT-1;
 }
 fHBmR4V+=q6FYBCL.charAt(C9hL5gT);
 } else {
 fHBmR4V+=LL91CyE;
 }
 };
 //Second level decryption of the encoded text
 xvx = decryptor(fHBmR4V);
 return xvx;
}
var ndhCthu="";
//Array of elements ids under which the encrypted text is defined
var e7T0W33 = new Array("ABnk", …, "l3lFNI5c9");
var kBVDK1e="";
var TjvwVUG = e7T0W33.length;
for (HqJ0FCc=0; TjvwVUG>HqJ0FCc; HqJ0FCc++) {
 var ndhCthu=ndhCthu+h0g8Gd2(e7T0W33, HqJ0FCc);
}
var HqJ0FCc=sOmC9bC(ndhCthu);
var gogle=document;
var yandex=document;
//Writes the decoded code on to the webpage
gogle.write("<scri"+"pt>");
yandex.write(HqJ0FCc);
document.write("</sc"+"ript>");
</script>

Figure 3. The obfuscated malicious Javascript code used by the Eleonore

attack kit

The contributions of this paper are:
 We perform the similarity analysis over the payloads used in

the DIY kits, which facilitate web-based malware.

 Our study shows that the shellcodes used by attackers tend to

remain the same over time and the attackers relied on

Javascript obfuscations to evade various detection

mechanisms.

 We demonstrate the potential of applying the similarity

analysis for detection of the shellcodes by analyzing the

similarity measures of the shellcodes with the regular strings

(normals) defined in Javascript.

 We evaluate the performance of similarity-based detection of

shellcodes by comparing it to an emulation based approach

and measuring the throughput of the similarity analysis

This paper is organized as follows: Section 2 describes

previous research works related to our study. In Section 3,

we describe the dataset used for our study. Section 4

discusses our approach based on similarity analysis of

shellcodes. In Section 5, we discuss the results obtained. In

Section 6, we discuss the resilience of the proposed

approach against the evasion techniques that might be

employed by the attackers. In Section 7, we conclude with

future work.

II. RELATED WORK

Web-based malware have become a serious threat to

cyber communities, and the urgency and criticality of the

issue has prompted security researchers and practitioners to

come up with solutions for thwarting the web-based

malware. The malicious code could be analyzed manually

by using static code analyzers like IDA Pro[9] or debuggers

like OllyDbg [10]. This approach, however, requires

expertise and is too slow to handle the large number of

samples. The inability of the manual approach to scale to

the ever increasing malicious activities necessitated

automated approaches for the detection of attacks.

Previous works include automated dynamic and static

ways for analyzing, detecting and mitigating the malicious

codes. The static analysis approach relies on the code

analysis and the dynamic analysis approach executes the

malicious program in a controlled environment to monitor

the behavior of the program.

A. Behavior based Detection

Behavior based analysis approaches have been proposed

for detecting the malicious codes. Detection of malicious

codes by observing the API calls invoked and the system

state changes were proposed in [11][12]. These approaches

had much fewer false positives but fingerprinting the

existence of such monitoring had prevented the launch of

an attack. The series of events resulting in an attack have

been observed for the detection of malicious webpages in

[13][14]. Behavioral profiling of browser plugins by

applying static and dynamic analysis techniques were

proposed in [15][16] for detecting the malicious activities

through browser plugins. The powerful techniques relying

on the behavior for detecting malicious software discussed

are heavyweight processes that could not be included as a

defensive mechanism on the client side. Our work is a

lightweight process that could be integrated into the

browser for detecting the drive-by download attacks on the

client side.

B. Signature based Detection

Majority of the inline detection devices rely on

signatures for detecting malicious activities. The signature

based approaches are known for their light weight

implementations. Snort [17], a well known and widely used

intrusion prevention and detection system, relies on

signatures to track malicious streams transmitting over the

network. However, the shellcodes used in web-based

malware are obfuscated at network level which prevents the

detection. Construction of signatures from path structure

and filenames used in the known malicious URLs (Uniform

Resource Locators) was proposed in ARROW [18].

