
An Ontology-based System for Cloud Infrastructure Services’ Discovery

Miranda Zhang1, 2, Rajiv Ranjan1, Armin Haller1, Dimitrios Georgakopoulos1, Michael Menzel3, Surya Nepal1

 1 Information Engineering Laboratory, CSIRO ICT Centre

{miranda.zhang, rajiv.ranjan, armin.haller, dimitrios.georgakopoulos, surya.nepal}@csiro.au
2
 Research School of Computer Science, ANU

miranda.zhang@anu.edu.au
3
 Karlsruhe Institute of Technology, Karlsruhe, Germany

menzel@fzi.de

Abstract— The Cloud infrastructure services landscape

advances steadily leaving users in the agony of choice. As a

result, Cloud service identification and discovery remains a

hard problem due to different service descriptions, non-

standardised naming conventions and heterogeneous types and

features of Cloud services. In this paper, we present an OWL-

based ontology, the Cloud Computing Ontology (CoCoOn)

that defines functional and non-functional concepts, attributes

and relations of infrastructure services. We also present a

system, CloudRecommender-that implements our domain

ontology in a relational model. The system uses regular

expressions and SQL for matching user requests to service

descriptions. We briefly describe the architecture of the

CloudRecommender system, and demonstrate its effectiveness

and scalability through a service configuration selection

experiment based on a set of prominent Cloud providers’

descriptions including Amazon, Azure, and GoGrid.

Keywords: Cloud computing, service descriptions, semantic

Web, recommender system

I. MOTIVATION

The emergence of Cloud computing [1, 2, 3] over the
past five years is potentially one of the breakthrough
advances in the history of computing. The Cloud computing
paradigm is shifting computing from in-house managed
hardware and software resources to virtualized Cloud-hosted
services. Cloud computing assembles large networks of
virtualized services: hardware resources (CPU, storage, and
network) and software resources (e.g., web server, databases,
message queuing systems, monitoring systems.). Cloud
services can be abstracted into three layers: Software as a
Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). Hardware and software
resources form the basis for delivering IaaS and PaaS. The
top layer focuses on application services (SaaS) by making
use of services provided by the lower layers. PaaS/SaaS
services are often developed and provided by third party
service providers who are different from the IaaS providers.
In this paper, we focus on IaaS that is the underpinning layer
on which the PaaS services are hosted for creating SaaS
applications.

From a service discovery point of view, the selection
process on the IaaS layer is based on a finite set of functional
and non-functional configuration properties (e.g. CPU type,
memory size, costs, regional availability) that are potentially

met by multiple providers. Similarly, there is a service
discovery problem associated with the SaaS and PaaS
offerings. However, we are not considering these issues in
this paper.

IaaS providers include Amazon Web Services (AWS),
Microsoft Azure, Rackspace, GoGrid, and others. They give
users the option to deploy their application over a pool of
virtually infinite services with practically no capital
investment and with modest operating costs proportional to
the actual use. Elasticity, cost benefits and abundance of
resources motivate many organizations to migrate their
enterprise applications to the Cloud. Although Cloud offers
the opportunity to focus on revenue growth and innovation,
decision makers (e.g., CIOs, scientists, developers,
engineers, etc.) are faced with the complexity of choosing
the right service delivery model for composite application
and infrastructure across private, public, and hybrid Clouds.

Existing approaches which help a user to compare and
select infrastructure services in Cloud computing involve
manually reading the provider documentation for finding out
services that are most suitable for hosting an application.
This problem is further aggravated by the use of non-
standardized naming conventions used by Cloud providers.
For example, Amazon refers to compute services as EC2
Compute Unit, while GoGrid refers to the same as Cloud
Servers. Furthermore, Cloud providers typically publish their
service descriptions, pricing policies and Service-Level-
Agreement (SLA) rules on their websites in various formats.
The relevant information may be updated without prior
notice to the users. Hence, it is not an easy task to manually
obtain and compare service configurations from Cloud
providers’ websites and documentations (which are the only
sources of information).

