
Designing for Self-Configuration and

Self-Adaptation in the Internet of Things

Arjun P. Athreya, Bruce DeBruhl, and Patrick Tague

Carnegie Mellon University

Email: {arjuna, debruhl, tague}@cmu.edu

Abstract—The Internet of Things (IoT) paradigm comprises a
heterogenous mix of connected devices connected to the Internet.
This promises a a wealth of opportunity for a large collection of
distributed applications and services. However, the IoT introduces
significant changes to the Internet model, largely in the form of
billions to trillions of embedded devices that most likely will
not be able to be managed centrally by cloud services due to
lack of scalability. We suggest that the natural direction for
IoT devices is to manage themselves, both in terms of their
software/hardware configuration and their resource utilization.
In this work, we descibe the underlying framework for self-
managing devices, comprising measurement-based learning and
adaptation to changing system context and application demands.
In addition, we describe several upcoming research challenges in
order to realize this self-management vision.

Index Terms—Internet of Things; Self-management; Self-
adaptation; Agent-based systems

I. INTRODUCTION

The recent rise of the Internet of Things (IoT) paradigm

comprising a heterogenous mix of devices referred to as things

are connected to the internet. This paradigm has promised a

wealth of opportunity for a seemingly unending collection

of applications and services [1]. However, the IoT model

introduces a vast array of user-less, interface-less devices into

the Internet architecture, leaving these devices to either operate

under remote or cloud-based control or to manage themselves.

Due to the heterogeneity of devices – including sensors,

actuators, storage devices, utility monitoring devices, mobile

phones, network elements, and computers – and the sheer

number of devices that are being connected to the Internet

under the IoT umbrella, remote or cloud-based control appears

to be a daunting task destined to suffer from limited scalability.

Hence, the natural direction for IoT devices is to manage

themselves, both in terms of their software/hardware config-

uration and their resource utilization (energy, communication

bandwidth, medium access etc.). We call this capability of

device managing themselves as self-management. An example

deployment scenario for an IoT system is illustrated in Fig. 1.

In order for the various network components to operate and

interoperate effectively, devices must be able to coordinate

their management capabilities. However, the efforts taken by

one device to optimize its performance should not negatively

affect neighboring devices or services. Hence, a level of

collaboration between software components operating on a

device or across device platforms becomes a factor in resource-

limited IoT domains. Moreover, effective self-management of

Fig. 1: An example deployment scenario for in-home and extra-home
monitoring, analysis, and cloud service provision is illustrated in the
context of smart energy management, e.g., the Smart Grid.

IoT devices, resources, and services requires agile behaviors

in all aspects of device software and configuration. This

leads us to re-envision the software, hardware, and network

architectures used for IoT designs.

In this work, we first take a preliminary look at these

software, hardware, and network architectures involved in IoT

systems. We then summarize recent research results that can

be applied to IoT internetworking, and present significant

challenges and opportunities for IoT research in the near

future. We discuss these challenges by referring to a basic IoT

architecture that can be envisioned for the IoT. Our efforts in

this work are summarized in the following contributions.

• We present a generalized optimization framework that

allows software agents to manage and control protocol

parameters and behaviors.

• We describe various components of internetworked IoT

devices that can be adaptively reconfigured using mea-

surement, on-the-fly statistical analysis, and parameter

tuning.

• We highlight several aspects of the IoT system architec-

ture that must be re-evaluated to support the agent-based

adaptation capability.

The remainder of this paper is outlined as follows. We

discuss the inherent benefits of self-management and self-

configuration in IoT systems in Section II, and we discuss the

corresponding self-configurable IoT components in Section III.

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254091



Fig. 2: We demonstrate the idea of self-management in the context
of a fire sensor being deployed. The sensor boots up, connects to the
gateway device and establishes communications with an application
hosted in the cloud. It sends measurement data to the application at
a pre-configured rate and precision. However, the application could
monitor the local-environment and could request for the device to
alter its sending rate or precision in data. To this request, the fire
sensor responds through self-adaptation.

We propose a generalized IoT architecture to support self-

configuration and self-adaptation in Section IV. We discuss

significant research challenges in Section V and conclude with

a few notes on future work in Section VI.