Though ARROW is a light weight process, it could be

evaded easily by following the URL patterns of legitimate

websites. Static analysis over the Javascript code in web-

based malware using the abstract syntax tree was proposed

in Zozzle [19]. Zozzle uses Bayesian classifier on the text

based features obtained from the code for detecting the

malicious codes. The text based features considered by

Zozzle could be evaded easily by obfuscation in the

Javascript code as the features are evaluated on the code

through static parsing. Our approach also relies on the

signature for the detection of shellcodes but is resilient to

obfuscation as demonstrated by the results. The signature

proposed is generated by executing the Javascript code

dynamically until the attack code is revealed, to overcome

the obfuscation. The similarity analysis had shown great

similarity among the shellcodes released across different

years proving the resilience of our approach.

C. Emulation based Detection

Emulation based approaches have been widely adapted

for detecting malicious codes as they allow the execution of

the codes with less overhead compared to execution in real

environments. Detection of shellcodes at network level by

executing in an emulated environment and identifying the

fundamental operations was proposed in Gene [20]. But

Gene fails to detect shellcodes in Javascript as they are

obfuscated at the network level. Detection of shellcodes at

application layer relying on the API calls invoked and

virtual memory snapshots were studied in [21] and [22]

respectively. Libemu [23] offers shellcode detection by

checking for valid instruction sequences based on

heuristics. Libemu was used for shellcode detection within

the browser in [24] and within a low interaction honey-

client PhoneyC [25]. Detection of shellcodes relying on

emulation is effective in detecting the polymorphic forms

of the known shellcodes but the emulation of the

environment for every instruction to be executed generates

a lot of overhead and in turn affects the performance.

III. DATASET

We collected 15 attack kits from the wild to perform the

similarity of shellcodes for drive-by download attacks. The

attack kits collected include Armitage, Cry 217, Eleonore,

Exploit Pack, El Fiesta 2, Fire Pack, Fragus, Ice Pack, IE

Kit, Just Exploit, Mpack-099, MyPolySploits, Neon,

PhoenixExploit-2.x and Zero Exploit. Some of these attack

kits that we think important are described in detail below

and the distribution of the attack kits based on the year of

their release is shown in Table I.

MPack is a PHP-based exploit kit developed by Russian

hackers and was released in 2007. MPack targeted the

vulnerabilities in Internet Explorer, Firefox and Opera web

browsers. The attacks included an iframe on the defaced

website which later delivered malware to its visitors by

exploiting those vulnerabilities in the browsers. IcePack

exploit kit was also released in 2007 and it was the first

attack kit to include an exploit for zero-day vulnerability

[26]. This kit included an exploit for zero-day vulnerability

in Microsoft’s DirectX. The El Fiesta exploit kit was

released in 2008 and had exploits targeting vulnerabilities

in Internet Explorer, Microsoft Data Access Components

(MDAC), MySpace and Yahoo! JukeBox. FirePack, which

was also released in 2008, included exploits that targeted

vulnerabilities in Internet Explorer, Mozilla Firefox and

Opera web browsers.

TABLE I. DISTRIBUTION OF THE ATTACK KITS WITHIN OUR

DATASET BASED ON THE YEAR OF THEIR RELEASE

2007 2008 2009 2010

Armitage

Cry217

Ice Pack

MPack-099

El Fiesta

Fire Pack

Eleonore

Fragus

IE Kit

Just Exploit

MyPolySploits

Neon

PhoenixExploit2.x

Exploit Pack

Zero Exploit

The Eleonore exploit kit was released in 2009 and it had

exploits targeting the vulnerabilities in Adobe Reader,

Internet Explorer and Firefox. The code used for exploiting

one of the vulnerabilities in Internet Explorer is shown in

Fig. 3. The Eleonore exploit kit was used to spread

malware on three compromised United States Treasury

websites [27]. The Phoenix exploit kit was also released in

2009 and had exploits for vulnerabilities in Adobe Reader,

Internet Explorer and Java. The Zero exploit kit was

released in 2010 and it had exploits for vulnerabilities in

Internet Explorer, Adobe Reader and Java.

We collected Javascript strings with more than 1500

characters, considered based on the average length of the

shellcodes that was about 1500. The regular strings defined

in Javascript were collected from the top 10000 websites of

Alexa [28]. Alexa is a California based company and is a

subsidiary of Amazon. It provides top sites globally, across

different countries, and by category. The shellcodes

extracted from the 15 attack kits and the collected

Javascript strings constituted our dataset.

