
Browser-Based Collaborative Modeling
in Near Real-Time

Petru Nicolaescu, Michael Derntl and Ralf Klamma
RWTH Aachen University, Advanced Community Information Systems (ACIS)

Informatik 5, Ahornstr. 55, 52056 Aachen, Germany
Email: {nicolaescu, derntl, klamma}@dbis.rwth-aachen.de

Abstract—Collaboration on digital products—for instance in
science, design or production—is typically being practiced using
cumbersome means like sending document drafts back and forth
among collaborators. Recent advances in Web technologies allow
collaborators to synchronously edit artifacts. From an engineering
perspective, adding (near) real-time, multi-user collaboration to
single-user applications is a challenging task as it requires the
implementation of features such as conflict resolution as well
as propagation and visualization of updates in near real-time.
In this paper, we present SyncLD, a collaborative system that
was built for a community of practice on ‘learning design’ to
support Web-based, synchronous collaborative editing of learning
design models. The system was built on widget technology and
implements propagation of edits using inter-widget communica-
tion based on the Extensible Messaging and Presence Protocol
(XMPP) as well as synchronization of edits using Operational
Transformation algorithms. A system evaluation shows that the
near real-time collaboration features work as intended, and an
end-user evaluation demonstrates the usefulness and usability
perceived by practitioners. The core near real-time features are
bundled in an open-source library that can be reused for building
applications for similar use cases, hopefully propelling the future
availability and adoption of near real-time collaboration as a
standard feature in Web applications.

Keywords—Near Real-Time Collaboration, Operational Trans-
formation, IMS Learning Design, XMPP, Web Applications.

I. INTRODUCTION

Recent advances in Web technology have a massive con-
tribution in enabling collaboration on the Web. Protocols such
as Real-time Transport Protocol (RTP)1, Extensible Messaging
and Presence Protocol (XMPP)2 or the Web-based Real-time
Communication (Web RTC)3 propel the adoption of near real-
time (NRT) collaboration in a variety of domains such as edu-
cation, medicine, transport, gaming, to name a few. Remote or
on-site collaborators can achieve better results with less effort
and a higher productivity by means of computer supported
collaboration. Moreover, NRT collaboration systems revolu-
tionized team work and eased the large-scale adoption of such
systems, e.g. Google Drive4 or CoWord [1]. These systems
profited from new possibilities offered by new communication
protocols and from the usage of Operational Transformation
(OT) [2] techniques for conflict resolution in shared editing,
an active research area for more than two decades now.

1http://tools.ietf.org/html/rfc3550
2http://xmpp.org/
3http://www.webrtc.org/
4https://drive.google.com

With the paradigm shift from desktop applications to
Web-based and mobile systems, research and development on
supporting collaboration in this rather new setting is in an early
phase. Virtual communities of practice, formed by groups of
people who share common interests and interact regularly in
order to improve their shared practice [3] represent a good
example of environments which can greatly benefit from NRT
collaboration beyond Google Docs.

In some communities, such collaboration practices may be
very common (e.g. among scientists), while other communities
that also rely strongly on collaboration struggle with the
adoption of collaboration technology. Learning designers are
an example of a community that has shown great resistance to
tool support [4] using modern Web technology although the
creation of learning design models is typically a collaborative
process involving teachers, students, instructional designers,
education managers, and other stakeholders. Past research [5],
[6] found that teachers or instructional designers rely on inter-
actions with each other such as discussions and brainstorming
as a main means to develop and decide instructional strategies.

One active area of research on such learning design
processes concerns the authoring of formal models that are
expressed in a machine readable way and can be reused
across different virtual learning environments. The only com-
prehensive formal specification for learning design that is
currently available is IMS Learning Design (IMS LD) [7].
While browser-based authoring tools for IMS LD (e.g. Web-
Collage [8]) and desktop apps that allow import and export of
the models exist (e.g. Reload [9]), there are currently no tools
available for NRT collaboration on learning design models.
In this paper, we therefore address the usage of distributed
client-side NRT collaboration for creating IMS LD conformant
learning design models. We achieve a lightweight, reusable
and non-obtrusive solution for enabling NRT collaboration
through a widget-based Web application. The solution is based
on open source projects, namely on the ROLE SDK5 for
the NRT collaboration components and the provided widget-
hosting environment and on the Javascript OT engine adopted
from the OpenCoweb project [10] for management of conflicts
during concurrent editing.

The rest of the paper is structured as follows. The next
Section contains a review of related research and existing
software systems in the areas of NRT collaboration, shared
editing and IMS LD authoring. Section III describes the
conceptual approach and design considerations behind the

5http://sourceforge.net/projects/role-project/files/role-m10-sdk/

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254111



SyncLD prototype, while the implementation details are pre-
sented in Section IV. Section V presents an end-user evaluation
and a technical evaluation of SyncLD, respectively. Finally,
Section VI wraps the paper up by presenting the main contribu-
tions and providing an overview of current work on extending
the approach.

II. RELATED WORK

A. Near Real-Time Collaborative Editing

NRT collaborative editing (CE) systems are applications
that allow multiple users to work together to simultaneously
produce a shared output using a set of defined operations from
multiple sites connected by communication networks [2], [11].
A considerable number of previous studies deal with solving
conflicts in CE settings. Coined during 1980s, well known
techniques for concurrency control [11], [12] include locking,
transactions, single active participation (participation is de-
cided based on a token), dependency detection (based on times-
tamps for conflict detection), reversible execution, OT [13],
differential synchronization (client-server asynchronous ap-
proach) [14], and three-way merge (client-server approach,
used in classic versioning systems).

Consistency control is one of the major requirements when
developing a system for NRT multi-user collaboration, i.e
whenever team members work on a single document, all copies
of the document have to be identical at all sites after executing
a set of generated operations in a deterministic order. Extensive
research has been conducted in the past on developing a
consistency model for CE systems. Studies reported in [1], [2],
[11] outline three consistency requirements that have to be met
by any groupware editing system: Convergence, Causality-
preservation and Intention-preservation (CCI). Convergence
implies that upon concurrent changes coming from several
users, a shared document will have the same content after all
the changes have been applied. Causality-preservation refers
to the order of performed operations, which has to respect the
cause-effect principles (e.g. ensure the same order for changes
generated at different time points). Finally, the intention preser-
vation implies that the intention of an operation is still valid
after its execution.