II. SELF-MANAGEMENT IN THE IOT

The basic idea underlying self-management is that devices,

software, or services can configure, evaluate, and adaptively

reconfigure themselves in response to changes in performance,

resource availability, or external dynamics. In the context of

the IoT domain, this can entail reconfiguration of sensing

parameters, network utilization, spectrum allocation, data re-

porting, data and control signal protection, interaction with

cloud services, and a wide variety of software configuration

details. In what follows, we highlight the primary aspects

of self-configuration, measurement-based analytics, and self-

adaptation in general, describing the high level techniques that

enable these features and a coarse cost-benefit analysis of self-

management.

A. Self-Configuration

The act of self-configuration takes place either immediately

after deployment of new devices into a local IoT domain or

after significant changes are made that warrant a clean-slate

restart to the system configuration. Self-configuration primar-

ily consists of the actions of neighbor and service discovery,

network organization, and resource provisioning as shown

in Fig. 2. However, the ways in which these actions occur

for a particular device depend on the application or service

scenario, the system context, the role of the device in the IoT

domain, and the capabilities of the device. Since every device

is typically aware of its own roles and capabilities within the

system, the most important tasks of self-configuration are to

coordinate with other devices in the local IoT domain and

participate in network organization and resource provisioning.

B. Measurement-Based Self-Evaluation

Once the system is configured and operating, various perfor-

mance aspects of the system operation can be monitored, either

by the participating devices or by local network elements. As

we will describe in more detail in Section IV, we suggest that

each device be equipped with a software agent responsible

for measuring performance aspects locally, either by passively

observing the communication over the wireless medium or by

querying software running on the device for a variety of perfor-

mance metrics (e.g., packet data rate from a routing daemon).

At a high level, a particular protocol agent responsible for

evaluating and managing a single protocol can collect a set of

measurements φm, m = 1, . . . ,M , corresponding to relevant

observed events or a statistical summary of such events; more

concisely, the measurements can be abstractly represented by a

measurement vector φ. There are numerous observable events

and statistical representations that can be used to evaluate

and control each protocol, and each has different value to

different protocols of interest. For example, per-device or

per-link statistics about the queueing delay, received signal

strength, and packet drop ratio can be useful to the routing

protocol in selecting the most reliable routing path [2]. Any

such desirable performance characterisitics can be captured

by a suitable utilty function U(φ), which provides a target

objective function for optimizing the system on the fly.

C. Self-Adaptation Framework

The control parameters that can be tuned to optimize the

protocol utility U(φ) can be described as input parameters

πk, k = 1, . . . ,K , corresponding to a specification of the free

or tunable parameters for the protocol of interest, similarly

representable by a vector π. As with the measurement pa-

rameters φ, there are numerous output parameters that can

be evaluated for each protocol of interest. For example, the

transmission power used for each link in a routing path

can be tuned to achieve a desired tradeoff between resource

expenditure and the resulting reliability of the routing path. As

with any feedback system, there is a clear circular relationship

between φ and π, namely that protocol options π used for

communication influence the resulting observed statistics φ.

Hence, the goal of a device trying to optimize its performance

will estimate the mapping M : π 7→ φ and select options π

to maximize a utility function U(φ) that can also be expressed

as a function U(M(π)) of the design variable. However, this

optimization formulation is also constrained by various factors,

including resource availability, scheduling constraints, traffic

capacity, etc., so additional constraints may be enforced on the

selection of parameters π. In general, the set of constraints can

be represented by the vector inequality Γ(π) ≥ γ, where γ

is a vector of constants. The optimal protocol configuration is

thus given by the solution

π∗ = argmax
π

U(M(π)) s.t. Γ(π) ≥ γ. (1)

We refer to this formulation as being context-aware since the

utility function U(·) depends on the context of the communi-



cation scenario and the constraints capture the broader context

of the networked system.

In a realistic scenario, there are a number of practical

aspects of this problem formulation that must be taken into

account, some of which present significant challenges. First,

due to network and resource dynamics, the system mapping

M, constraint function Γ, and constant γ may vary in time.