IV. APPROACH

The similarity analysis was performed over the

shellcodes in the attack kits and the benign strings defined

in Javascript. Fig. 4 shows the steps involved in our

similarity analysis process.

A. Shellcode Extraction and Disassembly

In this section, we describe the approach used for the

extraction of the shellcode and the preprocessing performed

over the extracted shellcodes for performing the similarity

analysis.

A virtual machine is setup with Windows XP as the

operating system. The browsers were installed based on the

requirements of the attack kits discussed in the previous

section. We dynamically configured the environment for

the vulnerability targeted by the attack kits to get the

payload delivered.

Figure 4. Our approach based on similarity analysis process

An attack kit is configured on the web server installed

on the virtual machine and the webpages hosting the

exploits were loaded in the browser. Once the webpage is

rendered, we extracted Javascript codes to identify the

shellcodes. We restored the virtual machine after each visit

to the webpage. We failed to configure some attack kits as

some of the critical files were missing. For such attack kits,

we performed reverse engineering to extract the shellcodes.

The extracted shellcodes are generally padded with NOPs

(%u9090) as shown in Fig. 5.

Figure 5. Sample shellcode with NOP sled, extracted from an attack kit

 Shellcodes must be allocated in contiguous locations to

preserve the flow of execution on hijacking the instruction

pointer. To get the shellcodes allocated in contiguous

locations, shellcodes must be defined as a string or an array

of strings. The Javascript conforms to ECMA-262 standard.

The strings are defined as sequences of 16-bit integers in

ECMA-262. To store the shellcode as an array of strings,

the size of the array element must be within 32-bits to get

allocated in contiguous memory locations. If the size of an

array element exceeds 32-bits a reference pointer is stored.

In the permissible 32-bit, a bit is allocated to specify if the

value is an integer so each element of an array can be of

31-bits. This limitation complicates the process of fitting

the shellcode into an array, so the shellcodes are often

defined as strings.

Javascript engines like Spider Monkey (used in Mozilla

Firefox), V8 (used in Google Chrome) implements strings

as immutable objects. The immutable objects are the ones

that are reinitialized as new objects on every modification

to the object. That is, the strings in Javascript are

reinitialized as new strings on every operation performed

over them. Thus, the de-obfuscation of strings in Javascript

can be performed by hooking the string creation function of

the Javascript engine. Assuming that the obfuscated

shellcodes can be extracted in an automated way using the

above proposed mechanism, we extracted the shellcodes

that were obfuscated using Javascript by de-obfuscating

them manually.

The extracted shellcode is then disassembled with the

help of libdisasm [29] library. The libdisasm library

disassembles the Intel x86 instructions from the binary

stream. The disassembled instruction can be obtained in

AT&T or Intel syntax. We performed disassembly using

the Intel syntax in this experiment. Similarity analysis was

performed on the generated assembly code.

B. Similarity Analysis

In this section, we describe the approach used for

performing the similarity analysis by generating the feature

vector from the disassembled shellcodes. The opcodes

defined for x86 processor are considered as the set of

features. The frequency of the occurrence of the opcodes in

the disassembled code was considered as the feature value.

The generated feature vector is stored in the database and

similarity analysis was performed with all the feature

vectors of other samples, which were stored previously.

Three similarity measures, namely Cosine Similarity,

Extended Jaccard Similarity, and Pearson Correlation were

used. The three similarity measures considered are

explained below and were widely used for clustering

documents based on the similarity between the texts.

Cosine Similarity is measured as the cosine of the angle

between the two vectors. Cosine similarity is 1 if the angle

between the two vectors is 0 degrees and is 0 if the angle

between the two vectors is 90 degrees. If S’, S” are two

vectors then,

Cosine Similarity =
∑

√∑

 √∑

.

The binary Jaccard coefficient measures the degree of

overlap between two sets. It is computed as the ratio of

shared attributes to the number of attributes possessed. The

binary Jaccard coefficient was extended to continuous or

discrete non-negative features [30].

