
L2TAP+SCIP: An Audit-based Privacy Framework
Leveraging Linked Data
Reza Samavi, Mariano P. Consens

Information Engineering, MIE, University of Toronto
{samavi,consens}@mie.utoronto.ca	

Abstract — We describe a framework designed to facilitate
privacy auditing while accommodating a variety of privacy
scenarios and policies that involve multiple participants. Our
proposal is based on two ontologies, L2TAP and SCIP, designed
for deployment in a Linked Data environment. L2TAP provides
provenance enabled logging of events. SCIP synthesizes
contextual integrity concepts and enables query based solutions
for two important privacy processes (compliance and obligation
derivation). We include an experimental validation of the
scalability of our approach.

Keywords-- Privacy, linked data, audit log, compliance queries,
sparql

I. INTRODUCTION
As individuals are increasingly benefiting from the use of

online services, there are growing concerns about the treatment
of personal information (broadly referred to as privacy
concerns). Society’s ongoing response to these concerns gives
rise to privacy policies expressed in legislation, regulation, and
agreements. These policies steer organizations that collect, use,
and share personal data towards respecting the privacy of the
data subjects. Ensuring compliance with a variety of privacy
policies is an increasingly complex task involving multiple
participants including watchdogs and enforcement agencies
that prosecute privacy violators. Therefore, technical solutions
that facilitate the implementation of compliance offer value to
all the organizations that deal with privacy concerns [1].

This paper introduces a framework designed to facilitate the
auditing tasks of the multiple participants dealing with privacy
concerns. While privacy auditing is commonly employed in
industry, the infrastructure to support it is ad-hoc, and not
supported by widely adopted technology standards. In contrast,
there have been multiple proposals in the area of access
control, whether to specify fine grained enforceable policies
(e.g., XACML [2], EPAL [3], P-RBAC [4]), or coarse grained
high-level privacy declarations (e.g., P3P [5]). Also, auditing
has received less attention from the research community than
areas such as access control or statistical privacy. However,
there are solid theoretical foundations for policy auditing over
logs [6], [7]. Furthermore, auditing is complimentary to other
policy mechanisms and it can take place proactively or
retroactively, helping with enforcement and compliance, and/or
identifying participants that commit privacy violations (for
whom the threat of prosecution is a deterrent).

Our goal is to develop a framework that can provide a
technical foundation for a principled approach to privacy
auditing, while maximizing the flexibility in three key areas;

participants, policies, and processes. Our proposal is based on
two ontologies designed for deployment in a Linked Data [8]
environment. The paper describes query based solutions (with
an experimental validation) for two important privacy
processes. The solutions presented leverage our framework and
highlight its applicability and practical benefits.

Our first proposed ontology, L2TAP (Linked Data Log to
Transparency, Accountability and Privacy) allows participants
to log (in RDF) privacy related events such as changes to the
policies, as well as information access requests and activities.
All the events in an L2TAP log are identified by web
accessible URIs, which can be dereferenced by other
participants (likely after authentication and over a secure https
channel), therefore simplifying the support of transparency.
The events logged include time stamped information obtained
from the participants involved that is also linked data
(potentially from multiple ontologies). The provenance
information (who, when) in an L2TAP log facilitates
supporting accountability among the participants involved. The
mixing and matching of ontologies in the log is the basis for
flexibility. Arbitrary processes can log privacy related events
and/or analyze them. Participants with heterogeneous
environments can be supported, since the linked data that they
contribute to the log can be the result of a thin transcoding from
legacy information formats. Analogously, multiple privacy
policy languages can be supported (e.g., even without
transcoding a string property can store the XML encoding of an
XACML or an EPAL policy).

While L2TAP provides an arbitrarily flexible foundation
for log-based privacy processing, our second proposed
ontology, SCIP (Simple Contextual Integrity Privacy), enables
query-based implementations of audit related processes, while
preserving considerable amounts of flexibility. SCIP is a novel
synthesis (in the form of a concrete ontology) of concepts
inspired by the Contextual Integrity [9] perspective (where
privacy is seen as the right to appropriate flows of personal
information in a given social context). SCIP provides a simple
(yet sufficiently rich) target for mapping the key concepts in
L2TAP logs expressed using other privacy related ontologies
or schemas. Our work shows how using SCIP (either directly
or via mappings) to express event information in L2TAP logs
enables scalable implementations of privacy processes using
SPARQL queries plus limited RDFS reasoning support.

The paper structure and contributions are as follows. The
next section presents an overview of our novel audit-based
privacy framework (based on the L2TAP and SCIP ontologies
available at http://l2tap.org) using a hypothetical scenario. In

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250607

Section 3 we show a query-based solution for deriving all the
obligations associated with an access request. Section 4
describes a compliance checking process implemented via
SPARQL queries: given an access request check the fulfillment
of its associated obligations. Section 5 reports an experimental
validation of the scalability of the compliance queries described
earlier. Related work is discussed in Section 6, while Section 7
concludes the paper.

II. OVERVIEW OF THE PRIVACY FRAMEWORK
We use a scenario to motivate our audit-based privacy

framework and to introduce the L2TAP log ontology in
Subsection A. We describe the SCIP ontology next; privacy
preferences in Subsection B, and access requests and
obligations in Subsection C.

A. L2TAP Logs
To picture a privacy-sensitive process consider Alice, who

has recently been diagnosed with diabetes, and who joins a
diabetes social network (dphr.org) to receive information and
emotional support. Alice uploads the history of her daily blood
glucose level at https://dphr.org/users/alice/A1c (using the personal
health record functionality of the dphr.org network). Our
scenario is concerned with respecting Alice’s privacy
preferences when her blood glucose level information is used
by Bob, a physician and a researcher who is also a member of
the dphr.org network.