Although popular search engines (e.g., Google, Bing, etc)
can point users to these provider web sites (blogs, wikis, etc.)
that describe IaaS service offerings, they are not designed to
compare and reason about the relations among the different
types of Cloud services and their configurations. Service
description models and discovery mechanisms for
determining the similarity among Cloud infrastructure
services are needed to aid the user in the discovery and
selection of the most cost effective infrastructure service
meeting the user’s functional and non-functional
requirements.

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250650

In order to address these aforementioned problems, we
present a semi-automated, extensible, and ontology-based
approach to infrastructure service discovery and selection
and its implementation in the CloudRecommender system.
We identify and formalize the domain knowledge of multiple
configurations of infrastructure services. The core idea is to
formally capture the domain knowledge of services using
semantic Web languages like the Resource Description
Framework (RDF) and the Web Ontology Language (OWL).
The contributions of this paper are as the following:

- Identification of the most important concepts and
relations of functional and non-functional
configuration parameters of infrastructure services
and their definition in an ontology;

- Modelling of service descriptions published by
Cloud providers according to the developed
ontology. By doing so, we validate the
expressiveness of ontology against the most
commonly available infrastructure services
including Amazon, Microsoft Azure, GoGrid, etc.

- An implementation of a design support system,

CloudRecommender, based on our ontological

model for the selection of infrastructure Cloud

service configurations using transactional SQL

semantics, procedures and views. The benefits to

users of CloudRecommender include, for example,

the ability to estimate costs, compute cost savings

across multiple providers with possible tradeoffs

and aid in the selection of Cloud services.

The remainder of the paper is structured as follows. A

discussion on our formal domain model for Cloud
infrastructure services is presented in Section 2. Details on
the proposed Cloud selection approach and the
CloudRecommender system are given in Section 3. A review
of related work is provided in Section 4 before we conclude
in Section 5.

II. CLOUD COMPUTING ONTOLOGY

The Cloud Computing Ontology (CoCoOn) defines the
domain model of the IaaS layer. This ontology facilitates the
description of Cloud infrastructure services; and through
mappings from provider descriptions, facilitates the
discovery of infrastructure services based on their
functionality and Quality of Service (QoS) parameters. The
ontology is defined in the OWL [12] and can be found at:
http://w3c.org.au/cocoon.owl. To describe specific aspects of
Cloud computing, established domain classifications have
been used as a guiding reference [9, 11]. For the layering of
the ontology on top of Web service models, it builds upon
standard semantic Web service ontologies i.e., OWL-S [10]
and WSMO [13]. Consequently, modellers can use the
grounding model and process model of OWL-S in
combination with the presented Cloud computing ontology
to succinctly express common infrastructure Cloud services.
We mapped the most prominent set of infrastructure services
(i.e. Amazon, Azure, GoGrid, Rackspace, etc.) to CoCoOn.
All common metadata fields in the ontology including

Organisation, Author, First Name etc. are referenced through
standard Web Ontologies (i.e. FOAF

1
 and Dublin Core

2
).

The Cloud computing ontology consists of two parts:

functional Cloud service configurations information
parameters; and non-functional service configuration
parameters. In the following sections, we detail on these two
parts. We also present parts of the ontology in a visual form
produced by the Cmap Ontology Editor tool [14].

1) Functional Cloud service configuration parameters

The main concept to describe functional Cloud service
configurations in CoCoOn is a CloudResource that can be of
one of the three types: Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS) or Software-as-a-Service
(SaaS). For the current implementation of the
CloudRecommender system, we have defined the Cloud
infrastructure layer (IaaS), providing concepts and relations
that are fundamental to the other higher-level layers. In
future work, we will extend the ontology to cover both PaaS
and SaaS layers.