The Extended Jaccard Similarity retains the sparsity

property of the Cosine Similarity measure while allowing

discrimination of collinear vectors. If S’, S” are two vectors

then,

ExtendedJaccardSimilarity=
∑

∑

 ∑

 ∑

Pearson Correlation is measured as the ratio of

covariance between two variables to the product of their

standard deviations. If S’, S” are two vectors then,

Pearson Correlation =
∑ ̅ (̅̅̅)

√∑ ̅
 √∑ (̅̅̅)

.

TABLE II. COMPARISON OF SIMILARITY MEASURES FOR DIFFERENT

TYPES OF PAIRS OF VECTORS

(S’),(S’’) Cosine
Extended

Jaccard

Pearson

Correlation

(1,2,3,4,5,6),

(1,2,3,4,5,12)
0.9437 0.7791 0.8960

(1,4,1,4,1,4),

(99,100,99,100,99,100)
0.8600 0.0258 1.0

(4,4,4,2,4,4),
(4,4,4,10,4,4)

0.8132 0.6097 1.0

The three similarity measures considered for the

evaluation of the similarity produces different similarities

for different types of pairs of vectors, as presented in Table

II. By considering the pairs of vectors in Table II, the pairs

at the first and the third row are similar and the pair at the

second row is dissimilar. For the first row, the cosine

similarity produced the best result, while Pearson

correlation estimated the best similarity measure for the

third row. For the second row which was completely

dissimilar, the Cosine and Pearson Correlation measures

failed to show the dissimilarity and the Extended Jaccard

measured the dissimilarity accurately.

Each similarity measure considered has its own

advantages and limitations on identifying the similar

patterns. Therefore to overcome the limitations of each

similarity measure, the average of the three similarity

measures was considered to evaluate the similarity between

the pair of vectors for our study. Similar combination of

similarity vectors was used in SAVE [31], for detecting the

variants of a known malicious executables.

V. RESULTS

A. Similarity Analysis among Shellcodes in Attack Kits

We analyzed the shellcodes found in the attack kits to

identify the similarity among them. Fig. 6 shows the

similarity measures of the shellcodes in an attack kit with

the shellcodes of other attack kits. The attack kits were

grouped in Fig. 6 based on the year of their release. The

shellcodes remained the same across some attack kits that

were released across different years. For example, from our

results it was observed that the same shellcodes were used

in Cry217, Mpack, and MyPolySploits attack kits which

were released in 2007, 2007 and 2009 respectively.

Figure 6. Similarity analysis of shellcods found in attack kits against
themselves

Our results show that the shellcodes extracted from the

attack kits were similar by 68% to at least one shellcode

extracted from a different attack kit. From the observed

maximum similarity values, each shellcode was similar by

a minimum of 88% with at least one shellcode from a

different attack kit. The high similarity among the

shellcodes of the attack kits released in different years

show that there is only a minor variation in the payloads

used and the attackers often relied on obfuscation methods

using Javascript to evade the detection mechanisms. The

similarity measure could be used as an effective mechanism

to detect shellcodes in drive-by downloads arising from the

attack kits, which contributes to over 60% of the web-based

attacks [1].

B. Similarity Analysis of Shellcodes in Attack Kits with

Strings

We also conducted similarity analysis between the

shellcodes in the attack kits with 100 regular strings

defined in Javascript, collected from the top websites listed

by Alexa [28]. This analysis was performed to observe the

similarity measure between the regular strings and

shellcodes defined in Javascript. For this analysis we

randomly selected 100 regular strings from the collected

dataset. For each regular string collected, we computed the

average of its similarity measure with all the shellcodes

identified from the attack kits.

Fig. 7 shows the result of the similarity analysis

between the regular strings and the shellcodes in the attack

kits. The Y-axis represents the similarity measure and the

X-axis represents the string sample number. The mean of

the maximum similarity measures was identified to be

25.03% with a standard deviation of about 4.86%.

Figure 7. Maximum similarity measures of the regular Javascript strings

with the shellcodes

We had randomly sampled 10 strings from the set of strings

used in the plot shown in Fig. 7. Fig. 8 shows the result of

the similarity analysis between the shellcodes in the attack

kits and the randomly sampled strings.