Besides data integrity, another important requirement of
NRT CE systems is a high responsiveness [11]. As a practice
for achieving a better performance whenever a user generates
an operation, it should be immediately executed at the local
site. This has the advantage of giving the user the feeling of
working in a single-user application.

Operational Transformation (OT) [2] is a technique which
allows collaborative editing for multiple users without im-
posing restrictions such as locking. It has been used in ap-
plications like Google Wave, now an Apache project6 and
Google Docs 7. An OT system contains two major components:
OT control algorithms and OT transformation functions. The
former determine which operations have to be transformed
against others according to their concurrency/context relations.
The latter determine how to transform a pair of operations
according to their type, position and other parameters. The

6http://incubator.apache.org/wave/
7https://drive.google.com

responsibilities between these two components are defined by
a set of transformation properties and conditions.

B. Architectures and Tools for Collaborative Editing

From an engineering view, there are three types of CE
system architectures: client-server, peer-to-peer (or replicated)
and hybrid.

In a centralized architecture [15] clients connect to a server
in a collaboration session. All changes done on the client
machines are sent to the server, which ensures that all other
clients can get the newest state. For a shared document editing,
the central server is responsible for managing the concurrent
updates coming from the participants, for storing the document
and for maintaining its consistency. Each participant (client)
either holds a synchronized copy (thick client) or a view of
the main document (thin client). Such an architecture may also
have a number of drawbacks such as low responsiveness, single
point of failure, high bandwidth requirements and the like.

In a peer-to-peer (or replicated) architecture each partic-
ipant holds a replica of the shared data and is responsible
for processing all the changes to the replica that it holds.
The changes are first applied locally and then broadcast to
the other participants, without the need for a central server
for integrity management. Each site acts as both a client
that interfaces with the user and a server that manages the
actual collaboration. The replicated architecture has several
advantages—e.g., faster response to the user input as the local
site is updated immediately before the changes are sent and
applied at the remote sites, and it avoids the central server as a
single point of failure. Among the disadvantages of a replicated
architecture are that it increases storage requirements at the
client side, and it requires each client to manage the various
aspects of the collaboration, such as consistency management.

There are several existing NRT CE systems available. For
example, one of the first attempts, GRoup Outline Viewing
Editor (GROVE), pioneered by Ellis and Gibbs [16], was a
collaborative text editing system. Among more recent tech-
niques, GoogleWave (now taken over by the Apache Wave
project [17]) started as Google’s attempt to create an integrated
messaging system allowing NRT sharing of messages between
selective groups of people. It is based on NRT simultaneous
editing of documents via an OT mechanism. Several further
developer support libraries for shared editing on the Web are
presented in the work of Koren et al. [18].

The OpenCoweb project [10] offers an open-source frame-
work for concurrent NRT interactions between multiple users
and external data sources. OpenCoweb implements client-
side OT algorithms in Javascript and thus provides cross-
browser collaboration support. The framework also contains
a Javascript API for framework-specific event handling and
server-side components developed in various technologies (e.g.
Java and Python). In our implementation, we make use of
the self-contained Javascript OT engine adopted from the
OpenCoweb project 8, which we modify to suit a pure client-
to-client communication setting built on top of the ROLE SDK.

8https://github.com/opencoweb/coweb-jsoe



C. IMS Learning Design – Specification and Tools

IMS Learning Design (LD) [7] is a specification used to
formally describe the learning design of a unit of learning [19],
[20], which we refer to in this paper as the learning design
model. A learning design model is a description of any
teaching-learning process and can, for instance, be the model
of a course, a seminar unit, or a self-study unit.

Design-time vs. run-time. IMS LD differentiates between
the design-time, when the learning design models are being
authored, and the run-time, when these models are instantiated
and executed. This enables the transfer of designs between
different learning design authoring tools and the reuse of
designs and materials in any IMS LD compliant run-time
engines [21] such as CopperCore9. There are three implemen-
tation levels defined for IMS LD, with level A being the basic
and most important one, since it offers the core concepts such
as roles, activities, activity structures, and other concepts that
are needed to describe a process. Levels B and C add additional
concepts to describe more complex models. For the scope
of this work we have focused on IMS LD level A in order
to demonstrate the use of collaborative NRT LD authoring.
Of course, our prototype can easily be extended to support
authoring of levels B and C, respectively, without requiring
modifications to our underlying CE engine.

Packaging. IMS LD makes use of, or is extensible with
other specifications. One of them is IMS Content Packaging
(CP) [7], [22], which is used to package and describe a learning
design model in a way that is transferable between different
IMS LD systems. The packages contain an XML manifest
file named “imsmanifest”. This manifest file can be seen as
the entry point to the package, which describes the other
resources in the package (e.g. text files, binary files, etc.) and
also contains an IMS LD representation of the learning design
that uses those resources.

Level A Metamodel. To give an impression of the structure of
the IMS LD metamodel which is supported by SyncLD, the
conceptual model of IMS LD level A elements is presented
in Fig. 1, adapted from [7]. A learning design model contains
learning activities (e.g. ‘read a book’) or support activities (e.g.
‘supervise learners’) to achieve particular learning outcomes
using learning environments. An environment is a container
that can contain learning objects (e.g. a text document, a
video) and services (e.g. conferencing, mail). The activities
are performed by roles, which can either be learner roles (e.g.
‘student’) or staff roles (e.g. ‘tutor’). At runtime, the roles
are assumed by particular persons—that is, user accounts in
the run-time environment. Activity structures can be used to
organize activities as a sequence or a selection (e.g., when
learners may choose between ‘read a book’ and ‘watch a
video’). The metamodel was built with the metaphor of a
theater play in mind. Therefore the assignment of roles to
activities is made with role-parts (e.g. role ‘student’ performs
activity ‘read a book’). Several role-parts are subsumed under
an act. The begin and end of an act are used as synchronization
points for the role-parts. A play can contain several acts, which
are executed in a strict sequence. The learning design model
is captured in a method, which contains at least one play.

9http://coppercore.sourceforge.net

Figure 1: IMS LD level A metamodel

Figure 2: OpenGLM graphical user interface

Authoring tools. There are several available visual IMS LD
tools that simplify the authoring task by providing an easy
to use visual modeling environment that does not require the
user to write XML documents. The visual modeling metaphors
of these tools typically strive to conceal the strict hierarchy
and the Web of element references of the XML binding in
the graphical user interface. The tools allow to export the
native design models as IMS LD packages that could be
deployed in any IMS LD compliant run-time environment such
as CopperCore.

The available authoring tools have different user inter-
face metaphors. The Reload (Reusable E-Learning Object
Authoring and Delivery) tool [9] is a tree based authoring
tool, essentially putting a graphical interface on top of the
XML tree, and is regarded as a reference implementation
of a learning design authoring tool. The ReCourse tool [23]
contains a slightly modified structure of the learning design
with more intuitive naming and use. OpenGLM [24] is a
more recent implementation providing a diagram-based visual
modeling environment in an attempt to hide the complexity of
the underlying XML representation from the user by providing
a modeling metaphor similar to that of UML activity diagrams.
A screenshot of the tool is presented in Fig. 2. OpenGLM also
allows the user to import from and export to a remote learning
design repository.



In contrast to the previously mentioned tools, which are
all desktop applications, WebCollage (Web COLlaborative
LeArning desiGn Editor) [8] is a Web-based graphical learning
design authoring tool based on collaborative learning flow and
assessment patterns. It allows practitioners to produce IMS
LD compliant learning designs, instantiate them and eventually
deploy them in a virtual learning environment.

Most IMS LD authoring tools offer import and export
features for IMS LD packages, which enables asynchronous
collaboration during authoring of learning design models.
There is currently no IMS LD authoring tool available that
supports NRT collaboration of multiple users on a shared
model.

III. SYNCLD DESIGN CONSIDERATIONS

To support our design decisions we first briefly define
Web widgets and describe the reasons behind choosing this
technology for the SyncLD prototype. As described in [25],
Web widgets are small self-contained applications which fulfill
specific functionalities. They have limited display sizes and can
be embedded in a variety of Web applications. Widgets can
be repositioned in the browser window and—if supported by
the widget container—they can be distributed across several
devices to achieve a multi-device personal computing envi-
ronment [25]. Furthermore, widgets can be easily used on
both desktop computers and mobile device screens. Due to
their nature, Web widgets can provide a good solution for
interacting with data as they constitute front-ends for complex
Web Services.

In SyncLD, widgets are used for creating a dynamic au-
thoring environment where the collaborative authoring session
can be augmented with other tools (widgets), such as video
conferencing, multi-user chat, shared text editing, Google
Docs, and so forth. Moreover, we use the layers available
on top of the widget container, i.e. widget spaces and inter-
widget communication, as communication infrastructure for
propagating changes. A widget space [26] is the working con-
text for users and widgets. Multiple users can collaboratively
manage and interact with various widgets located in the same
space. Also, the space offers the core functions for managing
users’ presence, multi-user chat, adding-removing widgets,
etc. Another basic widget-specific feature used by SyncLD
is inter-widget communication (IWC) [27]. This enables the
communication between widgets, both local (i.e. in the same
browser instance) and remote (i.e. between multiple browser
instances and users). With IWC widgets are able to send, re-
ceive, and interpret messages. Through these exchanges, multi-
user and/or multi-widget applications can be built. SyncLD
uses the remote IWC for propagating the authoring operations,
updates and synchronization messages, in a multi-user NRT
collaboration scenario.

The solution we propose for solving the lack of collab-
orative LD authoring is a Web-based framework, which can
support the NRT message exchange between multiple clients
and conflict resolution through the usage of a peer-to-peer OT
engine. Our approach can be reusable for other applications
which should contain NRT collaboration features and can
profit from the various components which we integrate in this
work. Concerning the visualization aspects of SyncLD, the

Figure 3: SyncLD architecture

interactions with the IMS model are realized through visual
modeling of IMS LD compliant units of learning. In a space,
users can concurrently work on a shared learning design model
and everyone can view all the modifications on their editor
instantly. Fig. 3 presents the abstract architecture of SyncLD.

SyncLD uses several inter-operable client-side modules.
The “Object Synchronizer” and the “OT Engine” ensure that
possible conflicts are resolved and that each client operates
on the same version of the learning design model. Because
IMS LD is an XML-based specification, we assign to each
element a unique identifier. This feature is offered by the
“Object ID Generator” module. The “Visual Editor” deals with
the modeling aspects at the interface level and the “Export
Module” permits an IMS LD compatible export of an XML
document containing the authored model, meant to be persisted
or used in other authoring applications. Below we briefly
describe the modules.

The OT Engine builds on the OpenCoweb OT library for
maintaining document consistency during concurrent edits by
multiple users. The local operations on the shared model are
directly reflected, thus providing a short response time. When
users join an editing session, the shared authoring state is
replicated at all collaborating client sites. When a user makes a
modification, a message containing the necessary details is sent
to all remote sites via the remote inter-widget communication
offered by the ROLE SDK. Users can alter any part of the
model during authoring and can see the modifications coming
from the remote sites in NRT. For this purpose, the publish
subscribe infrastructure provides a way to push messages and
notifications to clients without having to poll a request each
time.

The objects in the prototype have a certain number of
properties. Some of them are editable by users, while some
just provide predefined options. An example for the properties
of an instance of a learning activity are presented in Table I.
Concurrent operations on any of the properties listed in the
table may lead to conflicts or inconsistencies in the clients’
model representation. For solving concurrent editing problems,
the event handling is done through the OT Engine component,
which applies OT algorithms for transforming the incoming
remote events against the local client operations history and
returns the new (transformed) operations. Among the actions
that need the OT engine and that may lead to conflicts one can
enumerate activity renaming, creation and deletion of activity
connections, value selections and text editing. An illustration
of such a case can be seen in Fig. 4.



Figure 4: Resolving a text editing conflict using OT

TABLE I: Example of conflict-prone object properties

Property name Property format HTML representation
Activity description Editable text Textarea
Prerequisite Editable text Textarea
Learning objectives Editable text Textarea
Visibility True of false (single selection) Checkbox
Resources Option (single selection) Select box
Environment Option (multiple selection) Multiple checkboxes

The Object Synchronizer manages the non-conflicting
part of the collaboration on the learning design models, involv-
ing object manipulation. The objects can have multiple types,
such as “learning activity”, “support activity”, “role”, etc. The
synchronizer deals with operations such as “create” or “delete”,
which can be performed on these objects. Because we consider
such operations to create unique objects, the module does not
use the OT engine; instead it allows users to collaboratively
create and delete such elements.

The Object ID Generator assigns an unique identifier for
each object in the learning design document. The given identi-
fier is unique across all participating sites. As such, we fulfill
the IMS LD specification requirements, which state that each
entity (element) should have an unique identifier distinguishing
it from all other elements. This also enables referencing of
other elements. Furthermore, during a collaborative session,
when a user performs an operation on one of the objects, a
message is sent to all other participating sites specifying the
object the operation should be applied to. The unique string
generation across all sites is implemented using a hierarchical
nested approach. Every node on a given tree structure is
assigned an id of type string, made by concatenating the id
of its parent node, a text that indicates the node type (e.g.
“Resource”, “Environment”, “Learner”, etc.) and a number (a
unique integer, generated for all the nodes in a total order). The
root node’s string is concatenated from the userId, the node
type and the unique number. The userId is a unique identifier
obtained from the ROLE framework when joining a space,
assigned for every member of the space. Incorporating the
userId in the pattern is crucial as it guarantees the uniqueness
of objects in the case when multiple users create the same type
of objects. In such cases, no two patterns will be the same, as
the userId is unique across all participating client sites. The
unique number (index) is an integer generated by a function
which analyzes the sibling nodes’ ids and generates the next
maximum number.

The Visual Editor module is the module for the SyncLD
user interface and handles the management of the various

learning design authoring steps which involve the creation
of objects (activities, environments, roles, etc.), deletion of
objects and property value modifications. These operations can
emerge both from the local and remote users. The various UI
elements in the SyncLD widget are dynamically updated as a
result of executing operations.

The objective of the Export Module is to convert the
current learning design model into an XML document and
resource package that is conformant with the IMS LD specifi-
cation. The exported file can be imported in IMS LD run-time
systems or in other IMS LD authoring applications.

IV. IMPLEMENTATION

The implementation of SyncLD builds upon the open
source Java-based ROLE SDK10, which provides a platform
for responsive and open learning environments. The SDK
provides the technical means for rendering and managing Web
widgets, using the OpenSocial [28] standard container Apache
Shindig11.

The ROLE SDK infrastructure provides a set of technolo-
gies relevant for the design decisions of SyncLD. Namely, the
platform implements on top of the Shindig container services
for user management and a collaborative widget space man-
agement with NRT enabled features. The space concept (see
Section III) is currently being standardized under the OpenSo-
cial 3.0 specification. The NRT component is based on the
Extensible Messaging and Presence Protocol (XMPP) [29] and
uses the XMPP publish-subscribe extension (XEP-0060) [30]
for realizing the inter-widget communication and the multi-
user chat extension (XEP-045) [31] for the communication
and presence information within the space. In collaboration
with user and space management services, the platform NRT
service manages one dedicated publish-subscribe channel per
space for IWC including whitelist-based access control. The
IWC proxy routes outgoing IWC messages to the affiliated
XMPP server via the Strophe-based XMPP connection and
incoming messages to all widgets in the space via HTML5
Web Messaging [32]. Strophe12 is a collection of JavaScript
libraries for implementing the XMPP protocol. Widgets can
be equipped with IWC support by simply importing the IWC
client library of the ROLE SDK and implementing functions
for publishing and processing IWC messages. In SyncLD we
use IWC over Web Sockets as means of propagating the edit
operations among all clients in NRT. The IWC permits the
remote communication between widgets across browsers, for
the users which are members in the same space. Furthermore,
the platform supports secure authentication and authorization
using OpenID and OAuth, allowing for unique representation
of the users from a certain space and therefore for identifying
the users which are collaborating.

Concerning the OT module, the OpenCoweb project used is
a standalone Javascript OT library, which guarantees document
convergence, given that all the local operations are performed
and sent to the remote clients and that all the remote incoming
operations are honored. Each participating site has its own
instance of the OpenCoweb OT engine. The local application

10http://sourceforge.net/projects/role-project/
11http://shindig.apache.org/
12http://strophe.im/



1 ote := OTEngine(siteId);
2 activityId := "l-activity-00";
3 propertyId := "description";
4 objToModify := "l-activity-00-description";
5 op := ote.createOp(objToModify,"character",

"insert","position");
6 opToSend := ote.localEvent(op);

Listing 1: Creating a local operation

constructPropertyIntent = function(objectId,
propertyId, value) {

var key = objectId + "_" + propertyId;
var op = ote.createOp(key, value, "update",

"0");
op = ote.localEvent(op);
var intent = {

"component" : "",
"action" : "ACTION_CHANGE",
"data" : "",
"dataType" : "text/plain",
"flags" : [ "PUBLISH_GLOBAL" ],
"extras": {

"objectId" : objectId,
"elementId" : propertyId,
"operation" : op } };

updateObjectProperty(objectId, propertyId,
value);

sendIntent(intent);
}

Listing 2: Example of intent propagation

has to call the OTEngine.localEvent method for all local
changes and send the object returned from this call to the
remote peers unchanged. When remote operations are received,
the engine passes them to an OTEngine.remoteEvent
method. The transformed operation returned by this method
is then applied to the local document. The OpenCoweb OT
engine can be used in one application for several collaborating
objects. For example, an application can have a chat and a text
editor. Each one of these parts are treated separately by the
engine. We consider each editable field of a given object as
a separate collaborating object. Thus, whenever an edit event
occurs on a particular text field, the OT engine is called by
passing the combinations of the id of the object and the id
of the HTML field as an argument. To illustrate this, consider
the following example: a user selects a given learning activity
that has the id attribute of l-activity-00 and starts to
edit the activity’s description represented by the corresponding
HTML textarea element. Upon typing in the HTML textarea
elements, the application generates key press events, executes
the necessary updates locally and creates operations that are
sent to remote sites as shown in Listing 1.

The intent used for the exchange of messages—using
JavaScript Object Notation (JSON) format—is presented in
Listing 2. JSON is also used for the representation of internal
objects.

The sequence diagram shown in Fig. 5 presents the meth-
ods called for an edit operation that represents a simple renam-
ing of an activity, in the collaboration setting. The operation is

user
RenameActivity

Controller
ActivityIcon UIController ActivityObject OTEngine ROLE IWC

1:sprovideNewTitlesg5

2.1:supdateObjectsg5

2.2:supdateHTMLElementssgnewTitle5

2.3:screateOpsgactivityId,svalue,supdate,s05

2.4:slocalEventsgoperation5

2.6:ssendsgintent5

2:srenamesgsource,target5

operation

2.5:sconstructIntentsg5

Figure 5: Sequence diagram for an activity renaming operation

displayed and then applied to the local OT engine. The engine
saves internally the operation and creates the actual operation
JSON object, containing information about the unique element
where it should be applied, the value to be changed, etc. This
can be passed to remote peer’s OTEngine.remoteEvent
using the IWC intent. From this point on, all clients that
receive the IWC intent compare the operation with their local
operation history, transform the operation if necessary and
apply it locally to their copy of the model.

At the interface level, the visual modeling is realized in
two ways: a tree structure for detailed properties of elements
and a UML-like activity diagram approach for producing the
sequence of learning and support activities. The activities are
created by dragging and dropping the L (learning activity) or
S (support activity) icons from the left-hand toolbar onto the
drawing canvas. The flow sequence between them is built by
connecting the activities via a directed arrow. A screenshot
depicting four connected activities, edited in two browser
instances is presented in Fig. 6. Activities also have a tree
structure representation that is used to provide a convenient
navigation for editing the various properties of the activities.
The rest of the entities, such as environments, roles, role-parts
and resources are presented as a collaborative tree structure.
Each entity type has a separate tree-like visualization. To
modify a property a user selects a specific node from the tree.

Finally, for the export functionality, the conversion process
is divided into series of tasks, such as analyzing the JSON
objects in the visual learning design. This involves differenti-
ating between attributes and child elements, eliminating empty
elements from appearing in the XML document and extracting
the relevant data. For example a learning activity JSON object
contains data related with it’s position on the canvas, yet, this
data should not appear in the XML document since it will
violate the specification. Another task is creating a new text
file for every property that is editable (e.g. a learning activity’s
description, prerequisite, learning objective, etc.), which is
required by the IMS LD specification. The files are represented
as a separate XML element which can be referenced by other
elements.

Once all objects have a valid structure and are glued
together accordingly, they are converted to XML elements
using the function “json2xml”, that takes a JSON object as
an argument and returns the equivalent XML representation.
This function—an efficient and precise algorithm—is reused
in our prototype with a slight modification to include names-



Figure 6: Sequence of activities in the SyncLD user interface showing synchronized model instances in two side-by-side browsers

paces [33]. The resulting XML is stored as the imsmanifest file
mentioned previously, and zipped along with the referenced file
resources.

V. EVALUATION

A. End-User Evaluation

The innovation on the user interface layer of SyncLD is
that the application puts the combined “goodies” of existing
IMS LD authoring interfaces to work in the Web browser
in a NRT collaboration environment. The activity modeling
metaphors are similar to those in OpenGLM and WebCollage.
The editing of detailed element properties is achieved using a
familiar tree structure navigation where editing forms for the
elements can be accessed. This is a common user interface
metaphor in most IMS LD authoring tools. The key novelty is
NRT synchronization of edits by different users.

IMS LD authoring can be approached very flexibly. There
are only few restrictions on the order of creation of elements,
which relate to situations where an element references another
element. Logically, the referenced element must be created
before referencing it (e.g. an activity referencing an environ-
ment). Other than that authors are free to choose in which order
and level of detail they want to proceed during authoring. This
is one of the reasons why we chose IMS LD authoring as a
pilot application for our NRT collaboration technology.

The end-user evaluation was performed by providing a
predefined authoring scenario, which was enacted in each
evaluation session by three concurrent users with varying levels
of IMS LD expertise under the guidance of a moderator, who
was an IMS LD expert. The scenario consisted of four steps
as listed in Table II. The three authors were instructed at the
beginning of each step and synchronized at the end of each
step by the moderator. During the session each participant
had as a backup a sheet with a description of his/her duties
during the authoring session as listed in the table. The scenario
was designed to allow users to experience the key features of
synchronized collaborative IMS LD authoring while increasing
the chance of concurrent edits. At the end of the session the
users were asked to fill an online questionnaire that surveyed
their perceptions of usability and usefulness of the tool in seven
multiple-choice questions and open questions on aspects they
liked and disliked the most about the tool, respectively.

3.9

4.4

3.9

4.7

4.1

3.3

3.3

1 2 3 4 5

(Q1) The tool is easy to use

(Q2) Web-based authoring has
clear advantages over desktop

authoring tools

(Q3) I did not encounter any errors
during my interaction with the tool

(Q4) Synchronous collaboration on
learning designs is a useful feature

(Q5) I can imagine using such a tool
to collaboratively design courses

with colleagues
(Q6) Collaborative editing can be

done without additional
communication channels

(Q7) I was sufficiently aware of the
other users' actions

Figure 7: Evaluation survey results indicating average rating
and standard deviation for each question [1 = fully disagree
. . . 5 = fully agree]

We had five evaluation sessions with three participants
each, making a total of 15 participants. The participants were
asked to rate their IMS LD expertise on a Likert scale ranging
from novice (1) to expert (5). The mean rating was 2.6 (±1.3),
slightly below the middle point on the scale.

The rating results of the multiple-choice questions are
displayed in Fig. 7. All but two participants agreed or strongly
agreed that the tool was easy to use (mean = 3.9 on Q1). In
the open-ended questions some negative comments related to
usability were about not being familiar with IMS LD which
complicates the use of the tool, which indicates that the tool
would need some in-place assistance (“I am not accustomed to
IMS LD. The UI is quite complicated.” — “It is a bit complex.”
— “. . . requires a deep knowledge of IMS LD. Maybe some
definitions could be helpful, e.g. meaning of environment”).
In current work we are addressing this issue by providing
users with nudges on what to do next at each stage. In the
second question (Q3) users indicated that they encountered
some errors during use (mean = 3.9).

The tool did not have any visual awareness indicators to



TABLE II: End-user evaluation session script with three users collaboratively creating a simple learning design model.

Step Moderator User 1 User 2 User 3

1 Tell the three users to perform step 1. In the Resources tab, add a new resource
‘Learning materials’. Add a random local
file from your computer to this resource
and title it ‘Tech-writing book’.

In the Resources tab, add a new resource
‘Conference materials’. Add a random lo-
cal file from your computer to this re-
source and title it ‘Conference slides’.

In the Resources tab, add a new resource
‘Quiz materials’. Add ‘Online material’ to
this resource, with the title ‘Online quiz’
and the url ‘www.example.org’.

2 Create environment ‘Study materials’. Tell
the three users to perform step 2. While
they do so, create environment ‘Grade
report’.

Wait for the moderator to create the ‘Study
materials’ environment. Then add a learn-
ing object ‘Tech-writing book’ to this en-
vironment. Select learning object type:
‘knowledge-object’ and resource: ‘Learn-
ing materials’.

Wait for the moderator to create the ‘Study
materials’ environment. Then add a learn-
ing object ‘Quiz’ to this environment. Se-
lect learning object type: ‘test-object’ and
resource: ‘Quiz materials’

Wait for the moderator to create the ‘Study
materials’ environment. Then add a ‘New
Conference’ service to this environment
with the title ‘Tech-writing conference’.
Associate the ‘Conference materials’ re-
source to this service. In the same view,
please select the student and the tutor as
participants, and the tutor as manager and
moderator.

3 When user 3 complains that he cannot add
roles to the conference service, tell user 1
and 2 to first complete step 2. Then tell
user 1 and 2 that they should proceed with
step 3, i.e. user 1 to add student role and
user 2 to add tutor role. Ask user 3 whether
he can see the roles popping up now.

Add learner role with title ‘Student’. Add staff role with title ‘Tutor’. Wait until roles from step 2 appear in your
user interface.

4 Tell users to create learning activities in
step 4 by dragging the ‘L’ on the canvas. In
the meantime add support activity ‘Notify
grade’, with environment ‘Grade report’
and supported role ‘Student’. When all
users ready, tell them to go to ‘Properties’,
activity ‘Reading session’. Modify the de-
scription to ‘Read the provided materials’.
Then tell them to go to the ‘Activities
tab’ and wait. Tell them that you are now
connecting the activities. Do it.

Create learning activity ‘Reading session’.
Put this in the description: ‘Read the ma-
terials’. Select environment ‘Study mate-
rials’.

Create learning activity ‘Group Discus-
sion’. Put this in the description: ‘Tech-
nical writing’. Select environment ‘Study
materials’.

Create learning activity ‘Quiz’. Put this
in the description: ‘Publish quiz’. Se-
lect environment ‘Study materials’ and
completion-rule ‘time limit’.

indicate to a user what part of the learning design model the
other users are currently editing. However, since the scenario
made them edit the same portions of the model in each step,
there was some built-in awareness. This is also indicated
by the responses to Q7 which averaged a rating of 3.3. In
the open questions users emphasized the need for awareness
mechanisms (e.g., “it is not so clear what the others are
currently doing”).

We also asked whether the users felt that there was no
need for an additional communication channel (e.g. audio,
chat) while collaboratively editing the learning design (Q6).
The average rating of 3.3 along with a high standard deviation
shows that the opinions differed considerably. Clearly, being
able to speak to collaborators is an advantage, yet obviously
several users were confident that they could use the tool
collaboratively without additional communication channels.

All participants agreed or strongly agreed with the state-
ment that web-based authoring has clear advantages over the
desktop authoring tools (Q2; mean = 4.4). In addition, all
of them agreed that the synchronous collaboration feature was
useful (Q4; mean = 4.7), which provide strong support for the
objectives and outcome of this research. Some of comments
about what they liked about the NRT editing include: “co-
designing and sharing a common space” — “to see other users’
changes almost in real-time” — “everything is automatically
synchronized/stored (like Google Docs)” — “work can be done
faster if everyone works in a different area” — “to see things
done by collaborators popping up.”

Last but not least, almost all participants agreed that they
could imagine using such a tool to collaboratively design
courses with their colleagues (mean = 4.1 for Q5), which

is an encouraging result when thinking about productive use
of this or similar tools by learning designers for real tasks.

B. Technical Evaluation

Parallel with the user evaluation, we considered also the
evaluation of the technical realization of SyncLD, the collab-
oration and NRT features of the prototype and the underlying
Javascript library integration. Two approaches were used: the
first approach was to perform functional tests during the
development of the prototype. Moreover, in the ending phase
of the development cycle the performance of the XMPP-based
NRT messaging infrastructure working together with the OT
engine was tested. The second approach involved engaging
multiple users to collaboratively author a learning design using
the visual component of the prototype.

The performance evaluation of the framework was con-
ducted using the same NRT shared editing setting with the
one used by SyncLD. The analysis was performed using
three collaborating browser instances with three different users
logged in with their accounts in the same ROLE space.
The clients accessed a wireless network different from the
one containing the XMPP server. Each clients collaborated
using a text editing widget (containing a text area HTML
element connected to the OT library and the ROLE IWC for
event handling). Events were keyboard-generated using the text
area element. All underlying editing infrastructure messages
were logged, persisting information such as the exact time of
sending and receiving each message together with operation
type and the ids of the sender and receiver. The experiment
consisted of several sessions, in order to test the different
possible IWC exchange scenarios between the clients. Two



shared text editing sessions at usual writing speed were consid-
ered and one with continuous character input. Because part of
SyncLD collaboration involved single operations (e.g. activity
creation, checkboxes, etc.), single events (created using single
character input at a time interval greater than one second)
were also analyzed. In each session one hundred messages
were generated. Finally, the message delay between different
clients was analyzed, using one sender and two receivers and
measuring the time difference between the message receive
time at the receivers. The results are presented in Table III.

TABLE III: Technical evaluation of messaging infrastructure
and OT Engine

Test Performed Average Value (ms) Standard Deviation (ms)
Continuous character input 778 1237

Writing (normal speed) 457 856
Single operations 99 58

Time difference at receivers 28 24

The performance evaluation results demonstrate the feasi-
bility of our methods for enabling NRT collaboration for Web
applications. As such, the small receive time delay between the
clients outputs a real-time perception for remote collaborators.
The increased time difference obtained for the test cases
containing multiple characters input is due to the buffering
of characters and the bundling of a certain number of such
events under a single IWC intent, in order to minimize the
network traffic.

Concerning the visual component—that is, the visual mod-
eling of the learning design—this feature has been tested by
iteratively creating and erasing model elements from the can-
vas. For the collaborative features, the focus was in measuring
the convergence (consistency of the model at the participating
clients) of the learning design when multiple users are col-
laboratively authoring. This was carried out as an extension
of the user evaluation, where we tried to gain knowledge
of the technology usability and reliability. In this sense, we
used part of the users presented in the user study, in order to
assess the consistency of the client replicas. After the users
collaboratively designed the UOL, they were asked to export
the UOL model using the tool. We collected from each user
the downloaded UOL package and inspected each file in the
package for convergence. Each package contained one XML
(“imsmanifest”) file and four text files. A comparison of the
content of the files were carried out manually since, except
the XML file, the content of the text files was very short
(predefined by the guideline). The comparison of the XML
files were done by inspecting the elements. With respect to
this test, it was observed that the design at each of the three
sites was convergent, meaning, the “imsmanifest” XML file
as well as the text files generated by each user had the same
content. However, we also note that there are factors which
can have an impact on this result such as the overall design
being guided by predefined steps, number of participants, etc.

Parts of the SyncLD requirements (such as the space
presence signaling, the ability to share and join a space, etc.)
are supported by the underlying ROLE SDK infrastructure and
further performance tests were not considered as being within
the scope of the present work. However, the IWC messaging

and the usage of the widget technology is indirectly included
in our evaluation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we reported pioneering work on providing
support for NRT collaborative editing of learning design
models. Technically we used a decentralized approach for
managing the collaboration operations and OT algorithms for
ensuring data integrity and consistency on all participating
sites. The resulting application called SyncLD (Synchronous
Learning Design) has several distinct features.

First, it allows concurrent editing by multiple users con-
nected via a network to work on a shared model at the same
time without producing inconsistencies and versioning issues.
This solves the problem of the otherwise asynchronous process
of sharing a document for editing which can create incon-
sistencies and can be time-consuming, e.g. when a manual
merge is required. From the practitioner perspective the end-
user evaluation showed that learning designers perceive such
a feature as highly useful for their work.

Second, the application uses a NRT communication infras-
tructure based on XMPP—an open and extensible protocol—
for synchronizing concurrent user inputs and displaying the
effects in a Web based user interface. This is necessary so that
changes made by one of the participating users be reflected on
the replicas of the shared document on the other users’ work-
stations. The development of the communication infrastructure
was fully based on open source projects, including the ROLE
SDK for hosting widget-based applications using an inter-
widget communication API, and the OpenCoweb framework
for handling the OT that eventually ensures synchronization
of user actions at all participating ends. By integrating the
two projects and tailoring the OT engine to support the
learning design structure and the ROLE SDK as a collaboration
platform, we have achieved a powerful setting for enabling
NRT collaboration for Web widgets.

The end-user evaluation has demonstrated that learning
design practitioners considered the NRT collaboration features
offered by SyncLD as very useful and also usable.Almost all
participants agreed that web-based authoring has advantages
over desktop based authoring and that they can imagine using
a tool like SyncLD in their real design work. The technical
evaluation has shown that after the end-user evaluation sessions
the model replicas at the client machines were congruent.

Current work on extending SyncLD follows several
threads. For one, we are working on improving the user inter-
face to offer awareness about collaborators’ actions. This was
an issue mentioned by several users in the end-user evaluation.
It will be offered in a separate widget that can be added
to the SyncLD widget space and that displays hyperlinked
information on what each collaborator is currently working on,
e.g. it might say “User X is editing the description of activity
‘Read a book’. User Y is currently assigning the tutor role to
support activities.”

On a more substantial thread we are working on ways to
provide nudges to users on what actions they could perform
next to proceed in collaboratively completing the model.
To achieve this we will use the awareness information in



combination with a model of the dependencies and rules in
effect during the IMS LD modeling process to provide those
nudges in a widget.

Finally, we are working on an abstraction of the NRT
collaboration framework from the IMS LD context to support-
ing collaborative creation of arbitrary models using flexible
modeling processes. The source code of all components of
SyncLD is and will continue to be released with free and
open source licenses. This is one of the major differences
to projects like the Realtime API in Google Drive, which
offers the synchronization infrastructure as a black box, thus
obtaining control over the functionality, content and eventually
the ‘fate’ of tools which are developed using such black box
APIs. In contrast, by releasing open frameworks for NRT
communication, application developers will have full control
over the communication infrastructure and can contribute to
making the Web a place where NRT collaboration is offered
in all applications.

ACKNOWLEDGMENT

This research was supported by the European Commis-
sion in the Lifelong Learning Programme multilateral project
METIS (531262-LLP-2012-ES-KA3-KA3MP) as well as in
the 7th Framework Programme large-scale integrated projects
LAYERS (grant no. 318209) and ROLE (grant no. 231396).
The authors would like to thank Bezunesh Alemu Terkik for
the prototype implementation.

REFERENCES

[1] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai, “Transpar-
ent Adaptation of Single-User Applications for Multi-User Real-Time
Collaboration,” ACM Transactions on Computer-Human Interaction,
vol. 13, no. 4, p. 531582, 2006.

[2] C. A. Ellis and S. J. Gibbs, “Concurrency Control in Groupware Sys-
tems,” Proceedings of the 1989 ACM SIGMOD international conference
on Management of data, vol. 18, pp. 399–407, 1989.

[3] E. Wenger and W. Snyder, “Learning in Communities,” LiNE Zine,
no. 1, 2000.

[4] M. Derntl, S. Neumann, and P. Oberhuemer, “Opportunities and chal-
lenges of formal instructional modeling for web-based learning,” in
Proceedings of ICWL 2011, LNCS vol. 7048. Springer, 2011.

[5] T. K. Christensen and R. T. Osguthorpe, “How Do Instructional-Design
Practitioners Make Instructional-Strategy Decisions?” Performance Im-
provement Quarterly, vol. 17, no. 3, pp. 45–65, 2004.

[6] P. Kirschner, C. Carr, J. Merrinboer, and P. Sloep, “How Expert
Designers Design,” Performance Improvement Quarterly, vol. 15, no. 4,
pp. 86–104, 2002.

[7] IMSGlobal Learning Consortium. (2003) Learning Design Specifica-
tion. [Online]. Available: http://www.imsglobal.org/learningdesign/

[8] D. Hernndez-Leo, Villasclaras-Fernndez E. D., Asensio-Prez J. I.,
Dimitriadis Y., Jorrn-Abelln I. M., and Ruiz-Requies I., “COLLAGE, a
Collaborative Learning Design Editor Based on Patterns,” Educational
Technology and Society, vol. 9, no. 1, p. 5871, 2006.

[9] Reusable eLearning Object Authoring & Delivery. (2004) RELOAD
Editor Introductory Manual. [Online]. Available: http://www.reload.ac.
uk/ex/editor v1 3 manual.pdf

[10] The Dojo Foundation. Open Cooperative Web Framework: Javascript
Enablement of Concurrent Real-Time Interactions. [Online]. Available:
http://opencoweb.org/

[11] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving Conver-
gence, Causality Preservation and Intention Preservation in Real-time
Cooperative Editing Systems,” ACM Transactions on Computer-Human
Interaction, vol. 5, no. 1, p. 63108, 1998.

[12] J. Liu, G. Teng, Y. Shao, W. Yao, and S. Dong, “Concurrency Control
Strategy in Real-time Collaborative Editing System,” in 2010 2nd Inter-
national Conference on Education Technology and Computer (ICETC),
p. 222225.

[13] S. Kumawat and A. Khunteta, “A Survey on Operational Transforma-
tion Algorithms: Challenges, Issues and Achievements,” International
Journal of Computer Applications, vol. 3, no. 12, p. 3038, 2010.

[14] N. Fraser, “Differential Synchronization,” Proceedings of the 9th ACM
Symposium on Document Engineering, p. 1320, 2009.

[15] C. Sun and D. Chen, “Consistency Maintenance in Real-time Collab-
orative Graphics Editing Systems,” ACM Transactions on Computer-
Human Interaction, vol. 9, no. 1, pp. 1–41, 2002.

[16] C. A. Ellis, S. J. Gibbs, and G. Rein, “Groupware: Some Issues and
Experiences,” Communications of the ACM, vol. 34, no. 1, p. 3958,
1991.

[17] The Apache Software Foundation. Apache Wave (Incubating). [Online].
Available: http://incubator.apache.org/wave/

[18] I. Koren, A. Guth, and R. Klamma, “Shared Editing on the Web: A
Classication of Developer Support Libraries,” in Proceedings of the
Ninth International Conference on Collaborative Computing (Collabo-
rateCom 2013). IEEE, 2013.

[19] H. Hummel, J. Manderveld, C. Tattersall, and R. Koper, “Educa-
tional Modelling Language and Learning Design: New Opportunities
for Instructional Reusability and Personalised Learning,” International
Journal of Learning Technology, vol. 1, no. 1, pp. 111–126, 2004.

[20] R. Koper and B. Olivier, “Representing the Learning Design of Units
of Learning,” Educational Technology and Society, vol. 7, no. 3, pp.
97–111, 2004.

[21] W. Westera, F. Brouns, K. Pannekeet, J. Janssen, and M. J., “Achieving
E-learning with IMS Learning Design - Workflow Implications at
the Open University of the Netherlands,” Educational Technology and
Society, vol. 8, no. 3, p. 216225, 2005.

[22] M. Pullin. (2007) IMS Content Packaging Research Report. [Online].
Available: http://thecblor.unt.edu/files/IMSCP-Report-2.pdf

[23] TEN Competence Foundation. (2010) ReCourse Learning Design
Editor. [Online]. Available: http://tencompetence-project.bolton.ac.uk/
ldauthor/

[24] M. Derntl, S. Neumann, and P. Oberhuemer, “Propelling standards-
based sharing and reuse in instructional modeling communities: The
open graphical learning modeler (openglm),” in Proceedings of IEEE
ICALT 2011, Athens, GA. IEEE, 2011, pp. 431–435.

[25] D. Kovachev, D. Renzel, P. Nicolaescu, and R. Klamma, “DireWolf
- Distributing and Migrating User Interfaces for Widget-Based Web
Applications,” in Proceedings of ICWE 2013, LNCS 7977. Springer,
2013, pp. 99–113.

[26] E. Bogdanov, C. Salzmann, and D. Gillet, “Contextual Spaces with
Functional Skins as OpenSocial Extension,” in ACHI 2011, The Fourth
International Conference on Advances in Computer-Human Interac-
tions, 2011, pp. 158–163.

[27] S. Govaerts, K. Verbert, D. Dahrendorf, C. Ullrich, M. Schmidt,
M. Werkle, A. Chatterjee, A. Nussbaumer, D. Renzel, M. Scheffel,
M. Friedrich, J. L. Santos, E. Duval, and E. L.-C. Law, “Towards
responsive open learning environments: the ROLE interoperability
framework,” in Proceedings of the 6th European conference on Technol-
ogy enhanced learning: towards ubiquitous learning, ser. EC-TEL11.
Springer-Verlag, 2011, pp. 125–138.

[28] OpenSocial and Gadgets Specification Group. OpenSocial Specification
2.5.0. [Online]. Available: http://opensocial-resources.googlecode.com/
svn/spec/2.5/

[29] P. Saint-Andre, “RFC 6120: Extensible Messaging and Presence Proto-
col (XMPP): Core,” 2011.

[30] Millard, Peter and Saint-Andre, Peter and Meijer, Ralph, “XEP-0060:
Publish-Subscribe Version 1.13, Draft,” 2010.

[31] P. Saint-Andre, “XEP-0045: Multi-User Chat,” 2008.
[32] W3C, “HTML5 Web Messaging,” 2011.
[33] S. Goessner. (2006) Converting between XML and JSON. [Online].

Available: http://goessner.net/download/prj/jsonxml/json2xml.js