The L2TAP ontology is used to log provenance assertions
(using the recently proposed RDF provenance data model [10])
as shown in Fig. 1, where Alice logs her preferences encoded
as triples in a named graph	 g1. We encode the graph g1 as an
instance of prov:Entity (line 2) to show that this is what we want
to provide provenance for. According to the RDF provenance
model, provenance assertions for an entity, including when and
by whom an entity was changed, are associated with the activity
that introduces the change. For graph g1, the activity is captured
by prov:Activity in line 4, while who logged the graph is captured
in line 5 using prov:wasAssociatedWith. The time interval for when
the graph is being logged is encoded in line 6 and 7 using
prov:startedAtTime and prov:endedAtTime.

The triples that construct g1 include the triple to mint the
URI of the privacy preference in the logger’s domain (line 11)
and the ontology describing the semantics of the privacy
preferences triples (line 12). Other triples in g1 use the plugged
ontology pointed in line 12 to express Alice privacy
preferences (as described in Fig. 3). L2TAP is not aware of the
semantics of this pluggable ontology but encode the triples
described by the ontology. The SCIP ontology described in the

next subsections is one instance of such pluggable ontologies.

B. SCIP Privacy Preferences
The SCIP ontology (as shown in Fig. 2) has concepts for

the major privacy-related events that are logged, such as
expressing privacy preferences, submitting access requests,
performing obligations, and for access activities. In every
privacy process multiple participants interact (Alice, Bob, as
well as the social network dphr.org are the participants in our
motivating scenario). The class scip:Participant captures the main
actors in an information flow (i.e. data subject, data sender, and
data requestor), as well as other actors specific to the privacy
by audit log mechanism, such as the logger that is responsible
to log, or obligation performers and witnesses. Obligations that
Bob must fulfill when accessing Alice’s data are captured by
scip:Obligation while the actual event of Bob accessing Alice’s
data is captured by an scip:AccessActivity.

 Going back to our motivating scenario, assume that Alice
has expressed her privacy concerns as (i) a dphr.org user may
access my daily glucose level for research purposes, provided
the user is a university researcher, (ii) the user must obtain my
consent prior to accessing this information, (iii) the user should
send me a report about the on-going research after 180 days,
(iv) I should be notified of any publications of the research
results where my data is being used (unless my data is being
used anonymously). SCIP captures these preferences using the
scip:PrivacyPreference concept.	 Participants can use properties
defined for this class to express applicable conditions and
norms that must be respected when the information of data
subjects are used. For example, scip:purpose expresses the
intended purpose of usage while scip:obligation describes the
obligations that must be performed when the data is used. SCIP
uses other classes as well (see Fig. 2); the scip:DataItem class
describes the attribute hierarchies for data items; the scip:Role
class describes the roles of participants; scip:Purpose describes
applicable purposes; scip:Privilege describes privacy privileges
that can be granted; and scip:ObligationTemplate describes
obligation templates.

Triples in Fig. 3 show how Alice uses the preceding
properties and classes to encode her preferences (i) to (iii) (note
that triples in this figure are the continuation of Fig. 1). Line 13
describes by whom the privacy preferences have been
expressed. The participant who expresses the preference could
be the data subject herself (as in our example), or it could be a
service provider (dphr.org) defining its internal privacy
policies(and they could originate from a legal body that set
norms for information flows, such as HIPPA [11]). The triples
in lines 14 and 15 describe the time interval for validity of the

01 @prefix	 prov:	 <http://www.w3.org/ns/prov#>.	
02 <http://dphrLogger.org/g1>	 a	 prov:Entity;	
03 	 prov:wasGeneretaedBy	 <http://dphrLogger.org/logEntry/idg1>.	
04 <http://dphrLogger.org/logEntry/idg1>	 	 a	 prov:Activity;	
05 prov:wasAssociatedWith	 <http://dphrLogger.org/users/alice>;	 	
06 prov:startedAtTime	 [time:inXSDDateTime	 “2011-‐11-‐05T18:00:00”];	
07 prov:endedAtTime	 [time:inXSDDateTime	 “2011-‐11-‐05T18:00:00”].	
08 	
09 <http://dphr.logger.org/g1>	 =	 {	
10 	 <http://logger.org/userspp/alice_pp1>	 	 a	 l2tap:PrivacyPreference;	
11 owl:sameAs	 <http://dphr.org/memberspp/alice_pp1>;	
12 	 l2tap:prefernceOntology	 <	 http://ontology.org/scip>;	 …continued	
	

 Figure 1. Provenance assertions in L2TAP

Figure 2. SCIP privacy preferences

13 scip:expressedBy	 <http://logger.org/users/alice>;	
14 scip:hasValidity	 [time:hasBegining	 "2011-‐11-‐05T19:32:52Z";	
15 time:hasEnd	 "2012-‐11-‐05T19:32:52Z"];	
16 scip:dataItem	 <https://dphr.org/users/alice/A1c>;	
17 scip:requestorRole	 <http://dphr.org/roles/university_researcher>;	
18 scip:senderRole	 <http://dphr.org/roles/network_provider>;	
19 scip:dataSubjectRole	 <http://dphr.org/roles/any>;	
20 scip:purpose	 <http://dphr.org/purposes/med_research>;	
21 scip:privacyPrivilege	 <http://dphr.org/privileges/use>;	
22 scip:obligation	 <http://dphr.org/obs/ob1>;	
23 scip:obligation	 <http://dphr.org/obs/ob2>	 	
24 scip:	 propositionalExpression	 <http://dphr.org/exp/phy1>	 .	
25 <http://dphr.org/obs/ob1>	 	 a	 scip:Obligation;	
26 scip:performAction	 <http://ontology.org/actions/obtain_consent>.	
27 <http://dphr.org/obs/ob2>	 a	 scip:Obligation;	
28 scip:occurrenceGap	 “180”;	
29 scip:performanceDuration	 “1”;	
30 scip:performAction	 <http://ontology.org/actions/notification	 >.	 }	

 Figure 3. Alice privacy preferences

 privacy preferences, the data item is described in line 16, the
acceptable roles for the data requestor, data sender, and data
subject are described in lines 17-19,and the acceptable purpose
is described in line 20. The privacy privilege that will be
granted if the conditions in the privacy preferences are met is
described in line 21.