Hence, instead of a one-shot optimization problem that can be

solved once during network initialization or pre-configuration,

each protocol agent may continually update the parameters of

its communication protocols. At a time instant t, each protocol

agent must repeat the optimization problem of solving

π∗

t = argmax
π

U(Mt(π)) s.t. Γt(π) ≥ γt. (2)

Second, in a real network, the true values of the mapping

M, constraint function Γ, and constant γ will be unknown to

the device. This uncertainty thus requires the use of statistical

techniques to provide a reasonable estimate for each unknown

parameter and additional mechanisms to compensate for the

uncertainty in the statistical estimate. Hence, statistical esti-

mates M̂, Γ̂, and γ̂ and the corresponding uncertainty function

η can be incorporated as

π∗

t = argmax
π∈Π

U
(
M̂t(π)

)
− ηt(π) s.t. Γ̂t(π) ≥ γ̂t. (3)

We believe that the constant learning and continual optimiza-

tion procedures suffice to capture the near-real-time capabil-

ities necessary to provide context-aware communication. In

order to achieve these capabilities, however, several practical

implications must be addressed in the repeated optimization

formulation in (3). First, in order to set up the optimization

in the first place, the device must be able to gather enough

information through observation or measurement to construct

an estimate of each unknown parameter and the corresponding

uncertainty. Second, since the optimization procedure is re-

peated continually, the time required for parameter estimation

and computation of the optimal parameter set π should be

less than the (expected) interval ∆t between adaptation steps.

Third, the adaptation interval should be quick enough to

provide timely parameter estimates, as network dynamics may

cause estimates to become stale. Thus stale data means that the

context under which the device reported the data would have

also changed. With these considerations in place, an important

aspect of our investigation is the tradeoff between accuracy of

optimal solution and speed of heuristic selection.

III. SELF-MANAGING IOT COMPONENTS

Given the high level framework for self-management in IoT

systems, we next turn our attention to describing some of

the individual components of the IoT that can take advantage

of the self-management capability. In order to discuss these

components, we first describe a basic network model for

the IoT. Then we describe how applications, communication

and networking protocols, and security considerations can be

incorporated as components into a self-managing IoT system.

A. Network Model

Our network model comprises three components, namely

local environments, gateway devices and cloud services. Local

environments constitutes a physical area with devices deployed

that are communicating with a service through the internet.

Gateway devices are those which can act as an interface

between other devices of the local environment and the

internet. Cloud services are software services hosted in the

internet by third parties that communicate with devices in local

environments and make meaningful representations of the data

collected. In Fig. 1, we demonstrate this network model where

the local environment is a home comprising of various devices

such as sensors, controllers and the smart-meter. These devices

connect to the internet via a gateway device such as a IEEE

802.11 router. These devices then connected to a service

such as an energy monitoring application hosted by an utility

provider. Thus the application can query these devices for data,

which can then be used to let application subscribers know

of their energy consumption and recommendations for saving

energy based on historical consumption data.

B. Application

Applications in the IoT query various devices in local

environments and project them on user interfaces that users can

interact with. We discuss the various instances the application

demands certain features in the IoT architecture.

1) Context-aware Adaptation: Several applications of the

IoT are expected to query data from critical infrastructures or

monitoring critical situations. Examples of these are bridges,

power plants, hospitals and patients in intensive care. In all

these examples, events could occur any time and could be

critical [3]. These events to name a few could be natural

disasters or abnormal changes in vital parameters. During these

events, applications monitoring them would want to obtain a

constant stream of data from these devices. This would aid

in deploying immediate responses and also create awareness

among neighboring environments of this critical event. Thus

the constant stream of data from these devices means that com-

munication resources need to be made available on-demand

and has to be sustained till the event is over or the application

ceases to need constant stream of data.

Thus making communication resources available on-

demand could mean that rate-adaptation has to be done for

other devices in the local environment. Alternatively, op-

portunistic communications that use radio resource diversity

could also be used during these events [4]. In either of these

approaches, network self-configuration to meet these demands

of the application has to be done in a quick and reliable

way. Therefore local awareness of the resource availability in

the IoT is key to this process of network self-configuration.

Thus this means that diversity in communication capabilities of

devices and gateways in local environments benefit the appli-

cation’s demands during extreme events in local environments.

