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Abstract — We describe a framework designed to facilitate 
privacy auditing while accommodating a variety of privacy 
scenarios and policies that involve multiple participants. Our 
proposal is based on two ontologies, L2TAP and SCIP, designed 
for deployment in a Linked Data environment. L2TAP provides 
provenance enabled logging of events. SCIP synthesizes 
contextual integrity concepts and enables query based solutions 
for two important privacy processes (compliance and obligation 
derivation). We include an experimental validation of the 
scalability of our approach. 

Keywords-- Privacy, linked data, audit log, compliance queries, 
sparql 

I. INTRODUCTION  
As individuals are increasingly benefiting from the use of 

online services, there are growing concerns about the treatment 
of personal information (broadly referred to as privacy 
concerns). Society’s ongoing response to these concerns gives 
rise to privacy policies expressed in legislation, regulation, and 
agreements. These policies steer organizations that collect, use, 
and share personal data towards respecting the privacy of the 
data subjects. Ensuring compliance with a variety of privacy 
policies is an increasingly complex task involving multiple 
participants including watchdogs and enforcement agencies 
that prosecute privacy violators. Therefore, technical solutions 
that facilitate the implementation of compliance offer value to 
all the organizations that deal with privacy concerns [1]. 

This paper introduces a framework designed to facilitate the 
auditing tasks of the multiple participants dealing with privacy 
concerns. While privacy auditing is commonly employed in 
industry, the infrastructure to support it is ad-hoc, and not 
supported by widely adopted technology standards. In contrast, 
there have been multiple proposals in the area of access 
control, whether to specify fine grained enforceable policies 
(e.g., XACML [2], EPAL [3], P-RBAC [4]), or coarse grained 
high-level privacy declarations (e.g., P3P [5]). Also, auditing 
has received less attention from the research community than 
areas such as access control or statistical privacy. However, 
there are solid theoretical foundations for policy auditing over 
logs [6], [7]. Furthermore, auditing is complimentary to other 
policy mechanisms and it can take place proactively or 
retroactively, helping with enforcement and compliance, and/or 
identifying participants that commit privacy violations (for 
whom the threat of prosecution is a deterrent). 

Our goal is to develop a framework that can provide a 
technical foundation for a principled approach to privacy 
auditing, while maximizing the flexibility in three key areas; 

participants, policies, and processes. Our proposal is based on 
two ontologies designed for deployment in a Linked Data [8] 
environment. The paper describes query based solutions (with 
an experimental validation) for two important privacy 
processes. The solutions presented leverage our framework and 
highlight its applicability and practical benefits. 

Our first proposed ontology, L2TAP (Linked Data Log to 
Transparency, Accountability and Privacy) allows participants 
to log (in RDF) privacy related events such as changes to the 
policies, as well as information access requests and activities. 
All the events in an L2TAP log are identified by web 
accessible URIs, which can be dereferenced by other 
participants (likely after authentication and over a secure https 
channel), therefore simplifying the support of transparency. 
The events logged include time stamped information obtained 
from the participants involved that is also linked data 
(potentially from multiple ontologies). The provenance 
information (who, when) in an L2TAP log facilitates 
supporting accountability among the participants involved. The 
mixing and matching of ontologies in the log is the basis for 
flexibility. Arbitrary processes can log privacy related events 
and/or analyze them. Participants with heterogeneous 
environments can be supported, since the linked data that they 
contribute to the log can be the result of a thin transcoding from 
legacy information formats.  Analogously, multiple privacy 
policy languages can be supported (e.g., even without 
transcoding a string property can store the XML encoding of an 
XACML or an EPAL policy).  

While L2TAP provides an arbitrarily flexible foundation 
for log-based privacy processing, our second proposed 
ontology, SCIP (Simple Contextual Integrity Privacy), enables 
query-based implementations of audit related processes, while 
preserving considerable amounts of flexibility. SCIP is a novel 
synthesis (in the form of a concrete ontology) of concepts 
inspired by the Contextual Integrity [9] perspective (where 
privacy is seen as the right to appropriate flows of personal 
information in a given social context). SCIP provides a simple 
(yet sufficiently rich) target for mapping the key concepts in 
L2TAP logs expressed using other privacy related ontologies 
or schemas. Our work shows how using SCIP (either directly 
or via mappings) to express event information in L2TAP logs 
enables scalable implementations of privacy processes using 
SPARQL queries plus limited RDFS reasoning support.  

The paper structure and contributions are as follows. The 
next section presents an overview of our novel audit-based 
privacy framework (based on the L2TAP and SCIP ontologies 
available at http://l2tap.org) using a hypothetical scenario. In 

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250607



Section 3 we show a query-based solution for deriving all the 
obligations associated with an access request. Section 4 
describes a compliance checking process implemented via 
SPARQL queries: given an access request check the fulfillment 
of its associated obligations. Section 5 reports an experimental 
validation of the scalability of the compliance queries described 
earlier. Related work is discussed in Section 6, while Section 7 
concludes the paper. 

II. OVERVIEW OF THE PRIVACY FRAMEWORK 
We use a scenario to motivate our audit-based privacy 

framework and to introduce the L2TAP log ontology in 
Subsection A. We describe the SCIP ontology next; privacy 
preferences in Subsection B, and access requests and 
obligations in Subsection C.  