Figure 8. Similarity analysis of shellcodes in attack kits against randomly
selected normal strings

The low mean of maximum similarity measures with a

low standard deviation between the shellcodes in the attack

kits and the normal strings present clearly the dissimilarity

between the shellcodes and the regular strings defined in

the Javascript. The huge difference in the similarity

measures between the regular strings and the shellcodes

presented the potential of employing the similarity measure

to differentiate between strings and shellcodes defined in

Javascript.

C. Performance Evaluation

We evaluated the performance of the similarity based

detection by comparing it with Libemu [23], one of the

0

0.1

0.2

0.3

0.4

0.5

1 11 21 31 41 51 61 71 81 91

Similarity of Strings

MaximumSimilarity

widely used emulation based approach. Previous works on

honey-clients [13][25] and in browser detection approach

[24] relied on Libemu for the detection of shellcodes. We

classified a sample as shellcode or benign string using

similarity approach by performing similarity analysis. The

sample was considered to be malicious if the similarity

measure was over 0.6 with any of the shellcodes from the

attack kits.

Performance evaluation was performed on a machine

with Intel Xeon processor (3 GHz, dual processor) and 3

Gigabytes of memory running Ubuntu 11.04. For

performance evaluation, we considered all the 100 strings

and the 16 shellcodes that were used for performing the

similarity analysis. We conducted our performance analysis

using the similarity measures and Libemu by iterating over

the 116 samples for 20 times. The total time consumed by

each of the analysis techniques was recorded and the

average time per sample was computed. The values

recorded in our experiment are shown in the Table V. The

average analysis time per sample using similarity analysis

was 32 milliseconds compared to 137 milliseconds on

using Libemu. The time taken by the similarity analysis

was 24% of the time consumed by the emulation based

approach. The significant reduction in the analysis time

signifies the overhead caused by the emulation.

TABLE III. PERFORMANCE EVALUATION OF SIMILARITY ANALYSIS

AGAINST LIBEMU[23]

Similarity

Analysis
Libemu[23]

Number of samples 116 116

Number of Iterations 20 20

Total Analysis Time 76 Seconds 321 Seconds

Average Time per Iteration 3.8 Seconds 16.05 Seconds

Average Time per Sample 33 Milliseconds 138 Milliseconds

We had also analyzed the performance of the similarity

based detection by measuring the throughput since the

similarity analysis is linearly proportional to the size of the

input. We had created a test file of size 5MB by repeating

the set of 100 strings and 16 shellcodes over multiple times.

We had measured the time taken by the similarity based

approach to analyze all the strings defined in the file and

computed the rate at which the data was analyzed. We had

repeated the experiment for 5 times and measured the mean

throughput to be about 213KB/sec.

VI. DISCUSSIONS

The proposed similarity measure can be defeated by

obfuscating the payload. For example, replacing an

assembly instruction like “add eax,250” with “add eax,100;

add eax,150;”. But applying such techniques increases the

surface area of the shellcode (size of the shellcode without

NOP sled over the heap) which proportionately increases

the probability of the instruction pointer hitting in between

the shellcode. Thus increase in the surface area of the

shellcode reduces the chances of an attack becoming

successful, which would not motivate the attackers to do

so. In addition, the different patterns analyzed by the

considered three similarity measures, as explained in Table

II, also make our approach resilient to obfuscation, which

would negate the changes in the frequency distribution of

the opcodes.
Most of the shellcode encryptors like AdMutate [32],

CLET [33], JempisCodes [34] use XOR based encryption

and use dynamic decryption to evade the shellcode

detection algorithms. Since our mechanism depends only

on the opcodes but not on the operands, shellcodes

encrypted will have a very high similarity measure with

other shellcodes encrypted using the same mechanism.

The complexity of the obfuscation employed by the

attacker would not have any impact on our approach, as our

approach is integrated into the Javascript engine and would

monitor all the strings defined. Since the obfuscation

employed would initialize the payload to a string variable

at some point during the runtime, the payload gets revealed

to our system and would be detected by the similarity

analysis.

As our approach relies on the detection of the attacks

based on the payloads used in the exploits, it would be

effective even against the zero-day exploits using the same

payloads. Our approach would fail if the payload used

could escape from our detection mechanism, but our results

demonstrate that the payloads used by the Javascript

exploits have been similar across years.