2) Re-programmable Interfaces: The IoT applications are

expected to evolve based on the value the data creates. For

example, an indoor weather monitoring application currently



monitoring temperature, now needs to report humidity and air

pressure data. Though the sensors on board could generate

and send those data individually, the application might need

it in certain formats that enables efficient processing in the

back-end infrastructure such as the cloud. These message

formats are dependent on how the device is programmed in

the operating system. Thus any change to the format means

that software code has to be changed and the code needs

to be pushed down to these devices and reprogrammed on

the fly. Re-programmable devices today are common, such

as FireFly [5] and Electric-Imp [6]. Making this possible is

also the availability of light-weight operating systems. Such

operating systems enable programmers to change formats for

data packets and even allow for simple pre-processing of data

before being transmitted [7]. Therefore application program-

ming interface (API) for such devices and computing platforms

are needed along with the network bandwidth that allows for

software code to quickly propagate to the devices in local

environments. Here, we are not referring to a dozen devices,

but such devices could be in thousands if the environments

are large. Therefore scale and latency have to be addressed

with efficient and reliable networks, while APIs allow for re-

programmability of devices.

3) Energy-aware computing: Like any other man-made

infrastructure, the IoT is also prone to device and network

failures. Networks within local environments are expected to

be hierarchical. Devices acting as parents to child devices

in the hierarchical network aggregate and forward data to

their parents which eventually reach the root device of the

hierarchical network. Device and link failures in such networks

means that data that was being forwarded in the region

of failure will be lost and network connectivity could be

disrupted. Additionally, if energy powered devices rely on

battery to support their functioning, then energy-awareness

among devices is very important.

Energy consumption of devices can be measured for all

kinds of operations and the device can be trained to predict

its energy costs for participating in network self-organization

and other computing operations. Network self-organization

aims at reconnecting devices when provision communications

fail [8]. In our proposed architecture, devices which are aware

of energy costs for any kind of operations (as a function of

machine cycles or bytes of data for communication), they can

vote to participate in specific functions requested by the IoT

applications. This allows for improving network longevity and

builds resilience into the system. It remains an open question if

energy-awareness affects the application’s performance due to

restrictions posed by devices for their self-interests. Therefore

game theoretic approaches that maximize the utility of the

local environment’s devices without totally compromising the

device’s interests would be one approach to solve this problem.

C. Communication and Networks

If the physical (PHY) and multiple access (MAC) layer will

meet all our future needs they will look markedly different.

Currently most networks are designed around single protocols

at both the physical and MAC layers allowing for limited

freedom. Likewise, these layers provide little or no feedback

to the upper layers and are generally agnostic to application

needs. This lack of cross-layer and application awareness

at the lower layers severely limits the effectiveness of IoT

networking. Current physical and MAC protocols also adapt

in very limited ways to the complex and rich multi-node en-

vironment. Examples of current adaptation are limited to rate

and modulation adaptation based purely on self-performance.

Given these limitations we propose a change in the design

paradigm to better allow for self-manageable IoT networks.

We propose that the future of the IoT will take advantage of

intelligent and opportunistic MAC and PHY layers by being

aware of context from surrounding nodes. By context aware we

propose that a node can assess the surrounding environment

and use the assessment to best accomplish its current goals in a

similar manner to cognitive radio networks [4]. This is a useful

modification to the current radio architecture because it allows

for nodes to more intelligently use and reserve resources.

To allow for local context awareness we anticipate the use

of flexible multi-radio and multi-band system systems that

allow that allow for data for most applications to be sent in

a plethora of ways. It is important to be able to send data in

a multitude of ways to increase robustness, create diversity,

and allow for coexistence in a crowded network. The use of

multiple-bands allows for nodes to communicate in a more

diverse way as well as allows for increases in security by

improving interference avoidance. Similarly, having multiple

radio protocols allow for adjustments based on the available

bandwidth. To effectively use multi-radio, multi-band, multi-

modulation transceivers we must design intelligent ways to

assess the spectrum for usability and techniques for consensus

spectrum management across many nodes.

Not only should the future IoT be aware of information from

lower layers but it should also consider upper layer demands

in determining its physical and MAC usage. For example, a

video application that wants a constant rate of communication

can be much better served by a contention-free medium access

scheme (such as Time Division Multiple Access) at the PHY

layer while a time impervious data application may be better

served by getting continuous access to the channel. Because

of this we propose that applications and networking protocols

be allowed to request resources in the lower layers. This

allows for the communications to occur in such a way that

is best for a particular application. Given these advancements

in communications a device must still provide interoperabiilty

with legacy systems. To do this, radio protocols must be able

to revert from intelligent adaptation and scanning and allow

for legacy communications.