A. L2TAP Logs 
To picture a privacy-sensitive process consider Alice, who 

has recently been diagnosed with diabetes, and who joins a 
diabetes social network (dphr.org) to receive information and 
emotional support. Alice uploads the history of her daily blood 
glucose level at https://dphr.org/users/alice/A1c (using the personal 
health record functionality of the dphr.org network). Our 
scenario is concerned with respecting Alice’s privacy 
preferences when her blood glucose level information is used 
by Bob, a physician and a researcher who is also a member of 
the dphr.org network. 

The L2TAP ontology is used to log provenance assertions 
(using the recently proposed RDF provenance data model [10]) 
as shown in Fig. 1, where Alice logs her preferences encoded 
as triples in a named graph	   g1. We encode the graph g1 as an 
instance of prov:Entity (line 2) to show that this is what we want 
to provide provenance for. According to the RDF provenance 
model, provenance assertions for an entity, including when and 
by whom an entity was changed, are associated with the activity 
that introduces the change. For graph g1, the activity is captured 
by prov:Activity in line 4, while who logged the graph is captured 
in line 5 using prov:wasAssociatedWith. The time interval for when 
the graph is being logged is encoded in line 6 and 7 using 
prov:startedAtTime and prov:endedAtTime.  

The triples that construct g1 include the triple to mint the 
URI of the privacy preference in the logger’s domain (line 11) 
and the ontology describing the semantics of the privacy 
preferences triples (line 12). Other triples in g1 use the plugged 
ontology pointed in line 12 to express Alice privacy 
preferences (as described in Fig. 3). L2TAP is not aware of the 
semantics of this pluggable ontology but encode the triples 
described by the ontology. The SCIP ontology described in the 

next subsections is one instance of such pluggable ontologies.  

B. SCIP Privacy Preferences 
The SCIP ontology (as shown in Fig. 2) has concepts for 

the major privacy-related events that are logged, such as 
expressing privacy preferences, submitting access requests, 
performing obligations, and for access activities. In every 
privacy process multiple participants interact (Alice, Bob, as 
well as the social network dphr.org are the participants in our 
motivating scenario). The class scip:Participant captures the main 
actors in an information flow (i.e. data subject, data sender, and 
data requestor),  as well as other actors specific to the privacy 
by audit log mechanism, such as the logger that is responsible 
to log, or obligation performers and witnesses. Obligations that 
Bob must fulfill when accessing Alice’s data are captured by 
scip:Obligation while the actual event of Bob accessing Alice’s 
data is captured by an scip:AccessActivity. 

 Going back to our motivating scenario, assume that Alice 
has expressed her privacy concerns as (i) a dphr.org user may 
access my daily glucose level for research purposes, provided 
the user is a university researcher, (ii) the user must obtain my 
consent prior to accessing this information, (iii) the user should 
send me a report about the on-going research after 180 days, 
(iv) I should be notified of any publications of the research 
results where my data is being used (unless my data is being 
used anonymously). SCIP captures these preferences using the 
scip:PrivacyPreference concept.	   Participants can use properties 
defined for this class to express applicable conditions and 
norms that must be respected when the information of data 
subjects are used. For example, scip:purpose expresses the 
intended purpose of usage while scip:obligation  describes the 
obligations that must be performed when the data is used. SCIP 
uses other classes as well (see Fig. 2); the scip:DataItem class 
describes the attribute hierarchies for data items; the scip:Role 
class describes the roles of participants; scip:Purpose describes 
applicable purposes; scip:Privilege describes privacy privileges 
that can be granted; and scip:ObligationTemplate describes 
obligation templates. 

Triples in Fig. 3 show how Alice uses the preceding 
properties and classes to encode her preferences (i) to (iii) (note 
that triples in this figure are the continuation of Fig. 1). Line 13 
describes by whom the privacy preferences have been 
expressed. The participant who expresses the preference could 
be the data subject herself (as in our example), or it could be a 
service provider (dphr.org) defining its internal privacy 
policies(and they could originate from a legal body that  set 
norms for information flows, such as HIPPA [11]). The triples 
in lines 14 and 15 describe the time interval for validity of the 

01 @prefix	  prov:	  <http://www.w3.org/ns/prov#>.	  
02 <http://dphrLogger.org/g1>	  a	  prov:Entity;	  
03 	  prov:wasGeneretaedBy	  <http://dphrLogger.org/logEntry/idg1>.	  
04 <http://dphrLogger.org/logEntry/idg1>	  	  a	  prov:Activity;	  
05 prov:wasAssociatedWith	  <http://dphrLogger.org/users/alice>;	  	  
06 prov:startedAtTime	  [time:inXSDDateTime	  “2011-‐11-‐05T18:00:00”];	  
07 prov:endedAtTime	  [time:inXSDDateTime	  “2011-‐11-‐05T18:00:00”].	  
08 	  
09 <http://dphr.logger.org/g1>	  =	  {	  
10 	  <http://logger.org/userspp/alice_pp1>	  	  a	  l2tap:PrivacyPreference;	  
11 owl:sameAs	  <http://dphr.org/memberspp/alice_pp1>;	  
12 	  l2tap:prefernceOntology	  <	  http://ontology.org/scip>;	  …continued	  
	  

 Figure 1. Provenance assertions in L2TAP 

 

Figure 2. SCIP privacy preferences 

 



