
Personal Health Record Storage on Privacy
Preserving Green Clouds

Kirill Belyaev∗, Indrakshi Ray∗, Indrajit Ray∗, and Gary Luckasen†

∗ Department of Computer Science
Colorado State University, Fort Collins, Colorado, USA

Email: {kirill, iray, indrajit}@cs.colostate.edu
† University of Colorado Health

Fort Collins, Colorado, USA
Email: Gary.Luckasen@uchealth.org

Abstract—With digitization there is a plethora of personal
information, such as, health records and personal artifacts,
that are stored on the data servers provided by the Internet
companies. Such a solution is resource-intensive as the servers
should be up and running. Moreover, the users no longer have
complete control over their own data. We propose an alternative
architecture where the data is no longer stored on Internet
servers, but on set of new hardware devices called Secure Portable
Tokens (SPTs) that are under the control of individual users.
SPTs are cheap, portable, and secure devices that combine the
computing power and tamper-resistant properties of the smart
cards and the storage capacity of NAND flash memory chips.
SPTs can be used to store personal data and can act as a Personal
Data Server (PDS). In order to make such stored data reliable
and available, we propose to have a set of SPTs storing personal
data of individuals that form a cloud which we refer to as Personal
Data Server Clouds. We provide protocols, based on the publish-
subscribe paradigm, that demonstrate how replication and query
processing are performed in the PDS clouds. We demonstrate
the feasibility of our approach by developing a prototype PDS
cloud that is geographically distributed and stores personal health
records (PHRs).

Keywords—Personal data servers, Green clouds

I. INTRODUCTION

In the digital age, there is a plethora of personal information
that individuals need to store and access. Consider the storage
of Personal Health Records (PHR) as a motivating example.
A PHR system can store diverse information related to public
health, such as, medical history and lab reports, insurance, con-
sent forms, and other relevant information. The use of PHRs
can improve the health care of individuals and communities
in both developed and developing countries. A study by the
California Healthcare Foundation [1] indicates that patients
who have access to their health information systems are more
likely to take actions for improving their health and health
care. In addition, a well organized PHR system can empower
a patient by allowing control over sharing medical history and
symptoms. Consequently, many organizations are beginning to
offer electronic PHR systems. One study estimates that there
are over 200 different PHR systems in the USA [2].

We have various types of PHR systems. Some of these are
supported by insurers or health care providers, such as the
one deployed by Blue Cross of Northeastern Pennsylvania

[3] and the My HealtheVet from the U.S. Department of
Veteran Affairs [4]. Systems supported by a provider offer
better integration with the provider’s Electronic Health Record
(EHR) system, but is constrained by the specific information
made available by the provider. Moreover, if an individual
has multiple providers, then consolidating all the health care
information is challenging. The other alternatives are cloud
based repositories, such as Microsoft HealthVault [5], where
the user is responsible for uploading and managing her health
information. All the above solutions make PHR systems valu-
able targets for attacks because they provide a high cost/benefit
ratio to attackers compared to a single stand-alone system that
contains the health records of an individual user. Moreover,
there have been numerous incidents of confidentiality and
privacy violations in commercial data servers, including those
belonging to health care providers, arising from ill-defined
or non-existing privacy policies, malware, negligence, errors,
abusive use and external attacks [6] to assume that these PHR
systems are immune to security breaches. A recent news article
[7] indicates that consumers are wary about using online PHR
systems because they do not trust their security.

Storing sensitive personal data, such as health data, on
current cloud systems, such as Microsoft HealthVault [5],
improves upon the systems supported by providers in that the
users are responsible for managing their own data. However,
such a solution, has several problems, including the potential
for security and privacy breaches, that we outline below. First,
service downtime and unavailability of Internet connection
may limit an individual from accessing her data stored on the
cloud. Clearly, this may be unacceptable to many users who
expect their data to be available all the time. Second, such
servers storing PHRs of a large number of users are also target
for attackers who have much to gain by compromising the
privacy of health data. Note that, attackers can be insiders as
well, such as dishonest or disgruntled employees of the orga-
nization. Third, the individuals must trust these organizations
for adequate protection of the data against security and privacy
breaches. Typically, users are reluctant to place trust on these
organizations [7]. Fourth, even though an individual trusts an
organization and is willing to comply with its security and
privacy policies, such policies are subject to change with time.