D. Security

With the devices in the IoT being envisioned to support

a wide range of applications, sensitive data and commands

are expected to flow to and from these devices through the

network. This opens a Pandora’s Box for all kinds of security



problems in a self-configuring architecture for the IoT. The

reasons for this are multi-fold.

The heterogeneity in the devices does not always guarantee

support for all possible security features. It could be either

limited in hardware or software capabilities to support only a

subset of them. For example, sensor platforms could perform

simple symmetric cryptographic computations such as the

RC4, AES or DES. But they might not have the capability

to support public-key cryptographic operations such as digital

signatures even if there exists a key infrastructure for the IoT.

Authentication of remote commands from the application

service or other devices in the IoT is a challenging problem.

Authentication either in the form for a Message Authentication

Code (MAC) or a digital signature requires pairwise shared

symmetric keys or keying infrastructure in place respectively.

Metrics are needed to evaluate the different levels of security

needed to authenticate the remote control commands for

devices in the IoT. These metrics will also help develop the

necessary keying infrastructures for the desired security levels.

Otherwise, external attackers can issue commands to devices

that could alter the operations or goals of the interactions

between devices in the IoT.

A root of trust has to be defined for the IoT to ensure

that self-reconfiguration commands, software and firmware

updates can be validated. Today, plenty of micro-controller

based devices allow for code to be pushed to the hardware

through the internet or be programmed via the cloud. An

example of such a platform is the Electric Imp [6]. The root

of trust in the IoT could be the application service hosting

entities, hardware vendors, software vendors or these cloud

based services. Thus the gateway of the local environment has

to have a list of trusted entities whose commands or updates

can be trusted and be allowed to interact with other devices

in the local environment.

An important security property of a self-configurable ar-

chitecture is the verfiability of code on the devices in the

IoT. Applications can verify that their code was downloaded

and installed correctly at the time of installation. However

the device could have downloaded malicious code later that

affects the functioning of trusted code [9]. Side channels,

binary exploits and other attacks we have seen in software

systems are still applicable to devices in the IoT. Hence, the

applications in the IoT should be able to remotely verify code

running on devices. If existing solutions for securing software

systems that use Trusted Platform Modules and Platform

Configuration Register extension mechanisms suffice the IoT’s

code verifiability needs is an open question.

As several applications could be querying the device for the

same or different data, isolation of the application memory

space and access controls on devices is needed. This ensures

that though multiple applications access the same space, they

cannot modify or read data that they are not supposed to.

This also helps in preserving privacy of the data from a user’s

perspective.

IV. ARCHITECTURAL SUPPORT FOR IOT

SELF-ADAPTATION

Give the optimization framework and the examples of

components that can take advantage of the self-management

capability, we next turn out attention to the architectural needs

to support self-managing or self-adapting IoT components.

A. Collaboration and Competition Considerations

In the above formulation, each adapting protocol agent

continually solves an optimization problem relating its pa-

rameter choices to a utility function for the protocol of

interest. In a real system, parameter choices by an agent i

will affect the performance observed by a neighboring agent

j, and vice versa. Hence, the optimization problems solved

by neighboring agents i and j are coupled. If i and j are

“team players”, they may be interested in making choices

that are mutually beneficial, or at least not disruptive to each

other. Hence, instead of each agent simply maximizing its own

utility U (i)(π(i)), the team of cooperating agents may instead

choose to maximize a global utility U({π(i), i ∈ I}) using

concepts such as proportional fairness [10]. Alternatively, if i

and j are opponents on neighboring devices, they may not

be interested in achieving a global utility. For example, if

j is mounting a denial of service attack against i, then i

may try to directly maximize its own utility while j may

try to indirectly minimize i’s utility, both subject to their

own constraints. Even without knowing a priori whether

the situation is cooperative, competitive, or adversarial, the

process of learning the mapping M and system context will

allow each agent to act accordingly. Moreover, if cooperating

agents are allowed and able to exchange information about

their differing contexts, a larger-scale distributed optimization

problem can be solved by a higher-level coordinating agent,

for example using the concept of network utility maximization

(NUM) [11].

In addition to the cooperative/competitive aspects of the

formulation, we must consider various cross-layer aspects of

protocol adaptation, as some parameter choices have opposite

effects on performance characteristics at different layers of the

protocol stack. For example, increasing transmission power

over a wireless link can improve the reliability or data rate

of the link, but this increase power will lead to increased

contention and longer forwarding delays over a larger neigh-

borhood. Hence, even within a single device, various metrics

and competing utility functions must be considered.