13 scip:expressedBy	  <http://logger.org/users/alice>;	  
14 scip:hasValidity	  [time:hasBegining	  "2011-‐11-‐05T19:32:52Z";	  
15 time:hasEnd	  "2012-‐11-‐05T19:32:52Z"];	  
16 scip:dataItem	  <https://dphr.org/users/alice/A1c>;	  
17 scip:requestorRole	  <http://dphr.org/roles/university_researcher>;	  
18 scip:senderRole	  <http://dphr.org/roles/network_provider>;	  
19 scip:dataSubjectRole	  <http://dphr.org/roles/any>;	  
20 scip:purpose	  <http://dphr.org/purposes/med_research>;	  
21 scip:privacyPrivilege	  <http://dphr.org/privileges/use>;	  
22 scip:obligation	  <http://dphr.org/obs/ob1>;	  
23 scip:obligation	  <http://dphr.org/obs/ob2>	  	  
24 scip:	  propositionalExpression	  <http://dphr.org/exp/phy1>	  .	  
25 <http://dphr.org/obs/ob1>	  	  a	  scip:Obligation;	  
26 scip:performAction	  <http://ontology.org/actions/obtain_consent>.	  
27 <http://dphr.org/obs/ob2>	  a	  scip:Obligation;	  
28 scip:occurrenceGap	  “180”;	  
29 scip:performanceDuration	  “1”;	  
30 scip:performAction	  <http://ontology.org/actions/notification	  >.	  }	  

 Figure 3. Alice privacy preferences 

 privacy preferences, the data item is described in line 16, the 
acceptable roles for the data requestor, data sender, and data 
subject are described in lines 17-19,and the acceptable purpose 
is described in line 20. The privacy privilege that will be 
granted if the conditions in the privacy preferences are met is 
described in line 21.  

In SCIP, roles are described by a lattice using rdfs:subClassOf. 
The superclass role http://dphr.org/roles/any is used to describe all 
possible data subject roles in line 19. Other subclasses can be 
used for specialized roles such as patients, researchers, and 
physicians. The researcher role can be further specialized to 
academic researcher, and so on. SCIP uses RDFS inheritance in 
a similar way to describe hierarchies for data items, purposes, 
and privacy privileges. 

C. SCIP Access Requests and Obligations 
When an access request is initiated by a data requestor (Bob 

in our scenario), SCIP describes the access request using 
properties of the scip:AccessRequest class as shown in Fig. 4. The 
property scip:dataRequestor captures the URIs of the data 
requestor, scip:dataSender captures who should send the data 
while scip:dataSubject captures whose data has been requested, 
scip:hasValidity (not shown in the figure) describes the time 
interval for which a request is valid. Similarly to the privacy 
preference schema, the access request schema describes the 
data item and the privacy privilege that have been requested, 

the purpose for accessing data, and the roles of the participants. 
These elements in access requests and privacy preferences are 
used to identify the context that a privacy preference applies to 
and the context that an access request belongs to, thus 
providing criteria to find matches and deriving obligations as 
described later on in Section 3. 

 Associated with each privacy preference are a set of 
obligations (line 22, 23). An obligation is an action that has to 
be performed either before or after the occurrence of an access 
activity [12]. When multiple obligations arise from an access 
request, a logical formula describes how the satisfaction of 
these obligations relates to the overall compliance of the access 
request against the privacy preference (line 24). A couple of 
properties of scip:Obligation describe temporal constraints for an 
obligation; scip:occurrenceGap (line 29) encodes the time interval 
for performing the obligation (before or after the access 
activity), while scip:performanceDuration	  (line 30) encodes the time 
interval required to perform the obligation. The actions to be 
performed are described using scip:perfromAction	   (line 18). The 
obligation class has other properties to describe state conditions 
for triggering an obligation, as well as who should perform the 
obligation and who can witness its performance and/or 
violation (Fig. 4). Note that obligations expressed in privacy 
preferences are templates for obligations that are instantiated 
when an access request is logged. Obligations and obligation 
templates will be further described in Section 3 and 4. 

Finally, SCIP has a class scip:AccessActivity with properties 
that describe the access request for which an access activity 
occurs, when the activity occurs, and who performs the access 
activity.   

III. OBLIGATION DERIVATION 
In this section we describe how we can construct a 

SPARQL query that derives all applicable obligations arising 
from a data subject’s privacy preferences. The process consists 
of the following three tasks: (i) finding matches between an 
access request and all the applicable privacy preferences, (ii) 
logging the set of obligations generated from the privacy 
preferences, and (iii) logging for each preference a logical 
expression, that describes how the individual satisfaction of 
each obligation contributes to the overall compliance of the 
originally matched access request.  