FIGURE 1: TOP CONCEPTS IN THE IAAS LAYER

Cloud services in the IaaS layer can be categorised into:

Compute, Network, and Storage services (see Fig. 1).
Compute is the main concept for infrastructure services,
whereas Network and Storage are usually attached to a
Compute service (with exceptions, for example
NetworkStorage, see below).

1
 See http://xmlns.com/foaf/spec/

2
 See http://purl.org/dc/elements/1.1

FIGURE 2: SUBCLASSES AND PROPERTIES FOR THE COMPUTE, STORAGE AND NETWORK CLASS

The Compute class (see Fig. 2) has the following object
properties, hasVirtualization, hasCPU,
hasMemoryAddressSize and hasNetworkStorage. The
hasCPU property links a Compute unit to one or many
processors which can be of type CPU or ClusteredCPU. A
Compute object can be linked to a Storage object by using
the top level object property hasStorage.

There are two different Storage types for a
CloudResource: LocalStorage attached to a CPU with the
hasLocalStorage property and NetworkStorage attached to a
Compute instance with the hasNetworkStorage property. The
hasNetworkStorage is an owl:inverseOf property of the
isAttached property which can be used to define that a
Storage resource is attached to a Compute resource. There is
also an important distinction to be made between Storage
resources that are attached to a Compute resource and
Storage resources that can be attached. The latter is modeled
with the isAttachable object property and its inverse property
hasAttachable. These relations are important for the
discovery of infrastructure services based on a user
requirement. For example, in the case of Amazon, we can
model that a BlockStorage with a StorageSizeMin of 1GB
and a StorageSizeMax of 1TB can be attached to any EC2
Compute resource instance i.e., Standard, Micro, High-
Memory, High-CPUCluster, ComputeCluster, GPUHigh-I/O.
Consequently, if a user searches for a specific Compute
instance with, for example, 5GB persistent storage, the
relevant EC2 Compute resource and an Amazon
BlockStorage will be returned (possibly among others). That
is, because the isAttached relation in the user request can be
matched with the definition of the Amazon EC2 unit with a
BlockStorage defined to be isAttachable.

A Network resource can be described with the
hasBandwidth and hasProtocol properties. Similarly, to how
Storage resources are attached to Compute resource, we
distinguish between the hasSupportedNetwork and
hasNetwork property to either express that the specific
network types can be used with a Compute resource or that
they are in fact used.

2) Non-Functional Cloud service configuration

parameters

For non-functional Cloud service configuration

parameters we distinguish between non-functional properties
and QoS attributes. The first are properties of Cloud
resources that are known at design time, for example,
PriceStorage, Provider, DeploymentModel, whereas QoS
attributes can only be recorded after at least one execution
cycle of a Cloud service, for example, DiskReadOperations,
NetworkIn, NetworkOut etc. For QoS attributes, we
distinguish MeasurableAttributes like the ones above and
UnmeasurableAttributes like Durability or Performance.

The QoS attributes define a taxonomy of Attributes and

Metrics, i.e. two trees formed using the rdfs:subClassOf
relation where a ConfigurationParameter, for example,
PriceStorage, PriceCompute, PriceDataTransferIn (Out) etc.
and a Metric, for example, ProbabilityOfFailureOnDemand,
TransactionalThroughput, are used in combination to define
non-functional properties (e.g. Performance, Cost, etc.). The
resulting ontology is a (complex) directed graph where, for
example, the Property hasMetric (and its inverse isMetricOf)
is the basic link between ConfigurationParameters and
Metric trees. For the QoS metrics, we used existing QoS
ontologies [16] as a reference whereas for the
ConfigurationParameters concepts the ontology defines its

independent taxonomy, but refers to external ontologies for
existing definitions (e.g. QUDT

3
). Each configuration

parameter (compare Table I) has a Name and a Metric
(qualitative or quantitative). The Metric itself has a
UnitOfMeasurement and a Value. The type of configuration
determines the nature of a service by means of setting a
minimum, maximum, or capacity limit, or meeting a certain
value. For example, the hasMemory configuration parameter
of a Compute service can be set to have a Value of 2 and a
UnitOfMeasurement of GB.