To address the problem of balancing utility across protocol

layers and across devices, we propose the use of an analysis

and control agent on each device that is reponsible for coordi-

nating the individual protocol agent operations on the device.

The analysis and control agent (ACA) is thus responsible for

the entire process of measurement, inference, and optimization

with respect to the entire network stack and using information

and feedback from neighboring devices. This ACA will be

made available to the various protocols running on the device

through a common, open interface that can pull performance

information from the network stack and push parameter values



Fig. 3: We propose to modify the network protocol stack by replacing
the collection of layers with an interactive collection of protocol
agents and an overseeing analysis and control agent. Individual
protocol agents can act using their own observations, possibly in
coordination with other agents and the primary control agent. Existing
protocols can be incorporated by instrumenting them with suitable
data logging and reporting via interfaces to other agents.

into corresponding protocol agents and configuration files. The

coordination between the individual protocol agents with the

ACA allows the individual protocols to operate transparently

while still getting the benefits of the context-aware adaptation

capability. ACAs on neighboring devices can use in-band or

out-of-band communication to coordinate their decisions, or

each agent can rely on measurement and inference to learn

and respond accordingly. The resulting agent-based adaptive

protocol architecture is illustrated in Fig. 3.

B. Agent Measurements and Context Inference

In the previous sections, we have provided the groundwork

for distributed, context-aware adaptation of protocol param-

eters across layers of the network stack using coordinated

protocol agents. However, the optimization framework pro-

vided in Section II relies on the ability to learn the system

context through measurement. In what follows, we describe

our efforts toward efficient and accurate methods to enable

context inference. As with the optimization framework, we

present the statistical inference capability in general, noting

that it can be applied for both offensive, defensive, cooperative,

or competitive purposes.

We propose a statistical inference model in which each

protocol agent makes observations φ about their own effect on

the system as well as the previous actions that collaborating

or opposing agents have made. Each agent i in our model

observes samples of the individual utility function U (i)(·) as

a function of its input parameters π(i) and the inputs of other

agents. Each agent then uses these observations to construct

an estimate Û (i)(π(i)) of the utility function. We refer to the

collective information about utility functions and parameter

history as the agent’s knowledge, such that the more knowl-

edge an agent has, the more likely it is to obtain an accurate

estimate of the system context to optimize protocol parameters.

However, whenever the system context changes, for example

when an agent changes their parameters or objective function,

knowledge becomes stale and can actually be detrimental and

lead to sub-optimal parameter choices. Hence, each agent must

continually update its knowledge by forgetting events of the

distant past and continually updating its knowledge of system

context.

In our preliminary work on this topic, we have identified

two candidate approaches for measurement-based inference

and context learning; we refer to these approaches as weighted

observation and universal approximation [12]. The two formu-

lations have different features in terms of computation time

and accuracy, and evaluating these features will be part of the

proposed task.

We first introduce the weighted observation approach which

uses samples of the utility function to construct a weighted

preference for different candidate parameters to construct a

solution with better-than-average utility over time than that of

a random parameter selection. In weighted observation, agent

i constructs a vector ui with each entry indicating the utility

of the corresponding candidate parameter set π(i). Using the

utility vector ui, agent i then computes a weighting vector ωi

by transforming and normalizing ui as

ωi =
eκui

‖eκui‖
, (4)

where κ is a scaling constant to indicate the preference for

choosing candidate solutions with higher estimated utility. The

weighting vector ωi is thus used as a probability distribution

for choosing protocol parameters π(i), similar to the game

theoretic concept of a mixed strategy [13]. After each param-

eter choice and action that agent i makes, it can then observe

the resulting system utility uobs,i corresponding to the play

and update its utility estimate ui accordingly. One possible

method for this update is to fuse the observed utility with the

previous estimate by simply replacing ui as

ui ← λui + βuobs,i, (5)

where β, λ ≥ 0 determine the balance between memory of

historical knowledge and preference for recent events. We note

that a relatively smaller λ value means historical knowledge

is forgotten more quickly and a relatively larger β value

gives preference to recent events but may also introduce high

variance in the utility estimate due to changes in the system.