A. Matching Access Requests and Privacy Preferences 
Matching between privacy preferences and access requests 

is found by comparing the properties of the contexts for the 
instances of the privacy preferences and the access request. A 
context consists of the following properties, (i) the roles of the 
three main participants (data requestor, data sender, and data 
subject) in an information flow, (ii) the purpose for which the 
data subject’s private information will be used, (iii) the type of 
privacy privilege will be granted (one of use, collect, or 
disclose), and (iv) the data item that is going to be accessed. In 
our running example, as shown in Fig. 3, Alice expresses 
applicable context to the privacy preferences using the 
acceptable role for the data sender (a network provider, line 
18); the role for the data requestor (a university researcher, line 
17); the acceptable purpose, (medical research, line 20); the 
applicable privacy privilege (use, line 21); the applicable data Figure 4. SCIP access requests and obligations 

 



Figure 5. Query for obligation derivation  

 

01 CONSTRUCT	  {?ob	  a	  scip:Obligation	  .	  
02 @request	  	  	  scip:contextObligation	  ?ob;	  
03 	  	   scip:propositionalExpression	  ?phi	  .}	  
04 WHERE	  {	  	  
05 @request	  	  a	  scip:AccessRequest;	  
06 	   scip:	  dataSubject	  ?req_dsu;	  
07 	   scip:requestorRole	  ?req_drerole,	  
08 	   scip:senderRole	  ?req_dserole,	  
09 	   scip:dataSubjectRole	  ?req_dsurole,	  
10 	   scip:purpose	  ?req_pur;	  
11 	   scip:dataItem	  ?req_di;	  
12 	  	   scip:privacyPrivilage	  ?req_priv	  .	  
13 ?preference	  a	  scip:PrivacyPreference;	  
14 	  	   scip:isExpressedBy	  ?req_dsu;	  
15 	   scip:purpose	  ?pref_pur;	  
16 	  	   scip:requestorRole	  ?pref_drrole;	  
17 	   scip:senderRole	  ?pref_dserole;	  
18 	   scip:dataSubjectRole	  ?pref_dsurole;	  
19 	  	   scip:privacyPrivilege	  ?pref_priv;	  
20 	  	   scip:dataItem	  ?pref_di	  ;	  
21 	  	   scip:obligation	  ?ob	  ;	  
22 	  	   scip:propositionalExpression	  ?phi	  .	  
23 FILTER	  ((?req_di	  rdfs:subClassOf	  ?pref_di)	  &&	  	  
24 (?req_priv	  rdfs:subClassOf	  ?pref_priv)	  &&	  
25 (?req_pur	  rdfs:subClassOf	  ?pref_pur)	  &&	  	  
26 (?req_dsurole	  rdfs:subClassOf	  ?pref_dsurole)	  &&	  	  
27 (?req_drrole	  rdfs:subClassOf	  ?pref_drrole)	  &&	  	  
28 (?req_dserole	  rdfs:subClassOf	  ?pref_dserole))	  	  }	  	  

 

item (diabetic data, line16). In SCIP, we are matching the 
context described in Fig. 3 using the SPARQL query provided 
in Fig. 5.   

The properties of the context for an access request are 
included in lines 6-12 of the query in Fig. 5. Similarly, the 
properties of the contexts associated with privacy preferences 
appear in lines 14-20. Note that the query in Fig. 5 is 
parameterized with the URI of an access request. We used @ to 
distinguish between a parameter and a variable. The @request 
parameter will be substituted with the access request URI in the 
execution time. The matching in the query consists of checking 
the following items. 

First the query checks if the data subject of an access 
request matches to the data subject to whom the privacy 
preferences is applicable, by using a common variable 
(?req_dsu) for the data subject of an access request (line 6) and 
the privacy preferences (line 14). The matching for the 
properties of the contexts will be based on the sub-classing. To 
match the data items, line 11 in the query includes the access 
request graph defining the requested data item, using 
scip:dataItem. Similarly, line 20 joins triples describing to which 
data items the privacy preferences applies. Using the data item 
hierarchy, we use rdfs:subClassOf property in the FILTER condition 
in line 23 to make sure that the requested data item is a subset 
of the data items the privacy preferences applies to. Since 
purpose, privacy privilege, and roles are also expressed in 
SCIP using partial order, the conjunctive FILTER conditions in 
lines 23-28 check that all these items expressed in the access 
request graph are in a lower order compared to the 
corresponding items in the privacy preferences graph.  

When all conditions are met, the outcome of the joined 
graph patterns in the WHERE clause will be the applicable 

privacy preferences for a given access request @request. It is 
possible that the outcome to be an empty set, meaning that no 
applicable privacy preferences are found for a given access 
request. We will discuss this in Subsection 4.C. If there is a 
non-empty solution for the match, the obligations will be 
extracted as discussed below.  

B. Generating Obligations 
Obligations are described as part of the data subject’s 

privacy preferences using the SCIP ontology. When the match 
query finds the applicable privacy preferences, all the 
obligations associated with the found privacy preferences will 
be copied as obligations for the given access request. In other 
words, obligations linked to the privacy preferences are 
templates for the instances of the obligations for an access 
request. The query described in Fig. 5, joins together the 
matching privacy preference graph with the triple patterns of 
obligation templates using scip:obligation (line 21). All 
obligations (?ob) which are joined to this graph then will be 
used by the SPARQL CONSTRUCT (line 1-2) to inserted into the 
RDF graph, this time using scip:contextObligation property, linking 
a given access request (@request) to its obligations. Thus, the 
query structure in Fig. 5 not only provides solutions for the 
matching problem, but also generates all the obligations 
relevant to an access request.  