III. A SYSTEM FOR CLOUD SERVICE SELECTION

We propose an approach and a system for Cloud service
configuration selection called CloudRecommender. For our
CloudRecommender service, we implemented the Cloud
Service Ontology as a relational model and the Cloud QoS
ontology as configuration information as structured data
(entities) which we query using SQL. The choice of a
relational model and SQL as query language was made
because of the convenience SQL procedures offers us in
regards to defining templates for a given widget type
(discussed further below). We use stored procedures to
create temporary tables and to concatenate parameters to
dynamically generate queries based on the user input. As a
future work, we will migrate the infrastructure services
definitions to an RDF database and use, for example, SPIN
templates to encode our procedures in SPARQL.

We collected service configuration information from a
number of public Cloud providers (e.g., Windows Azure,
Amazon, GoGrid, RackSpace, Nirvanix, Ninefold,
SoftLayer, AT and T Synaptic, Cloud Central, etc.) to
demonstrate the generic nature of the domain model with
respect to capturing heterogeneous configuration (see Table
II) information of infrastructure services. The
CloudRecommender system architecture (shown in Fig. 3)
consists of three layers: the configuration management layer,
the application logic layer and the User interface (widget)
layer. Details of each layer will be explained in the following
sub-sections.

A. Infrastructure service configuration repository

The system includes a repository of available

infrastructure services from different providers including
compute, storage and network services. These infrastructure
services have very different configurations and pricing
models. Distinct and ambiguous terminologies are often used
to describe similar configurations, for example different units
of measurements are used for similar metrics. We performed
unit conversions during instantiation of concepts to simplify
the discovery process. For example, an Amazon EC2 Micro
Instance has 613 MB of memory which is converted to
approximately 0.599 GB. Another example is the CPU clock
speed. Amazon refers to it as “ECUs”. From their

3
 See http://www.qudt.org

documentation [7]: “One EC2 Compute Unit provides the
equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or
2007 Xeon processor. This is also the equivalent to an early-
2006 1.7 GHz Xeon processor referenced in our original
documentation”.

Another example of disparity between different Cloud
providers is the price model of “on Demand instances”.
GoGrid’s plan, although having a similar concept to
Amazon’s On Demand and Reserved Instance, gives very
little importance to what type or how many of compute
services a user is deploying. GoGrid charges users based on
what they call RAM hours – 1 GB RAM compute service
deployed for 1 hour consumes 1 RAM Hour. A 2 GB RAM
compute service deployed for 1 hour consumes 2 RAM
Hour. It is worthwhile mentioning that only Azure clearly
states that one month is considered to have 31 days. This is
important as the key advantage of the fine grained pay-as-
you-go price model which, for example, should charge a user
the same when they use 2GB for half a month or 1 GB for a
whole month. Other vendors merely give a GB-month price
without clarifying how short term usage is handled. It is
neither reflected in their usage calculator. We chose 31 days
as default value in calculation.

FIGURE 3: CLOUDRECOMMENDER SYSTEM ARCHITECTURE.

Regarding storage services, providers charge for every

operation that an application program or user undertakes.
These operations are effected on storage services via
REpresentational State Transfer (RESTful) application
programming interfaces (APIs) or Simple Object Access
Protocol (SOAP) API. Cloud providers refer to the same set
of operations with different names, for example Azure refers
to storage service operations as transactions. Nevertheless,
the operations are categorized into upload and download
categories as shown in Table III. Red means an access fee is
charged; green means the service is free; and yellow means
access fees are not specified, and can usually be treated as
green/free of charge. To facilitate our calculation of similar
and equivalent requests across multiple providers, we

analyzed and pre-processed the price data, recorded it in our
domain model and used a homogenized value in the
repository (configuration management layer). For example,
Windows Azure Storage charges a flat price per transaction.
It is considered as transaction whenever there is a “touch”
operation, i.e. Create, Read, Update, Delete (CRUD)
operation over the RESTful service interface, on any
component (Blobs, Tables or Queues) of Windows Azure
Storage.