VII. CONCLUSIONS

In this paper we present that the shellcodes used in the

attack kits were similar by at least 88% with another

shellcode from a different attack kit. On the flip side, the

regular strings defined in Javascript had a maximum

similarity of 41% with the shellcodes in attack kits. The

high similarity measure among the shellcodes in the attack

kits and the dissimilarity between the benign Javascript

strings and the shellcodes in attack kits show that the

proposed similarity measure could be used as an effective

mechanism to proactively detect both known and unknown

attacks from the web based services. We observed that the

payloads used in the attacks kits were same even though

they were released across different years and the attackers

employed different obfuscation mechanisms in Javascript

to evade the detection.

Performance of the similarity analysis approach was

compared to an emulation based approach and identified a

significant reduction of about 75% in the analysis time. The

similarity based detection of shellcodes overcomes the

overhead caused by the emulation based techniques and

improves the performance.

Though we had demonstrated the potential of similarity

analysis for the shellcodes of the attack kits which account

towards the majority of the drive-by attacks, we did not

measure the detection accuracy as it would be biased

towards our approach. We are collecting shellcodes from

the real world to measure the detection accuracy in future.

We are also planning to integrate into the low interaction

honey-clients to evaluate the enhancement in the

performance and the browser to check the overhead caused

by this approach in real time.

REFERENCES

[1] “Symantec Report on Attack Kits and Malicious Websites,”

Retrieved September 15, 2011, from Symantec:

http://www.symantec.com/content/en/us/enterprise/other_res

ources/b-symantec_report_on_attack_kits_and_malicious_

websites_21169171_WP.en-us.pdf.

[2] J. Mieres, “Prices of Russian crimeware. Retrieved

September 15, 2011 from MalwareIntelligence: http://malwa

reint.blogspot.com/2009/08/prices-of-russian-crimeware-

part-2.html

[3] M. Polychronakis, and N. Provos, “Ghost turns zombie:

Exploring the life cycle of web-based malware,” In First

USENIX Workshop on Large-Scale Exploits and Emergent

Threats, San Francisco, California, 2008.

[4] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N.

Modadugu, “The Ghost In The Browser Analysis of Web-

based Malware,” In First Workshop on Hot Topics in

Understanding Botnets, Cambridge, Massachussetts, 2007

[5] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose,

“All your iframes point to us,” In USENIX Security

Symposium, San Jose, California, 2008

[6] “Symantec Intelligence Report: February 2012,” Retrieved

May 13, 2012, from Symantec:

http://www.symantec.com/connect/blogs/symantec-

intelligence-report-february-2012.

[7] B. Stone-Gross, M. Cova, C. Kruegel, and G. Vigna,

“Peering Through the iFrame,” In Proceedings of the

International Conference on Computer Communications

(INFOCOM) Mini Conference, Shanghai, China, 2011.

[8] “Web Browser Plug-in Vulnerabilities,” Retrieved May 13,

2012, from Symantec:

http://www.symantec.com/threatreport/topic.jsp?id=vulnerab

ility_trends&aid=web_browser_plug_in_vulnerabilities.

[9] “Hex-Rays:Ida pro disassembler and debugger,”

http://www.hex-rays.com/products/ida/index.shtml.

[10] O. Yuschuk, “Ollydbg,” http://www.ollydbg.de/.

[11] U. Bayer, “Anubis - analyzing unknown binaries,”

http://www.anubis.iseclab.org.

[12] C. Willems, T. Holz, and F. Freiling, “Toward automated

dynamic malware analysis using CWSandbox,” In IEEE

Security and Privacy, Oakland, California, 2007.

[13] K. Z. Chen,G. Gu, J. Nazario, X. Han, and J. Zhuge, “Web-

Patrol: Automated collection and replay of web-based

malware scenarios,” In Proceedings of the Asian Symposium

on Information, Computer, and Communication Security,

Hong Kong, 2011.

[14] L. Lu, V. Yegneswaran, P. Porras, and W. Lee, “BLADE: An

attack-agnostic approach for preventing drive-by malware

infections,” In Procedings of ACM conference of Computer

and Communications Security, Chicago, Illinois, 2010.