In SCIP, roles are described by a lattice using rdfs:subClassOf.
The superclass role http://dphr.org/roles/any is used to describe all
possible data subject roles in line 19. Other subclasses can be
used for specialized roles such as patients, researchers, and
physicians. The researcher role can be further specialized to
academic researcher, and so on. SCIP uses RDFS inheritance in
a similar way to describe hierarchies for data items, purposes,
and privacy privileges.

C. SCIP Access Requests and Obligations
When an access request is initiated by a data requestor (Bob

in our scenario), SCIP describes the access request using
properties of the scip:AccessRequest class as shown in Fig. 4. The
property scip:dataRequestor captures the URIs of the data
requestor, scip:dataSender captures who should send the data
while scip:dataSubject captures whose data has been requested,
scip:hasValidity (not shown in the figure) describes the time
interval for which a request is valid. Similarly to the privacy
preference schema, the access request schema describes the
data item and the privacy privilege that have been requested,

the purpose for accessing data, and the roles of the participants.
These elements in access requests and privacy preferences are
used to identify the context that a privacy preference applies to
and the context that an access request belongs to, thus
providing criteria to find matches and deriving obligations as
described later on in Section 3.

 Associated with each privacy preference are a set of
obligations (line 22, 23). An obligation is an action that has to
be performed either before or after the occurrence of an access
activity [12]. When multiple obligations arise from an access
request, a logical formula describes how the satisfaction of
these obligations relates to the overall compliance of the access
request against the privacy preference (line 24). A couple of
properties of scip:Obligation describe temporal constraints for an
obligation; scip:occurrenceGap (line 29) encodes the time interval
for performing the obligation (before or after the access
activity), while scip:performanceDuration	 (line 30) encodes the time
interval required to perform the obligation. The actions to be
performed are described using scip:perfromAction	 (line 18). The
obligation class has other properties to describe state conditions
for triggering an obligation, as well as who should perform the
obligation and who can witness its performance and/or
violation (Fig. 4). Note that obligations expressed in privacy
preferences are templates for obligations that are instantiated
when an access request is logged. Obligations and obligation
templates will be further described in Section 3 and 4.

Finally, SCIP has a class scip:AccessActivity with properties
that describe the access request for which an access activity
occurs, when the activity occurs, and who performs the access
activity.

III. OBLIGATION DERIVATION
In this section we describe how we can construct a

SPARQL query that derives all applicable obligations arising
from a data subject’s privacy preferences. The process consists
of the following three tasks: (i) finding matches between an
access request and all the applicable privacy preferences, (ii)
logging the set of obligations generated from the privacy
preferences, and (iii) logging for each preference a logical
expression, that describes how the individual satisfaction of
each obligation contributes to the overall compliance of the
originally matched access request.

A. Matching Access Requests and Privacy Preferences
Matching between privacy preferences and access requests

is found by comparing the properties of the contexts for the
instances of the privacy preferences and the access request. A
context consists of the following properties, (i) the roles of the
three main participants (data requestor, data sender, and data
subject) in an information flow, (ii) the purpose for which the
data subject’s private information will be used, (iii) the type of
privacy privilege will be granted (one of use, collect, or
disclose), and (iv) the data item that is going to be accessed. In
our running example, as shown in Fig. 3, Alice expresses
applicable context to the privacy preferences using the
acceptable role for the data sender (a network provider, line
18); the role for the data requestor (a university researcher, line
17); the acceptable purpose, (medical research, line 20); the
applicable privacy privilege (use, line 21); the applicable data Figure 4. SCIP access requests and obligations

Figure 5. Query for obligation derivation

01 CONSTRUCT	 {?ob	 a	 scip:Obligation	 .	
02 @request	 	 	 scip:contextObligation	 ?ob;	
03 	 	 scip:propositionalExpression	 ?phi	 .}	
04 WHERE	 {	 	
05 @request	 	 a	 scip:AccessRequest;	
06 	 scip:	 dataSubject	 ?req_dsu;	
07 	 scip:requestorRole	 ?req_drerole,	
08 	 scip:senderRole	 ?req_dserole,	
09 	 scip:dataSubjectRole	 ?req_dsurole,	
10 	 scip:purpose	 ?req_pur;	
11 	 scip:dataItem	 ?req_di;	
12 	 	 scip:privacyPrivilage	 ?req_priv	 .	
13 ?preference	 a	 scip:PrivacyPreference;	
14 	 	 scip:isExpressedBy	 ?req_dsu;	
15 	 scip:purpose	 ?pref_pur;	
16 	 	 scip:requestorRole	 ?pref_drrole;	
17 	 scip:senderRole	 ?pref_dserole;	
18 	 scip:dataSubjectRole	 ?pref_dsurole;	
19 	 	 scip:privacyPrivilege	 ?pref_priv;	
20 	 	 scip:dataItem	 ?pref_di	 ;	
21 	 	 scip:obligation	 ?ob	 ;	
22 	 	 scip:propositionalExpression	 ?phi	 .	
23 FILTER	 ((?req_di	 rdfs:subClassOf	 ?pref_di)	 &&	 	
24 (?req_priv	 rdfs:subClassOf	 ?pref_priv)	 &&	
25 (?req_pur	 rdfs:subClassOf	 ?pref_pur)	 &&	 	
26 (?req_dsurole	 rdfs:subClassOf	 ?pref_dsurole)	 &&	 	
27 (?req_drrole	 rdfs:subClassOf	 ?pref_drrole)	 &&	 	
28 (?req_dserole	 rdfs:subClassOf	 ?pref_dserole))	 	 }	 	

item (diabetic data, line16). In SCIP, we are matching the
context described in Fig. 3 using the SPARQL query provided
in Fig. 5.