For providers that offer different regional prices, we store

the location information in the price table. If multiple regions
have the same price, we choose to combine them. In our
current implementation, any changes to existing
configurations (such as updating memory size, storage
provision etc.) of services can be done by executing
customized update SQL queries. We also use customized
crawlers to update provider information’s periodically.
However, as a future work, we will provide a RESTful
interface and widget that can be used for automatic
configuration updates.

B. Application Logic Layer

The request for service selection in CloudRecommender

is expressed as SQL queries. The selection process supports
an application logic that builds upon views and stored
procedures.

FIGURE 4: SCREEN SHOT OF COMPUTE, STORAGE, AND NETWORK WIDGETS.

C. User Interface Layer

This layer features a rich set of user-interfaces (see Fig.

4) that further simplify the selection of configuration
parameters related to Cloud services. This layer encapsulates
the user interface components in the form of four principle
widgets including: Compute, Storage, Network, and
Recommendation. The selection of basic configuration
parameters related to compute services including their RAM
capacity, cores, and location can be facilitated through the
Compute widget. It also allows users to search compute

services by using regular expressions, sort by a specific
column etc. Using the Compute widget, users can choose
which columns to display and rearrange their order as well.
The Storage widget allows users to define configuration
parameters such as storage size and request types (e.g., GET,
PUT, POST, COPY etc.). Service configuration parameters,
such as the size of incoming data transfer and outgoing data
transfer can be issued via the Network widget. Users have
the option to select single service types as well as bundled
(combined search) services driven by use cases. The
selection results are displayed and can be browsed via the
Recommendation widget (not shown in Fig. 4).

IV. RELATED WORK

Currently, there are 3 common approaches for Cloud
services identification/publication: 1) manually maintain
directories by categorizing submitted or collected
information about Cloud services and providers, an example
of such kind is Universal Description, Discovery and
Integration (UDDI), which has failed to gain wide adoption;
2) use of web crawlers for automatically creating service
listings; and 3) combining both of the aforementioned
approaches, e.g. using manually-submitted URIs as seeds to
generate indexes. The first approach is the only feasible
solution at the moment. Some of the recent research such as
[6] has focused on Cloud storage and network service (IaaS
level) representation using XML. However, the proposed
schema does not comply with or take into account any
standardization efforts proposed as ontologies on the
semantic web.

Notably branded calculators are available from individual

Cloud providers, such as Amazon [4], Azure [5], and
GoGrid, for service leasing cost calculation. However, it is
not easy for users to generalize their requirements to fit
different service offers (with various quota and limitations)
let alone computing and comparing costs. All of the
aforementioned calculators name and represent service
configurations differently, hence making the task of unified
service selection and comparison impossible.

Although the authors in [15] present a taxonomy

(ontology) to classify Cloud services across IaaS, PaaS, and
SaaS layers, they fail to capture low-level configuration
information of services and their dependencies across layers.
Furthermore, their taxonomy does not include concepts and
relationships pertaining to QoS configuration of services.

Overall, the proposed generic ontology and its

implementation in relational CloudRecommender system is
preferable over hard coding the sorting and selection
algorithm as it allows us to take the advantage of optimized
SQL operations (e.g. select and join).

Service Configurations Parameters Range/possible values

Core >= 1

CPUClockSpeed > 0

hasMemory > 0

hasCapacity >= 0

Location North America, South America, Africa, Europe, Asia, Australia

CostPerPeriod >= 0

PeriodLength > 0

CostOverLimit >= 0

PlanType Pay As You Go, Prepaid

StorageSizeMin >= 0

StorageSizeMax > 0

CostPerPeriod (e.g. Period = Month) (e.g. UnitOfMeasurement = GB) >= 0

Location North America, South America, Africa, Europe, Asia, Australia

RequestType put, copy, post, list, get, delete, search

CostPerRequest >= 0

PlanType Pay As You Go, Prepaid, Reduced Redundancy

CostDataTransferIn >= 0

CostDataTransferOut > 0

Compute

Storage

Network

TABLE I. INFRASTRUCTURE SERVICE TYPES AND THEIR CONFIGURATIONS.