The updated utility estimate ui is then used to compute

the weighting vector ωi using (4), and the process repeats

continually in near real time. We note that the weighted

observation process has low complexity and can be tuned to

quickly adjust the agents’ knowledge when system dynamics

are fast, providing the computation speed needed in near-real-

time scenarios.

We next introduce the universal approximator approach

based on biologically-inspired neural networks [14] to esti-

mate the utility function Û (i)(π(i)) based on observed utility

samples ui by training the neural network model. The neural

network is trained by selecting a set of τ random parameter

values πi, measuring the resulting utility ui for each parameter

πi, and setting neural activation functions using a universal



neural network approximator. Once the neural network is

trained, it provides a static estimate of the utility function that

can be used for an appropriate duration. However, when the

system is dynamic, the neural network must be continually re-

trained to compensate for changes to the system context, so

a periodic or random reset is required, similar to the previous

process of forgetting knowledge, though less gradual. The

value of the universal approximation technique thus relies on

the relationship between the number of training samples τ and

the rate of system dynamics, meaning it is likely more valuable

for cases with slow dynamics.

In both of the above cases, extensions to an arbitrary

number of agents and protocol levels can be incorporated

into the statistical inference models, through the parameter

space dimensionality quickly becomes problematic, so further

investigation of these and other statistical techniques is needed.

V. CHALLENGES FOR SELF-CONFIGURABLE IOT SYSTEMS

There are several significant research challenges between

the current state-of-the-art and a realization of our agent-based

self-management approach for on-the-fly tuning of protocol

parameters in IoT devices. These span across almost every

layer of the architecture we have described. In what follows,

we highlight a few of these research challenges which com-

prise future work on the topic before a large-scale deployment.

Development of Suitable Metrics: As with any modern

problem in networking, security, or system optimization, a lot

of the effort boils down to designing the right metrics. In our

framework, we abstract the idea of specific metrics and address

only a generic utility function U . While this utility function

could simply incorporate standard performance metrics such as

spectrum/bandwidth utilization, energy consumption, network

throughput, or latency, many modern applications have very

different types of demand that are not effectively captured by

these classic metrics. For example, in a distributed sensing

application, the data rates are very low, moderate latencies

can be tolerated, and some data can be lost entirely due to

temporal and spatial correlation in the sensor data streams.

Hence, identifying the most suitable metric for a particular

IoT system context remains a challenging problem.

Coordinated Contextual Intelligence: Even with our pro-

posed statistical analysis techniques to provide context estima-

tion and on-the-fly optimization of free protocol parameters,

we have not addressed the issue of coordinating the opti-

mization steps among agents or across devices. As previously

described, parameter changes that can be highly valuable to

one protocol can be highly detrimental to another protocol.

The previously described example of power control (higher

power providing more routing opportunity but increasing con-

tention at the MAC layer) illustrates the potential conflicts or

trade-offs that exist, even on the same device. Fundamental to

any agent-based system, we need to address this coordination

issue among agents. Most likely, this will come down to

identification of a number of trade-offs that can possibly be

controlled on-the-fly along with protocol parameters. Even if

all devices are trusted or amiable this is a difficult resource

allocation problem, but if any devices are malicious or greedy,

this becomes a very difficult problem which needs novel

solutions.

Energy Awareness: Energy-aware computing is essential to

the IoT. With the scale of deployment envisioned, every unit

of energy saved is paramount to the entire IoT being green

as a system. Also, energy-awareness during times of failure

helps improve longevity and support critical applications when

they are needed the most. Thus, how energy calibration and

energy models across the heterogeneous system of the IoT will

need new algorithms and inter-device interaction protocols that

considers energy as a constraint.

Incentives for Self-Management: Although not addressed

explicitly in this paper, we have considered the problem of

self-management from the economic perspectives of many

of the parties involved in the IoT. For users, IoT self-

management translates to increase service quality and cost

savings, primarily through reduced resource consumption of

in-home devices and increased overall performance and system

utilization. Similarly for businesses, increased service quality

and cost savings can be realized because of the increased

overall performance and resource cost reduction. For network

providers, increased system utilization means more service

can be provided for the same unit of bandwidth or resource

utilization, effectively translating to more revenue per unit

investment. It remains an open challenge, however, to push

these benefits to the point that they’re worth the initial R&D

investment required to develop the systems with the correct

contextual intelligence to bring maximum value.