Back to our running example, when the query in Fig. 5 is 
executed, four obligations will be generated and registered in 
the log. All these obligations (e.g. obtain_consent) are exact copy 
of the obligations described in the Alice’s privacy preferences 
as described in Fig. 3. However, there could be obligations that 
cannot be simply copied due to some contextual parameters. 
For example, an obligation may require a data requestor sends 
a notification to the parents of a data subject if the data subject 
is under 16, but to her parents and herself if she is 16-18, and to 
herself if she is over 18. Therefore, generating the instances of 
obligations from the obligation template requires checking the 
date of the access request with the birth date of the data subject 
and then passing the parameter to the obligation. Constructing 
parameterized obligations has not been currently covered; 
nevertheless it is the future extension.   
C. Propositional Combination of Obligations  

For every access request there could be multiple obligations 
derived from the applicable privacy preferences. In the running 
example, Alice’s preference (iv) introduces two obligations 
(either anonymize the data before using or inform the relevant 
publications). Bob can perform only one of them and still be in 
compliance. Other Alice preferences, however, do not have 
such a nature and Bob must perform all of them. The judgment 
on privacy compliance will be different depending on how 
multiple obligations are related to each other.  

To address the problem of the combinatory effects of 
multiple obligations, we introduce φ, a propositional first order 
formula that describes how the individual satisfaction of each 
obligation contributes to the overall compliance of the access 
request. In the current SCIP proposal, we assume that the same 
participant who registers the privacy preferences expresses the 
formula φ. In our running example Alice, the data subject, 
expresses φ as part of her privacy preferences in line 24 in Fig. 
3. In the process of obligation derivation, using the query in 



Figure 6. SPARQL query returning True or False for a pending obligation 
access requests 

 

01 ASK	  {	  
02 SELECT	  	  DISTINCT	  @obligation	  
03 WHERE	  	  	  {	  ?request	  scip:contextObligation	  @obligation.	  	  
04 @obligation	  rdf:type	  scip:Obligation.	  
05 @obligation	  scip:occurrenceGap	  ?occGap.	  
06 @obligation	  scip:performanceDuration	  ?pD.	  
07 OPTIONAL	  {?accessActivity	  scip:forRequest	  ?request}	  .	  
08 OPTIONAL	  {?accessActivity	  scip:accessedTime	  ?accessTime}	  .	  
09 OPTIONAL	  {?pendingObligation	  scip:performedBy	  ?performerAgent}	  .	  
10 OPTIONAL	  {?witness	  scip:attestsViolation	  ?pendingObligation}	  .	  
11 FILTER	  (!bound(?performerAgent)	  &&	  	  
12 ((!bound	  (?accessTime))	  ||	  (bound	  (?accessTime)	  &&	  	  
13 (xsd:integer(@currentTime)	  <=	  (xsd:integer(?accessTime)	  +	  	  
14 xsd:integer(?occGap)	  +	  xsd:integer	  (?pD)))	  &&	  (!bound(?witness))	  )	  }	  }	  

Fig. 5, φ is also derived from the preferences along with the 
obligations and is linked to the access request using 
scip:propositionalExpression (line 3, Fig. 5). We discuss the logical 
structure of φ and its expressive power in more details in the 
Subsection 4.B. 

IV. COMPLIANCE CHECKING 
An important objective of the audit-log based privacy 

mechanism is to identify, in any given point in time, if an 
access request is in compliance with the applicable privacy 
preferences and policies. Since compliance of an access request 
is decided based on the status of its linked obligations, in this 
section we describe how to identify a fulfilled and a pending 
obligation using SPARQL queries. In Subsection B we 
describe how the logical formula φ can be evaluated in a series 
of queries that determine the states of compliance for an access 
request. The boundary situations for compliance is discussed in 
Subsection C. Due to the temporal properties of obligations, 
expressing the time intervals and reasoning about temporal 
constraints in SCIP, are discussed in Subsection D.  

A. Fulfilled and Pending Obligations  
The acceptable time interval for performing an obligation 

depends on the time that the information has been accessed 
(used) by the data requestor [12]. Therefore, the state of an 
obligation cannot be evaluated without the temporal reasoning 
about the occurrence time of the access activity and the 
obligation. In our running example, the data requestor is 
obliged to send a notification 180 days after the access to the 
information. The obligation may take 1 day to be performed. If 
we assume that the access activity occurs in day 0, the 
acceptable time interval for the obligation is (180, 181).  

We state obi is a fulfilled obligation if it is performed within 
its acceptable time interval. In other words, the concept of 
obligation fulfillment is related not only to the binary 
evaluation of whether it is performed or not, but also to the 
temporal properties of its performance interval. Due to this 
time dependency, an obligation can be un-fulfilled but not 
violated, simply because it might be the case that the time for 
its performance has not been yet emerged. Thus, we state obi is 
a pending obligation, if in a point in time tcurrent (the time that 
we observe the state of obi) it has not been performed and tcurrent 
≤ tso, where tso is the beginning of the acceptable time interval 
for obi. In SCIP all other states, which an obligation may go 
through and are not fulfilled or pending are considered violated 
(in some privacy literature (e.g. [13]) an invalid obligation is 
differentiated from a violated obligation, but in this proposal 
we assume all registered obligations are valid).  

The process of identifying the state of an obligation 
(fulfilled, pending, violated) is implemented using multiple 
SPARQL ASK queries. The query shown in Fig. 6 returns true if 
an obligation (@obligation) is a pending obligation. This query 
has two parameters, the URI of the obligation (@obligation), and 
the current time (@currentTime). Line 4-6 of the query returns the 
triple patterns of a given obligation (@obligation). This pattern 
consists of the relative occurrence gap of the obligation from 
the occurrence time of an access activity, described by 
scip:occurrenceGap, and the time duration that requires for the 
obligation to be performed. If we limit the query to the triple 

patterns in the WHERE clause, the ASK query will return true for 
any registered obligation in the log. However, to find out if an 
obligation is pending, we have to find first if the obligation has 
been performed or not and second whether the access activity 
has been occurred and when. We use OPTIONAL	  graph patterns in 
lines 7-8 to left join the graph patterns of the occurrence of an 
access activity for the access request that the @obligation is 
associated with (line 3). Line 9 in the query optionally left joins 
the triple of performing the obligation. Similarly, line 10 adds 
to the graph the triple indicating if an obligation witness 
testifies the violation of the obligation. Note that an obligation 
can be attested by a privacy witness as a violated obligation 
regardless of whether it has been performed or not.  

The query in Fig. 6 uses FILTER with multiple conditions 
(line 11-14). The first conjunctive condition states that for an 
obligation to be pending, there should not exist a triple stating 
its performer agent (!bound(?performerAgent)) meaning that the 
obligation has not been performed. The condition in lines 12-13 
includes a nested disjunctive expression using the parameter 
@currentTime. This condition states that either an access activity 
has not been occurred (!bound	   (?accessTime)) or it has been 
occurred but the condition tcurrent ≤ tso holds, meaning that there 
is still time for the obligation to be performed given the gap 
between the occurrence of the access activity and the time 
required for the obligation to be performed. So, in this case 
checking whether an obligation is pending or violated is a 
matter of temporal reasoning of the start and end of the access 
activity occurrence. We compute the acceptable time interval 
of an obligation based on a simple Z integer time model 
described in Subsection 4.D. The last conjunctive condition 
(line 14) states that for an obligation to be pending, it should 
not be the case that its violation is being attested. 

The ASK query returning true or false for a fulfilled 
obligation will have a similar structure to the query shown in 
Fig.6 where the conditions in lines 11-14 will change to check 
the access activity occurred; the obligation has been performed; 
the time of performing the obligation is in the acceptable time 
interval; and the violation has not been attested. 

B. Access Request Compliance   
If the number of obligations arising from an access request 

is only one, the state of an access request can be directly 
determined form the state of an obligation (i.e. if the single 
obligation is fulfilled then the access request is also in 
compliance). However, if there is more than one obligation, the 



01 SELECT	  	  	  DISTINCT	  ?request	  	  
02 WHERE	  {	  
03 ?request	  scip:contextObligation	  ?obligation.	  
04 FILTER	  (!(φtp	  	  /substituted with truth-value using ASK queries)	  }	  

Figure 7. SPARQL query returning non-compliant access requests 

Figure 1.   

 

process of determining the access request compliance is 
implemented in two steps, (i) assigning the truth-value to every 
individual obligation in a given point in time t, and (ii) 
evaluating the logical formula φ that describes the combinatory 
effect of multiple obligations. In the preceding subsection we 
demonstrated that we could determine the state of an individual 
obligation using SPARQL Ask queries. Therefore, the 
remaining task is substituting the propositional variables in φ 
with true or false values obtained from the firs step.  

While determining the state of an obligation requires 
reasoning about some temporal constraints, the formula φ is 
free of time and refers to an access request in a given point in 
time t. φ as a template is built using any combination of (ob1, 
..., obn, ∧, ∨, ¬, (, )), where {ob1, ..., obn} is a set of 
propositional variables representing obligations, and can be 
arbitrarily combined with logical and, or, and negation 
operators with any level of nested brackets. Thus, φ has a 
flexible and generic structure that can support any possible 
combination of obligations. φt is an instantiation of φ in a given 
point in time t. Since φ is a first order formula, it will be always 
evaluated to true or false, as long as the truth-values of its 
propositional variables (i.e. obligations) are determined.  

In truth-value assignment to the φ’s variables, a fulfilled 
obligation always receives true assignment and a violated 
obligation always false. However, the assignment of the truth-
value to a pending obligation is not as straightforward as other 
two states and depends on the definition of the access request 
compliance. If we define the concept of compliance from the 
point of view of a privacy auditor (who checks whether an 
access request can be considered to be discharged), a pending 
obligation will be substituted with false, implying that the 
access request still needs to be inspected. We call this treatment 
of φ as φtf to indicate that only fulfilled obligations receive true 
assignment, everything else receives false assignment. 
However, if we define the concept of compliance in terms of 
compliance up to the point t in time, then a pending obligation 
will be assigned true. As a result φ will be evaluated to false 
only due to some violated obligations. We call this as φtp to 
indicate that pending obligations are substituted with true, just 
like fulfilled obligations.  

Due to the dependency of pending obligations to the time of 
evaluating the state of an obligation (tcurrent), the method 
described above for the truth-value assignment allows us to ask 
queries about the past and future compliance by assigning 
different values to tcurrent. Furthermore, by having φtf formula 
where pending obligations are substituted with false, we can 
conclude that if φtf is evaluated to true (in compliance), it will 
remain true forever. However, if φtp is evaluated to true, it 
means that the access request is in compliance up to the point t, 
but we do not know if it will stay like this in the point t + t’. 