Compute Pay As You Go Storage Pay As You Go Trail

Terminology Unit Terminology Unit Period or Value

Windows Azure Virtual Server /hr 1 Azure Storage /GB month 1 90 day

Amazon EC2 Instance /hr 2 S3 /GB month 2 1 year

GoGrid Cloud Servers /RAM hr 1 Cloud Storage /GB month

RackSpace Cloud Servers /RAM hr Cloud Files /GB month

Nirvanix CSN /GB month

Ninefold Virtual Server /hr Cloud Storage /GB month 1 50 AUD

SoftLayer Cloud Servers /hr 1 Object Storage /GB

AT and T Synaptic Compute as a Service vCPU per hour + /RAM hr Storage as a Service /GB month

Cloudcentral Cloud Servers /hr

* Monthly/Quarterly/Yearly Plan, Reserve and Bidding Price Option

Other

Plans*

Other

Plans*Provider

TABLE II. DEPICTION OF CONFIGURATION HETEROGENEITIES IN COMPUTE AND STORAGE SERVICES ACROSS PROVIDERS. (RED) BLANK CELLS IN THE

TABLE MEAN THAT A CONFIGURATION PARAMETER IS NOT SUPPORTED. SOME PROVIDERS OFFER THEIR SERVICES UNDER A DIFFERENT PRICING SCHEME THAN

PAY-AS-YOU-GO. IN TABLE II WE REFER TO THESE SCHEMES AS OTHER PLANS (E.G. AMAZON REDUCED REDUNDANCY, RESERVED PRICE PLANS, GOGRID PRE-
PAID PLANS)

Upload Download Other

Windows Azure Azure Storage storage transactions storage transactions

Amazon S3 PUT, COPY, POST, or LIST RequestsGET and all other Requests Delete

GoGrid Cloud Storage

RackSpace Cloud Files PUT, POST, LIST Requests HEAD, GET, DELETE Requests

Nirvanix CSN Search

Ninefold Cloud Storage

SoftLayer Object Storage

AT and T Synaptic Storage as a Service

Not Specified/Unknow

Not Specified/Unknow

Requests

Provider Storage

Transfer protocols such as SCP, SAMBA/CIFS, and RSYNC

GET, PUT, POST, COPY, LIST and all other transactions

TABLE III. DEPICTION OF CONFIGURATION HETEROGENEITIES IN REQUEST TYPES ACROSS STORAGE SERVICES.

V. CONCLUSION AND FUTURE WORK

In conclusion, in this paper, we have proposed
ontology for classifying and representing the configuration
information related to Cloud-based IaaS services including
compute, storage, and network. The proposed ontology is
comprehensive as it can not only capture static
confiugration but also dynamic QoS configuration on the
IaaS layer. We also presented the implementation of the
ontology in the CloudRecommender system. The paper
will help readers in clearly understanding the core IaaS-
level Cloud computing concepts and inter-relationship
between different service types. This in turn may lead to a
harmonization of research efforts and more inter-operable
Cloud technologies and services at the IaaS layer.

In future work, we intend to extend the ontology with

the capability to store PaaS and SaaS configurations.
Moreover, we would also like to extend our ontology to
capture the dependency of services across the layers. For
example, investigating concepts and relationships for
identifying the dependencies between compute service
(IaaS) configurations and the type of appliances (PaaS)
that can be deployed over it. For instance, before mapping
a MySQL database appliance (PaaS) to a Amazon EC2
compute service (IaaS), one needs to consider whether
they are compatible in terms of virtualization format.
Another avenue that we would like to explore is how to
aggregate QoS configurations across the IaaS, PaaS, and
SaaS layers for different application deployment scenarios
(e.g., multimedia, eResearch, and enterprise applications).