Resilience to Failures, Outages, and Attacks: While we

have done some initial work on improving failure- and outage-

resilience in IoT and Smart Grid systems [15], [16], [8],

there is still a long way to go to make IoT systems truly

resilient. Our intial work has proposed network mechanisms

to re-organize the network after failure or outage events, but

there are some limitations of our approaches and there are

several trade-offs involved in our designs. The issue of failure-

tolerance and attack resilience in self-managing IoT systems

remains open.

Application Integration: Even with a deeply integrated

self-management architecture for the IoT, there is no value

if the applications are not designed to take advantage of

the architecture. Hence, development of our self-managing

systems requires application and service developers to use the

set of APIs that we create, otherwise many of the benefits will

be lost. Making context-aware networking usable is a major

challenge. Designing usable and secure APIs that allow for fair

and understandable use of such a system is a major problem.

Work must be done to make the application framework and

APIs usable, including aspects of how how the device’s OS

can confirm application requests, how a network of devices can

verify the request, and how to provide this across a physical

medium.



VI. CONCLUSION

In response to the emerging Internet of Things paradigm

comprising a heterogenous mix of connected devices and

numerous distributed application and services running over

wireless networks of embedded devices, we have proposed

the use of self-management and self-adaptation to cope with

countless dynamics. We have presented an underlying frame-

work for self-managing devices, comprising measurement-

based learning and adaptation to changing system context

and application demands. In addition, we described several

upcoming research challenges in order to realize this self-

management vision that comprise our future work on the

topic.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] R. Draves, J. Padhye, and B. Zill, “Comparison of routing metrics
for static multi-hop wireless networks,” in Proceedings of the 2004

conference on Applications, technologies, architectures, and protocols

for computer communications, ser. SIGCOMM ’04, 2004, pp. 133–144.
[3] K. Lorincz, D. Malan, T. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnay-

der, G. Mainland, M. Welsh, and S. Moulton, “Sensor networks for
emergency response: challenges and opportunities,” Pervasive Comput-

ing, IEEE, pp. 16–23, 2004.
[4] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next

generation/dynamic spectrum access/cognitive radio wireless networks:
A survey,” Computer Networks, vol. 50, no. 13, pp. 2127–2159, 2006.

[5] R. Mangharam, A. Rowe, and R. Rajkumar, “FireFly: a cross-layer
platform for real-time embedded wireless networks,” Real-Time Systems,
vol. 37, pp. 183–231, 2007.

[6] “Electric Imp,” http://www.electricimp.com.
[7] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-RK: an energy-aware

resource-centric RTOS for sensor networks,” in 26th IEEE International

Real-Time Systems Symposium (RTSS), Dec. 2005.
[8] A. P. Athreya and P. Tague, “Network self-organization in the inter-

net of things,” in IEEE International Workshop on Internet-of-Things

Networking and Control (IoT-NC), to appear.
[9] B. Parno, J. M. McCune, and A. Perrig, “Bootstrapping trust in com-

modity computers,” in Proceedings of the 2010 IEEE Symposium on

Security and Privacy, ser. SP ’10. IEEE Computer Society, 2010, pp.
414–429.

[10] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for
communication networks: Shadow prices, proportional fairness and
stability,” Journal of the Operational Research Society, vol. 49, no. 3,
pp. 237–252, Mar. 1998.

[11] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in

Communications, vol. 24, no. 8, pp. 1439–1451, Aug. 2006.
[12] B. DeBruhl and P. Tague, “Living with boisterous neighbors: Studying

the interaction of adaptive jamming and anti-jamming,” in 3rd Interna-

tional Workshop on Data Security and Privacy in Wireless Networks

(D-SPAN), Jun. 2012.
[13] M. J. Osborne and A. Rubenstein, A Course in Game Theory. MIT

Press, 1994.
[14] G. Huang, Q. Zhu, and C. Siew, “Extreme learning machine: Theory

and applications,” Neurocomputing, vol. 70, Dec. 2006.
[15] A. P. Athreya and P. Tague, “Survivable smart grid communication:

Smart-meters meshes to the rescue,” in 2012 International Conference on

Computing, Networking and Communications (ICNC), Jan./Feb. 2012,
pp. 104–110.

[16] ——, “Self-organization of a mesh hierarchy for smart grid monitoring
in outage scenarios,” in Proceedings of the 4th IEEE PES International

Conference on Innovative Smart Grid Technologies, 2013.