The properties of the context for an access request are
included in lines 6-12 of the query in Fig. 5. Similarly, the
properties of the contexts associated with privacy preferences
appear in lines 14-20. Note that the query in Fig. 5 is
parameterized with the URI of an access request. We used @ to
distinguish between a parameter and a variable. The @request
parameter will be substituted with the access request URI in the
execution time. The matching in the query consists of checking
the following items.

First the query checks if the data subject of an access
request matches to the data subject to whom the privacy
preferences is applicable, by using a common variable
(?req_dsu) for the data subject of an access request (line 6) and
the privacy preferences (line 14). The matching for the
properties of the contexts will be based on the sub-classing. To
match the data items, line 11 in the query includes the access
request graph defining the requested data item, using
scip:dataItem. Similarly, line 20 joins triples describing to which
data items the privacy preferences applies. Using the data item
hierarchy, we use rdfs:subClassOf property in the FILTER condition
in line 23 to make sure that the requested data item is a subset
of the data items the privacy preferences applies to. Since
purpose, privacy privilege, and roles are also expressed in
SCIP using partial order, the conjunctive FILTER conditions in
lines 23-28 check that all these items expressed in the access
request graph are in a lower order compared to the
corresponding items in the privacy preferences graph.

When all conditions are met, the outcome of the joined
graph patterns in the WHERE clause will be the applicable

privacy preferences for a given access request @request. It is
possible that the outcome to be an empty set, meaning that no
applicable privacy preferences are found for a given access
request. We will discuss this in Subsection 4.C. If there is a
non-empty solution for the match, the obligations will be
extracted as discussed below.

B. Generating Obligations
Obligations are described as part of the data subject’s

privacy preferences using the SCIP ontology. When the match
query finds the applicable privacy preferences, all the
obligations associated with the found privacy preferences will
be copied as obligations for the given access request. In other
words, obligations linked to the privacy preferences are
templates for the instances of the obligations for an access
request. The query described in Fig. 5, joins together the
matching privacy preference graph with the triple patterns of
obligation templates using scip:obligation (line 21). All
obligations (?ob) which are joined to this graph then will be
used by the SPARQL CONSTRUCT (line 1-2) to inserted into the
RDF graph, this time using scip:contextObligation property, linking
a given access request (@request) to its obligations. Thus, the
query structure in Fig. 5 not only provides solutions for the
matching problem, but also generates all the obligations
relevant to an access request.

Back to our running example, when the query in Fig. 5 is
executed, four obligations will be generated and registered in
the log. All these obligations (e.g. obtain_consent) are exact copy
of the obligations described in the Alice’s privacy preferences
as described in Fig. 3. However, there could be obligations that
cannot be simply copied due to some contextual parameters.
For example, an obligation may require a data requestor sends
a notification to the parents of a data subject if the data subject
is under 16, but to her parents and herself if she is 16-18, and to
herself if she is over 18. Therefore, generating the instances of
obligations from the obligation template requires checking the
date of the access request with the birth date of the data subject
and then passing the parameter to the obligation. Constructing
parameterized obligations has not been currently covered;
nevertheless it is the future extension.
C. Propositional Combination of Obligations

For every access request there could be multiple obligations
derived from the applicable privacy preferences. In the running
example, Alice’s preference (iv) introduces two obligations
(either anonymize the data before using or inform the relevant
publications). Bob can perform only one of them and still be in
compliance. Other Alice preferences, however, do not have
such a nature and Bob must perform all of them. The judgment
on privacy compliance will be different depending on how
multiple obligations are related to each other.

To address the problem of the combinatory effects of
multiple obligations, we introduce φ, a propositional first order
formula that describes how the individual satisfaction of each
obligation contributes to the overall compliance of the access
request. In the current SCIP proposal, we assume that the same
participant who registers the privacy preferences expresses the
formula φ. In our running example Alice, the data subject,
expresses φ as part of her privacy preferences in line 24 in Fig.
3. In the process of obligation derivation, using the query in

Figure 6. SPARQL query returning True or False for a pending obligation
access requests

01 ASK	 {	
02 SELECT	 	 DISTINCT	 @obligation	
03 WHERE	 	 	 {	 ?request	 scip:contextObligation	 @obligation.	 	
04 @obligation	 rdf:type	 scip:Obligation.	
05 @obligation	 scip:occurrenceGap	 ?occGap.	
06 @obligation	 scip:performanceDuration	 ?pD.	
07 OPTIONAL	 {?accessActivity	 scip:forRequest	 ?request}	 .	
08 OPTIONAL	 {?accessActivity	 scip:accessedTime	 ?accessTime}	 .	
09 OPTIONAL	 {?pendingObligation	 scip:performedBy	 ?performerAgent}	 .	
10 OPTIONAL	 {?witness	 scip:attestsViolation	 ?pendingObligation}	 .	
11 FILTER	 (!bound(?performerAgent)	 &&	 	
12 ((!bound	 (?accessTime))	 ||	 (bound	 (?accessTime)	 &&	 	
13 (xsd:integer(@currentTime)	 <=	 (xsd:integer(?accessTime)	 +	 	
14 xsd:integer(?occGap)	 +	 xsd:integer	 (?pD)))	 &&	 (!bound(?witness)))	 }	 }	

Fig. 5, φ is also derived from the preferences along with the
obligations and is linked to the access request using
scip:propositionalExpression (line 3, Fig. 5). We discuss the logical
structure of φ and its expressive power in more details in the
Subsection 4.B.

IV. COMPLIANCE CHECKING
An important objective of the audit-log based privacy

mechanism is to identify, in any given point in time, if an
access request is in compliance with the applicable privacy
preferences and policies. Since compliance of an access request
is decided based on the status of its linked obligations, in this
section we describe how to identify a fulfilled and a pending
obligation using SPARQL queries. In Subsection B we
describe how the logical formula φ can be evaluated in a series
of queries that determine the states of compliance for an access
request. The boundary situations for compliance is discussed in
Subsection C. Due to the temporal properties of obligations,
expressing the time intervals and reasoning about temporal
constraints in SCIP, are discussed in Subsection D.

A. Fulfilled and Pending Obligations
The acceptable time interval for performing an obligation

depends on the time that the information has been accessed
(used) by the data requestor [12]. Therefore, the state of an
obligation cannot be evaluated without the temporal reasoning
about the occurrence time of the access activity and the
obligation. In our running example, the data requestor is
obliged to send a notification 180 days after the access to the
information. The obligation may take 1 day to be performed. If
we assume that the access activity occurs in day 0, the
acceptable time interval for the obligation is (180, 181).

We state obi is a fulfilled obligation if it is performed within
its acceptable time interval. In other words, the concept of
obligation fulfillment is related not only to the binary
evaluation of whether it is performed or not, but also to the
temporal properties of its performance interval. Due to this
time dependency, an obligation can be un-fulfilled but not
violated, simply because it might be the case that the time for
its performance has not been yet emerged. Thus, we state obi is
a pending obligation, if in a point in time tcurrent (the time that
we observe the state of obi) it has not been performed and tcurrent
≤ tso, where tso is the beginning of the acceptable time interval
for obi. In SCIP all other states, which an obligation may go
through and are not fulfilled or pending are considered violated
(in some privacy literature (e.g. [13]) an invalid obligation is
differentiated from a violated obligation, but in this proposal
we assume all registered obligations are valid).

The process of identifying the state of an obligation
(fulfilled, pending, violated) is implemented using multiple
SPARQL ASK queries. The query shown in Fig. 6 returns true if
an obligation (@obligation) is a pending obligation. This query
has two parameters, the URI of the obligation (@obligation), and
the current time (@currentTime). Line 4-6 of the query returns the
triple patterns of a given obligation (@obligation). This pattern
consists of the relative occurrence gap of the obligation from
the occurrence time of an access activity, described by
scip:occurrenceGap, and the time duration that requires for the
obligation to be performed. If we limit the query to the triple

patterns in the WHERE clause, the ASK query will return true for
any registered obligation in the log. However, to find out if an
obligation is pending, we have to find first if the obligation has
been performed or not and second whether the access activity
has been occurred and when. We use OPTIONAL	 graph patterns in
lines 7-8 to left join the graph patterns of the occurrence of an
access activity for the access request that the @obligation is
associated with (line 3). Line 9 in the query optionally left joins
the triple of performing the obligation. Similarly, line 10 adds
to the graph the triple indicating if an obligation witness
testifies the violation of the obligation. Note that an obligation
can be attested by a privacy witness as a violated obligation
regardless of whether it has been performed or not.

The query in Fig. 6 uses FILTER with multiple conditions
(line 11-14). The first conjunctive condition states that for an
obligation to be pending, there should not exist a triple stating
its performer agent (!bound(?performerAgent)) meaning that the
obligation has not been performed. The condition in lines 12-13
includes a nested disjunctive expression using the parameter
@currentTime. This condition states that either an access activity
has not been occurred (!bound	 (?accessTime)) or it has been
occurred but the condition tcurrent ≤ tso holds, meaning that there
is still time for the obligation to be performed given the gap
between the occurrence of the access activity and the time
required for the obligation to be performed. So, in this case
checking whether an obligation is pending or violated is a
matter of temporal reasoning of the start and end of the access
activity occurrence. We compute the acceptable time interval
of an obligation based on a simple Z integer time model
described in Subsection 4.D. The last conjunctive condition
(line 14) states that for an obligation to be pending, it should
not be the case that its violation is being attested.

The ASK query returning true or false for a fulfilled
obligation will have a similar structure to the query shown in
Fig.6 where the conditions in lines 11-14 will change to check
the access activity occurred; the obligation has been performed;
the time of performing the obligation is in the acceptable time
interval; and the violation has not been attested.

B. Access Request Compliance
If the number of obligations arising from an access request

is only one, the state of an access request can be directly
determined form the state of an obligation (i.e. if the single
obligation is fulfilled then the access request is also in
compliance). However, if there is more than one obligation, the

01 SELECT	 	 	 DISTINCT	 ?request	 	
02 WHERE	 {	
03 ?request	 scip:contextObligation	 ?obligation.	
04 FILTER	 (!(φtp	 	 /substituted with truth-value using ASK queries)	 }	

Figure 7. SPARQL query returning non-compliant access requests

Figure 1.

process of determining the access request compliance is
implemented in two steps, (i) assigning the truth-value to every
individual obligation in a given point in time t, and (ii)
evaluating the logical formula φ that describes the combinatory
effect of multiple obligations. In the preceding subsection we
demonstrated that we could determine the state of an individual
obligation using SPARQL Ask queries. Therefore, the
remaining task is substituting the propositional variables in φ
with true or false values obtained from the firs step.

While determining the state of an obligation requires
reasoning about some temporal constraints, the formula φ is
free of time and refers to an access request in a given point in
time t. φ as a template is built using any combination of (ob1,
..., obn, ∧, ∨, ¬, (,)), where {ob1, ..., obn} is a set of
propositional variables representing obligations, and can be
arbitrarily combined with logical and, or, and negation
operators with any level of nested brackets. Thus, φ has a
flexible and generic structure that can support any possible
combination of obligations. φt is an instantiation of φ in a given
point in time t. Since φ is a first order formula, it will be always
evaluated to true or false, as long as the truth-values of its
propositional variables (i.e. obligations) are determined.

In truth-value assignment to the φ’s variables, a fulfilled
obligation always receives true assignment and a violated
obligation always false. However, the assignment of the truth-
value to a pending obligation is not as straightforward as other
two states and depends on the definition of the access request
compliance. If we define the concept of compliance from the
point of view of a privacy auditor (who checks whether an
access request can be considered to be discharged), a pending
obligation will be substituted with false, implying that the
access request still needs to be inspected. We call this treatment
of φ as φtf to indicate that only fulfilled obligations receive true
assignment, everything else receives false assignment.
However, if we define the concept of compliance in terms of
compliance up to the point t in time, then a pending obligation
will be assigned true. As a result φ will be evaluated to false
only due to some violated obligations. We call this as φtp to
indicate that pending obligations are substituted with true, just
like fulfilled obligations.

Due to the dependency of pending obligations to the time of
evaluating the state of an obligation (tcurrent), the method
described above for the truth-value assignment allows us to ask
queries about the past and future compliance by assigning
different values to tcurrent. Furthermore, by having φtf formula
where pending obligations are substituted with false, we can
conclude that if φtf is evaluated to true (in compliance), it will
remain true forever. However, if φtp is evaluated to true, it
means that the access request is in compliance up to the point t,
but we do not know if it will stay like this in the point t + t’.

When the truth-values are assigned, we need the SPARQL
queries that determine the compliance of an access request by
evaluating the corresponding φtf and φtp. Our goal is to provide
answer to the questions such as: which access requests have
been discharged? which access requests are in compliance in
time t but are not discharged? which access requests are not in
compliance in time t?

The query in Fig. 7 lists all access requests, which are not in
compliance in time t. In line 4, we assume that formula φtp is
substituted with the truth-values for every obligation. Note that
we use the negation of φtp formula, meaning that it returns an
instance of an access request only if the substituted formula φtp
is evaluated to false. Using φtp means that for the condition
becomes true even if all pending obligations are substituted
with true, φtp must be still evaluated to false. In other words,
the only possibility for φtp to be evaluated to false is due to one
or more violated obligations. Note that before using the
SPARQL query in Fig. 7, line 4 needs to be syntactically
modified to include a combination of ASK queries (shown in
Subsection 4.A) with the logical operators between them.

By changing the FILTER in line 4 we can provide answer to
the other compliance queries. For example, the query with
FILTER	 (!(φtf)	 &&	 (φtp)) (when substituted with the truth-value for
every individual obligation) will return all compliant access
requests up to the point in time t. The query with FILTER	 (φtf)
returns all discharged access requests. The same queries in Fig.
6 and 7 can be used as building blocks to answer other queries
such as what are the outstanding obligations of a particular data
requestor in general or for a particular access request.

We recognize that there could be cases that the compliance
of an access request depends on multiple φs derived from
multiple applicable privacy preferences. Our current proposal
supports evaluating the formula Φ as the conjunction of
multiple formulas φ (i.e. the most restricted case for the
combination of multiple sets of obligations). However, more
complicated cases of combining multiple sets of obligations,
such as when there are conflicts among obligations (as
described in [14]), or a subset of obligations defined in the φ
formula are linked to an access request, are out of the scope of
this paper.

C. Boundary Situations in Access Request Compliance
During the process of obligation derivation and access

request compliance checking, we may encounter a situation
where no match can be found between the context of an access
request and the contexts of privacy preferences. The question in
this case is how we should interpret this situation in the access
request compliance-checking step. In SCIP, when there is no
match for the context of an access request, we add a constant
“⊥” conjunctively to the formula φ meaning that the access
request can never be in compliance. This approach follows the
principles of Privacy By Design [15] to make protection of
privacy as the default in the model. In other words, if no
privacy preferences have been found, information cannot flow
to any data requestor, providing the lower bound for the access
request compliance (i.e. never be in compliance). In our
running example, if Alice does not define any privacy
preferences, her information stays private by default.

What if a data subject actually wants to provide access to
her information without imposing any obligations or
conditions? To express this situation, we revisit Subsection 3.A

in using class inheritance to find a context match. We require
all classes that are used to define a context (i.e. role, purpose,
data item, and privilege) to have a top superclass any (e.g.
http://dphr.org/roles/any	 for roles). Then, the participant(s) who
define privacy preferences (Alice in our example) can express a
privacy preference stating that for any purpose, any privacy
privilege, data senders and requestors in any roles can
communicate any data items of a data subject. This privacy
preference makes Alice’s data item publicly available without
any conditions or obligations. When in the process of
obligation derivation, we encounter to such a situation (i.e.
when there is a context match, but without conditions or
obligations), we add a constant “T” to the formula φ
disjunctively, allowing access request in such a context to be
always in compliance (the upper bound).

While in both situations above no obligations are defined,
the difference is that the upper bound compliance needs to be
explicitly expressed by some privacy preferences. Therefore, by
supporting the lower and upper bounds compliance with the
same formula φ designed for the obligation combination, we
are able to express the dichotomy of private, public contexts (in
the classical access control systems [16]), where the default
context will always be considered private.

D. SCIP Temporal Constraint Model
In the preceding subsections we observed that the state of

an obligation could not be determined without some temporal
reasoning. The basic time component in the SCIP ontology is
the time interval. Obligations and access activities occur in
different time intervals. The time model used in the query
shown in Fig. 6 uses the simple representation for time
intervals proposed in [12] (a pair of numbers in Z totally
ordered by ≤). In this model, time intervals for post-obligations
have positive and for pre-obligations they have negative values.

While representing time as an Integer provides a convenient
way to reason about temporal constraints, SCIP can be
parameterized based on the properties of alternative time
models. For example the temporal condition expressed in lines
11-15 can be specified using Allen’s interval algebra [17]. The
SCIP ontology has two time classes, scip:TimeInterval and
scip:Duration that are subclasses of intervals and durations in
specific time models (such as the Z time model used
previously, or the time model described by the OWL time
ontology [18]). While the structure of the compliance queries
discussed above does not change, the queries have to be
tailored to properly compare time intervals in the selected
ontology. For example, if the axiomatized time model
described in [19] is used, the property of being an obligation in
an acceptable time interval has to be expressed by relations in
Towltime_inside.. Similarly, if the OWL time ontology [18] is used,
intervals are expressed in xsd:dateTime and the xsd date and time
comparison operators can be utilized.

V. EXPERIMENTAL VALIDATION
This section describes an experimental setup for evaluating

SPARQL compliance queries against a synthetic audit log.

Dataset A DBPedia access log is used as the starting point
to create a synthetic log dataset (this is the same log used to
develop the SPARQL benchmark described in [20]). We

extract a URI from each query in the DBPedia access log, and
the resulting list of URIs is used as input by a custom develop
Java application (SyntheticSCIP) that outputs triples that model
a hypothetical audit log scenario as follows. Each input URI is
randomly assigned to a pool of 100 data subjects representing
owners of the corresponding DBPedia resource. Triples for
access requests are then generated using a random date (and a
random access request interval of a few days), using the URI as
the scip:requestedURI value. Next, for each access request,
SyntheticSCIP generates five pre-obligations and ten post-
obligations. SyntheticSCIP uses a simple probabilistic model to
compute the probability of fulfillment of each obligation
associated with an access request. The number of fulfilled
obligations of a request follows a binomial distribution Bin(n,
p) where n=10, p=0.98. Thus, 2% of the obligations are not
fulfilled (due to the obligation not been performed, or due to
performance after the obligation interval expires, each of these
two option has equal probability). In summary, SyntheticSCIP
generates approximately 165 triples for each access request,
with approximately 18.3% of these access requests been non-
compliant with regards to the privacy obligations in the
hypothetical model (this represents a highly non-compliant
scenario, appropriate for a stress test). SyntheticSCIP is
executed repeatedly to generate audit log entries for the
following number of access requests (where the corresponding
number of triples generated is in parenthesis); 1000 (164,021),
2000 (327,589), 5000 (818,181), 10000 (1,635,905), 20000
(3,271,599), 50000 (8,142,209).

Queries. The experiment evaluation selects four
representative compliance queries. The first query (Q1) is a
simple SPARQL ASK audit query to retrieve whether an
obligation is performed or not. The query checks the existence
of the triple with the scip:performedBy property for the
corresponding obligation. The second query (Q2) retrieves all
pending obligations. The third query (Q3) retrieves all violated
pre-obligations ob the agents who agreed to perform ob and the
agents who were expected (but failed) to perform ob. The last
query (Q4) is the implementation of the query described in Fig.
7 that returns all access request that are not in compliance with
derived obligations. This query gives a full picture of the status
of privacy non-compliance.

Test Environment. The experiment executed the SPARQL
queries on a Virtouso 6.1 (http://lod.openlinksw.com/) installation
(using default settings) on an Ubuntu 11.4 computer with an
Intel Pentium 4 3GHz CPU and 1GB of memory.

Results. The four queries are executed in the test environment
against the different dataset sizes and elapsed execution times
are plotted in Fig. 8. For example, Q4 (the more complex
SPARQL query returning comprehensive non-compliance
information) can process 750,000 obligations arising from
50,000 access requests with an elapsed time of 104 seconds.
The experiment validates the linear scalability of the four
compliance queries selected.

VI. RELATED WORK
There are several proposals dealing with privacy in the

linked data context. A lightweight privacy preferences
vocabulary built on top of web access control and access
control lists is proposed in [21], allowing linked data publishers

to express fine-grained access policies for their resources. An
alternative access control framework in [22] for social web
applications uses SWRL to express access rules, enabling
linked data publishers to specify who can access which
resources. The authors of [23] leverage the linked data
architecture for providing authorizations (based on WebID
[24]) and access restrictions at the document level. To address
the privacy concerns in the emerging domains of linked data
usage, the authors of [25] propose a privacy framework for
policy specification and access control enforcement. The
preceding five proposals support privacy by restricting access
to information, without addressing privacy aspects such as
usage and post-conditions on access. In contrast, the SCIP
ontology proposed in this work captures a richer privacy model
as described by the contextual integrity discipline.

There is body of research [6, 7, 26, 27] leveraging log
mechanisms to support information accountability. The authors
of [26] and [6] use Linear Temporal Logic to express privacy
policies and to monitor their satisfaction. Similarly, [27] uses
metric first order temporal logic for the same purpose, while
providing an online monitoring algorithm. In our work, we
limit the temporal reasoning aspect to the individual obligation
satisfaction, while a propositional formula φ (discussed in
Subsection 4.B) allows for arbitrary combinations of
obligations. From the temporal reasoning perspective, SCIP is
flexible, supporting the incorporation of different temporal
models (as discussed in Subsection 4.D). There are additional
aspects of log processing, such as reasoning over incomplete
logs (as described in [6]) that are not addressed by the query-
based solutions described in this paper (but these features could
be incorporated into extensions of the SCIP ontology).

VII. CONCLUSIONS
This work describes query-based solutions for two

important privacy processes (compliance and obligation
derivation) implemented on top of a novel privacy framework
that provides a technical foundation for privacy auditing. The
framework maximizes the flexibility around participants,
policies, and processes by combining provenance-enabled log
ontology (L2TAP) with an ontology that synthesizes contextual
integrity concepts (SCIP). The experimental validation of the
scalability of the solutions highlights the framework’s
applicability and practical benefits.

ACKNOWLEDGMENT
Financial supports from the NSERC Canada and from IBM

Privacy Award are greatly acknowledged.

REFERENCES
[1] ENISA, Privacy, Accountability and Trust; Challenges and

Opportunities. European Network and Info. Security Agency, 2011.
[2] OASIS, “OASIS eXtensible Access Control Markup Language v2.0

(XACML),” Feb. 2005.
[3] M. Backes, B. Pfitzmann, and M. Schunter, “A toolkit for managing

enterprise privacy policies,” in Proc. ESORICS, pp. 162–180, 2003.
[4] Q. Ni, A. Trombetta, E. Bertino, and J. Lobo, “Privacy-aware role based

access control,” in Proc. SACMAT, pp. 41–50, 2007.
[5] L. Cranor, M. Langheinrich, M. Marchiori, and J. Reagle, “The platform

for privacy preferences 1.0 specification.” W3C Recomm., Apr. 2002.
[6] A. Datta, J. Blocki, N. Christin, H. DeYoung, D. Garg, L. Jia,

D. Kaynar, and A. Sinha, “Understanding and protecting privacy: formal
semantics and principled audit mechanisms,” in Proc. ICISS, pp. 1–27,
2011.

[7] J. Cederquist, R. Corin, M. Dekker, S. Etalle, J. den Hartog, and
G. Lenzini, “Audit-based compliance control,” Int. J. of Information
Security, vol. 6, pp. 133–151, Feb. 2007.

[8] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - the story so far,”
Int. J. on Semantic Web and Info. Sys., vol. 5, pp. 1–22, Mar. 2009.

[9] H. Nissenbaum, Privacy in Context: Technology, Policy, and the
Integrity of Social Life. Stanford Law Books, 2009.

[10] L. Moreau and P. Missier, “PROV-DM: The PROV data model.” W3C
Working Draft, June 2012.

[11] US Congress, Health Insurance Portability and Accountability Act of
1996, Privacy Rule. 45 CFR 164, Aug. 2002.

[12] Q. Ni, E. Bertino, and J. Lobo, “An obligation model bridging access
control policies and privacy policies,” in Proc. SACMAT, pp. 133–142,
2008.

[13] K. Irwin, T. Yu, and W. Winsborough, “On the modeling and analysis of
obligations,” in Proc. CCS, pp. 134–143, 2006.

[14] H. Hu, G.-J. Ahn, and K. Kulkarni, “Ontology-based policy anomaly
management for autonomic computing,” in Proc. TrustCol, pp. 487–494,
2011.

[15] A. Cavoukian, Privacy By Design, Take The Challeneg. Office of
Information and Privacy Commissioner of Ontario, 2009.

[16] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, pp. 38–47, Feb. 1996.

[17] J. F. Allen, “Maintaining knowledge about temporal intervals,”
Commun. ACM, vol. 26, pp. 832–843, Nov. 1983.

[18] J. R. Hobbs and F. Pan, “An ontology of time for the semantic web,”
ACM (TALIP), vol. 3, pp. 66–85, Mar. 2004.

[19] M. Grüninger, “Verification of the OWL-time ontology,” in Proc. ISWC,
pp. 225–240, 2011.

[20] M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo, “DBpedia
SPARQL benchmark: performance assessment with real queries on real
data,” in Proc. ISWC, pp. 454–469, 2011.

[21] O. Sacco and A. Passant, “A privacy preference ontology (PPO) for
Linked Data,” in Proc. LDOW Workshop at WWW, 2011.

[22] H. Mühleisen, M. Kost, and J.-C. Freytag, “SWRL-based Access
Policies for Linked Data,” in Proc. SPOT Workshop at SSW, 2010.

[23] J. Hollenbach, J. Presbrey, and T. Berners-Lee, “Using RDF metadata to
enable access control on the social Semantic Web,” in Proc. CCMLSK
Workshop at CK, 2009.

[24] H. Story, B. Harbulot, I. Jacobi, and M. Jones, “FOAF+SSL: RESTful
Authentication for the Social Web,” in Proc. SPOT, 2009.

[25] S. Speiser, “Policy of composition? composition of policies,” in Proc.
POLICY, pp. 121 –124, 2011.

[26] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum, “Privacy and
contextual integrity: Framework and applications,” in Proc. SP, pp. 184–
198, 2006.

[27] D. Basin, F. Klaedtke, and S. Müller, “Policy monitoring in first-order
temporal logic,” in Proc. CAV, pp. 1–18, 2010.

Figure 8. Elapsed execution time for four compliance queries

Figure 2.