REFERENCES

[1] D. Nurmi, R. Wolski, and C. Grzegorczyk. 2009, “The Eucalyptus
Open-source Cloud Computing System,” Proceedings of the 9th
IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGRID 2009), Shanghai, China, IEEE Computer
Society Press.

[2] M. Armbrust et al. 2010, “A view of Cloud Computing,”
Communications of the ACM Magazine, Vol. 53, No. 4, pp. 50-58,
, ACM Press.

[3] L. Wang, R. Ranjan, J. Chen, and B. Benatallah (editors). 2011,
“Cloud Computing: Methodology, Systems, and Applications,”

Edited Book, 844 Pages, CRC Press, Taylor and Francis Group,
Publication Date: October 03, 2011.

[4] Amazon Price Calculator,
http://calculator.s3.amazonaws.com/calc5.html, accessed on 22
June 2012.

[5] Windows Azure Calculator, http://www.windowsazure.com/en-
us/pricing/calculator/, accessed June 2012.

[6] Arkaitz Ruiz-Alvarez and Marty Humphrey. 2011, “An Automated
Approach to Cloud Storage Service Selection,” In Proceedings of
the 2nd international workshop on Scientific Cloud computing
(ScienceCloud '11), 10 pages, San Jose, California, ACM Press.

[7] Amazon EC2 Instance Types. Available:
http://aws.amazon.com/ec2/instance-types/,[ONLINE], Access
date: 26-09-12.

[8] G. Ozsoyoglu and A. Al-Hamdani, "Web Information Resource
Discovery: Past, Present, and Future," in Computer and
Information Sciences - ISCIS 2003. vol. 2869, A. Yazıcı and C.
Şener, Eds., ed: Springer Berlin Heidelberg, 2003, pp. 9-18.

[9] L. Youseff, et al., "Toward a Unified Ontology of Cloud
Computing," in Grid Computing Environments Workshop, 2008.
GCE '08, 2008, pp. 1-10.

[10] D.L. Martin, M. Paolucci, S.A. McIlraith, M.H. Burstein, D.V.
McDermott, D.L. McGuinness, B. Parsia, T.R. Payne, M. Sabou,
M. Solanki, N. Srinivasan, and K.P. Sycara, "Bringing Semantics
to Web Services: The OWL-S Approach", ;in Proc. SWSWPC,
2004, pp.26-42.

[11] L. M. Vaquero, et al., "A break in the clouds: towards a cloud
definition," SIGCOMM Comput. Commun. Rev., vol. 39, pp. 50-
55, 2008.

[12] W3C OWL Working Group. OWL 2 Web Ontology Language:
Document Overview. W3C Recommendation, 27 October 2009.
Available at http://www.w3.org/TR/owl2-overview/.

[13] J. de Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, U.
Keller, M. Kifer, B. König-Ries, J. Kopecky, R. Lara, H. Lausen,
E. Oren, A. Polleres, D. Roman, J. Scicluna, and M. Stollberg,
Web service modeling ontology (WSMO), W3C, Tech. Rep.,
2005.

[14] T. Eskridge, et al., "Formalizing the informal: A Confluence of
Concept Mapping and the Semantic Web," in 2nd Int. Conf. on
Concept Mapping, 2006, pp. 247-254.

[15] C. N. Hoefer and G. Karagiannis, "Taxonomy of cloud computing
services," in GLOBECOM Workshops (GC Wkshps), 2010 IEEE,
2010, pp. 1345-1350.

[16] G. Dobson, et al., "QoSOnt: a QoS ontology for service-centric
systems," in Software Engineering and Advanced Applications,
2005. 31st EUROMICRO Conference on, 2005, pp. 80-87.