When the truth-values are assigned, we need the SPARQL 
queries that determine the compliance of an access request by 
evaluating the corresponding φtf  and φtp. Our goal is to provide 
answer to the questions such as: which access requests have 
been discharged? which access requests are in compliance in 
time t but are not discharged? which access requests are not in 
compliance in time t?  

The query in Fig. 7 lists all access requests, which are not in 
compliance in time t. In line 4, we assume that formula φtp is 
substituted with the truth-values for every obligation. Note that 
we use the negation of φtp formula, meaning that it returns an 
instance of an access request only if the substituted formula φtp 
is evaluated to false. Using φtp means that for the condition 
becomes true even if all pending obligations are substituted 
with true, φtp must be still evaluated to false. In other words, 
the only possibility for φtp to be evaluated to false is due to one 
or more violated obligations. Note that before using the 
SPARQL query in Fig. 7, line 4 needs to be syntactically 
modified to include a combination of ASK queries (shown in 
Subsection 4.A) with the logical operators between them.  

By changing the FILTER in line 4 we can provide answer to 
the other compliance queries. For example, the query with 
FILTER	   (!(φtf)	   &&	   (φtp)) (when substituted with the truth-value for 
every individual obligation) will return all compliant access 
requests up to the point in time t. The query with FILTER	   (φtf) 
returns all discharged access requests. The same queries in Fig. 
6 and 7 can be used as building blocks to answer other queries 
such as what are the outstanding obligations of a particular data 
requestor in general or for a particular access request.   

We recognize that there could be cases that the compliance 
of an access request depends on multiple φs derived from 
multiple applicable privacy preferences. Our current proposal 
supports evaluating the formula Φ as the conjunction of 
multiple formulas φ (i.e. the most restricted case for the 
combination of multiple sets of obligations). However, more 
complicated cases of combining multiple sets of obligations, 
such as when there are conflicts among obligations (as 
described in [14]), or a subset of obligations defined in the φ 
formula are linked to an access request, are out of the scope of 
this paper.  

C. Boundary Situations in Access Request Compliance 
During the process of obligation derivation and access 

request compliance checking, we may encounter a situation 
where no match can be found between the context of an access 
request and the contexts of privacy preferences. The question in 
this case is how we should interpret this situation in the access 
request compliance-checking step. In SCIP, when there is no 
match for the context of an access request, we add a constant 
“⊥” conjunctively to the formula φ meaning that the access 
request can never be in compliance. This approach follows the 
principles of Privacy By Design [15] to make protection of 
privacy as the default in the model. In other words, if no 
privacy preferences have been found, information cannot flow 
to any data requestor, providing the lower bound for the access 
request compliance (i.e. never be in compliance). In our 
running example, if Alice does not define any privacy 
preferences, her information stays private by default.   

What if a data subject actually wants to provide access to 
her information without imposing any obligations or 
conditions? To express this situation, we revisit Subsection 3.A 



in using class inheritance to find a context match. We require 
all classes that are used to define a context (i.e. role, purpose, 
data item, and privilege) to have a top superclass any (e.g. 
http://dphr.org/roles/any	   for roles). Then, the participant(s) who 
define privacy preferences (Alice in our example) can express a 
privacy preference stating that for any purpose, any privacy 
privilege, data senders and requestors in any roles can 
communicate any data items of a data subject. This privacy 
preference makes Alice’s data item publicly available without 
any conditions or obligations. When in the process of 
obligation derivation, we encounter to such a situation (i.e. 
when there is a context match, but without conditions or 
obligations), we add a constant “T” to the formula φ 
disjunctively, allowing access request in such a context to be 
always in compliance (the upper bound).   

While in both situations above no obligations are defined, 
the difference is that the upper bound compliance needs to be 
explicitly expressed by some privacy preferences. Therefore, by 
supporting the lower and upper bounds compliance with the 
same formula φ designed for the obligation combination, we 
are able to express the dichotomy of private, public contexts (in 
the classical access control systems [16]), where the default 
context will always be considered private.  

D. SCIP Temporal Constraint Model  
In the preceding subsections we observed that the state of 

an obligation could not be determined without some temporal 
reasoning. The basic time component in the SCIP ontology is 
the time interval. Obligations and access activities occur in 
different time intervals. The time model used in the query 
shown in Fig. 6 uses the simple representation for time 
intervals proposed in [12] (a pair of  numbers in Z totally 
ordered by ≤). In this model, time intervals for post-obligations 
have positive and for pre-obligations they have negative values.  

While representing time as an Integer provides a convenient 
way to reason about temporal constraints, SCIP can be 
parameterized based on the properties of alternative time 
models. For example the temporal condition expressed in lines 
11-15 can be specified using Allen’s interval algebra [17]. The 
SCIP ontology has two time classes, scip:TimeInterval and 
scip:Duration that are subclasses of intervals and durations in 
specific time models (such as the Z time model used 
previously, or the time model described by the OWL time 
ontology [18]). While the structure of the compliance queries 
discussed above does not change, the queries have to be 
tailored to properly compare time intervals in the selected 
ontology. For example, if the axiomatized time model 
described in [19] is used, the property of being an obligation in 
an acceptable time interval has to be expressed by relations in 
Towltime_inside.. Similarly, if the OWL time ontology [18] is used, 
intervals are expressed in xsd:dateTime and the xsd date and time 
comparison operators can be utilized. 

V. EXPERIMENTAL VALIDATION 
This section describes an experimental setup for evaluating 

SPARQL compliance queries against a synthetic audit log.  

Dataset A DBPedia access log is used as the starting point 
to create a synthetic log dataset (this is the same log used to 
develop the SPARQL benchmark described in [20]). We 

extract a URI from each query in the DBPedia access log, and 
the resulting list of URIs is used as input by a custom develop 
Java application (SyntheticSCIP) that outputs triples that model 
a hypothetical audit log scenario as follows. Each input URI is 
randomly assigned to a pool of 100 data subjects representing 
owners of the corresponding DBPedia resource. Triples for 
access requests are then generated using a random date (and a 
random access request interval of a few days), using the URI as 
the scip:requestedURI value. Next, for each access request, 
SyntheticSCIP generates five pre-obligations and ten post-
obligations. SyntheticSCIP uses a simple probabilistic model to 
compute the probability of fulfillment of each obligation 
associated with an access request. The number of fulfilled 
obligations of a request follows a binomial distribution Bin(n, 
p) where n=10, p=0.98. Thus, 2% of the obligations are not 
fulfilled (due to the obligation not been performed, or due to 
performance after the obligation interval expires, each of these 
two option has equal probability). In summary, SyntheticSCIP 
generates approximately 165 triples for each access request, 
with approximately 18.3% of these access requests been non-
compliant with regards to the privacy obligations in the 
hypothetical model (this represents a highly non-compliant 
scenario, appropriate for a stress test). SyntheticSCIP is 
executed repeatedly to generate audit log entries for the 
following number of access requests (where the corresponding 
number of triples generated is in parenthesis); 1000 (164,021), 
2000 (327,589), 5000 (818,181), 10000 (1,635,905), 20000 
(3,271,599), 50000 (8,142,209).  

Queries. The experiment evaluation selects four 
representative compliance queries. The first query (Q1) is a 
simple SPARQL ASK audit query to retrieve whether an 
obligation is performed or not. The query checks the existence 
of the triple with the scip:performedBy property for the 
corresponding obligation. The second query (Q2) retrieves all 
pending obligations. The third query (Q3) retrieves all violated 
pre-obligations ob the agents who agreed to perform ob and the 
agents who were expected (but failed) to perform ob. The last 
query (Q4) is the implementation of the query described in Fig. 
7 that returns all access request that are not in compliance with 
derived obligations. This query gives a full picture of the status 
of privacy non-compliance.  

Test Environment. The experiment executed the SPARQL 
queries on a Virtouso 6.1 (http://lod.openlinksw.com/) installation 
(using default settings) on an Ubuntu 11.4 computer with an 
Intel Pentium 4 3GHz CPU and 1GB of memory.  

Results. The four queries are executed in the test environment 
against the different dataset sizes and elapsed execution times 
are plotted in Fig. 8. For example, Q4 (the more complex 
SPARQL query returning comprehensive non-compliance 
information) can process 750,000 obligations arising from 
50,000 access requests with an elapsed time of 104 seconds. 
The experiment validates the linear scalability of the four 
compliance queries selected. 

VI. RELATED WORK 
There are several proposals dealing with privacy in the 

linked data context. A lightweight privacy preferences 
vocabulary built on top of web access control and access 
control lists is proposed in [21], allowing linked data publishers 



to express fine-grained access policies for their resources. An 
alternative access control framework in [22] for social web 
applications uses SWRL to express access rules, enabling 
linked data publishers to specify who can access which 
resources. The authors of [23] leverage the linked data 
architecture for providing authorizations (based on WebID 
[24]) and access restrictions at the document level. To address 
the privacy concerns in the emerging domains of linked data 
usage, the authors of [25] propose a privacy framework for 
policy specification and access control enforcement. The 
preceding five proposals support privacy by restricting access 
to information, without addressing privacy aspects such as 
usage and post-conditions on access. In contrast, the SCIP 
ontology proposed in this work captures a richer privacy model 
as described by the contextual integrity discipline. 

There is body of research [6, 7, 26, 27] leveraging log 
mechanisms to support information accountability. The authors 
of [26] and [6] use Linear Temporal Logic to express privacy 
policies and to monitor their satisfaction. Similarly, [27] uses 
metric first order temporal logic for the same purpose, while 
providing an online monitoring algorithm. In our work, we 
limit the temporal reasoning aspect to the individual obligation 
satisfaction, while a propositional formula φ (discussed in 
Subsection 4.B) allows for arbitrary combinations of 
obligations. From the temporal reasoning perspective, SCIP is 
flexible, supporting the incorporation of different temporal 
models (as discussed in Subsection 4.D). There are additional 
aspects of log processing, such as reasoning over incomplete 
logs (as described in [6]) that are not addressed by the query-
based solutions described in this paper (but these features could 
be incorporated into extensions of the SCIP ontology). 

VII. CONCLUSIONS 
This work describes query-based solutions for two 

important privacy processes (compliance and obligation 
derivation) implemented on top of a novel privacy framework 
that provides a technical foundation for privacy auditing. The 
framework maximizes the flexibility around participants, 
policies, and processes by combining provenance-enabled log 
ontology (L2TAP) with an ontology that synthesizes contextual 
integrity concepts (SCIP). The experimental validation of the 
scalability of the solutions highlights the framework’s 
applicability and practical benefits. 
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