[15] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. X. Song,

“Dynamic spyware analysis,” In USENIX Annual Technical

Conference, Santa Clara, California, 2007, pp 233–246.

[16] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R.A.

Kemmerer, “Behavior-based spyware detection,” In

USENIX Security Symposium, Vancouver, Canada, 2006.

[17] M. Roesch, “Snort - Lightweight Intrusion Detection for

Networks,” In 13th Systems Administration Conference

(LISA), Seattle, Washington, 1999.

[18] J. Zhang, C. Seifert, J. W. Stokes, and W. Lee,

“ARROW:Generating signatures to detect drive-by

downloads,” In International World Wide Web Conference

(WWW), Hyderabad, India, 2011.

[19] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “Zozzle:

Low-overhead mostly static Javascript malware detection,”

In Proceedings of the USENIX Security Symposium, August

2011.

[20] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos,

“Comprehensive shellcode detection using runtime

heuristics,” In Annual Computer Security Applications

Conference (ACSAC), Austin, Texas, 2010.

[21] Y. Fratantonio, C. Kruegel, and G. Vigna, “Shellzer: a tool

for the dynamic analysis of malicious shellcode,” In Recent

Advances In Intrusion Detection, Menlo Park, California,

2011.

[22] B. Gu, X. Bai, Z. Yang, A. C. Champion, and D. Xuan,

“Malicious shellcode detection with virtual memory

snapshots,” In International Conference on Computer

Communications (INFOCOM), San Diego, California, 2010,

pp 974–982.

[23] “Libemu – x86 Shellcode Detection,”

http://libemu.carnivore.it.

[24] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda,

“Defending browsers against drive-by downloads: Mitigating

heap-spraying code injection attacks,” In Detection of

Intrusions and Malware & Vulnerability Assessment

(DIMVA), Milan, Italy, 2009.

[25] J. Nazario, “PhoneyC: a virtual client honeypot,” In

Proceedings of the 2nd USENIX Workshop on Large-Scale

Exploits and Emergent Threat, Boston, Massachusetts, 2009.

[26] “Hackers update malware tool kit, add first zero-day attack

code,” Retrieved May 25, 2012, from Computerworld :

http://www.computerworld.com/s/article/9035659/Hackers_u

pdate_malware_tool_kit_ add_first_zero_day_attack_code.

[27] “Treasury websites compromised,” Retrieved May 25, 2012,

from Websense: http://community.websense.com/blog

s/securitylabs/archive/2010/05/04/treasury-websites-

compromised.aspx.

[28] “Alexa: Top Sites,” Retrieved January 22, 2012, from Alexa:

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip.

[29] “libdisasm: x86 Disassembler Library,” Retrieved: Septemer

22, 2011, from: http://bastard.sourceforge.net/libdisasm.html.

[30] A. Strehl, and J. Ghosh, “A scalable approach to balanced,

high-dimensional clustering of market-baskets,” In

Proceedings of HiPC 2000, Bangalore,India,2000, volume

1970 of LNCS,pp. 525-536.

[31] A. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static

analyzer of vicious executables (SAVE),” In Proceedings of

the 20th Annual Computer Security Applications Conference

(ACSAC), Tucson, Arizona, 2004.

[32] “Admutate: Shellcode mutation engine,”

http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz

[33] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk,

“Polymorphic shellcode engine using spectrum

analysis,” Retrieved February 10, 2012 from Phrack:

http://www.phrack.org/issues.html?issue=61&id=9#article

[34] M. Sedalo, “JempiScodes (Version 0.3) Polymorphic

ShellcodeGenerator,”

http://goodfellas.shellcode.com.ar/own/ jempscodes-

readmees.txt

http://www.symantec.com/connect/blogs/symantec-intelligence-report-february-2012
http://www.symantec.com/connect/blogs/symantec-intelligence-report-february-2012
http://www.ollydbg.de/
http://www.anubis.iseclab.org/
http://libemu.carnivore.it/
http://www.computerworld.com/s/article/9035659/Hackers_update_malware_tool_kit_%20add_first_zero_day_attack_code
http://www.computerworld.com/s/article/9035659/Hackers_update_malware_tool_kit_%20add_first_zero_day_attack_code
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz