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254117



Moreover, security and privacy policies will almost certainly
be changed if there is an acquisition or merger of companies. It
is not clear how such a change will impact the existing records
of an individual user and whether such a change will respect
the original preferences of the user. Fifth, the servers storing
data of a very large number of users must be kept online,
which requires enormous power consumption. Consequently,
we propose an alternative approach for storing PHR data.

Our proposed approach builds upon the use of a new
emerging technology of cheap ($10-20 range), portable (carry
it in your pocket / purse) and secure devices that combine
the computing power and strong, tamper-resistant security of
smart cards and the ever increasing storage capacity of NAND
flash memory chips. We call such devices Secure Portable
Tokens (or SPT in short). Examples of such SPTs can be found
in wireless secure dongles, and smart USB jump drives with
embedded chips. A very similar technology can be found in
the SIM cards of mobile cellphones and smart phones.

The idea is to embed a full-fledged secure PHR data server
and related software components within the tamper resistant
hardware, and store the PHR data in encrypted manner in the
accompanying flash storage. The application software as well
as the user’s PHR data will be protected by strong hardware-
based security. No malware can damage the software since it
is hardware protected. Moreover, the whole system is tailor
made for PHR information, and hence will require very little
administration from the user. To use the PHR data and to
connect to different service providers, the SPT may need to
be attached to a host device such as a smart phone or a
computer. However, in such cases, the host device provides
only an interface to the external world. All computations,
communication, security policy enforcement, data storage and
retrieval are still carried out by the SPT hardware. Security
policies can be set or overridden only by the user. However,
the policies are still enforced by the hardware.

Individuals own SPTs and they store their personal data
on the SPT, forming what we refer to as a Personal Data
Server (PDS). A group of such PDSs form a personal data
server cloud. In order to build such a cloud, various research
challenges must be addressed. However, we scope this paper
and provide a simple baseline architecture and implementation
for the cloud, without delving into the security and privacy
aspects. Each PDS, storing PHRs, need not be connected to the
Internet. An individual can get all his PHR information from
his own PDS even though he is not connected to the Internet.
However, PDSs may need to communicate with the external
world to receive or send medical information to other entities,
such as, health care providers or sharing their information with
trusted friends.

Such communication is typically offline and is facilitated
through an online broker that serves as a temporary storage
for data exchange. We discuss the broker architecture in details
and also the protocols that are needed to communicate with
the external entities. The broker is implemented using the
publish-subscribe model. The broker is online all the time and
serves as a temporary storage for data exchange, but does not

store the PHRs of the individuals. Thus, the broker storage is
significantly smaller than that required to store the PHR data
of all the users. The owner has complete control over what
data he pushes to the broker for sharing by external entities
and he also decides when such data is deleted from the broker.

The individuals have their PHRs on their own PDS. For
reasons of availability, they may wish to replicate their PHRs
on devices belonging to other individuals. The users have total
control over what data they wish to replicate, where they would
like to replicate, and may also change these decisions at any
point of time. Thus, a user may replicate his data to one or
more PDSs belonging to other trustworthy individuals.

We should state that there is an original socioeconomic
assumption that replicas are chosen out of the reliable peers
(such as family members or close friends) that will be re-
sponsible to keep the replica online periodically to ensure the
adequate synchronization with the owner PDS.

Each PDS, under the control of an individual user, may be
online or offline depending on the user’s discretion. Replica
propagation, in light of the fact that PDSs may be offline,
poses a challenge. We have devised replica control protocols
to address this issue. Eventual consistency property is assured
provided the PDS holding the replica comes online after the
update operation.

Queries may be posed on the PHR by individuals or
organizations. Query processing poses similar challenges be-
cause a PDS containing the required PHR may be offline. In
such a case, we demonstrate how the query response can be
constructed from the PDS holding the original PHR or from
the other PDSs containing the replica PHR. We try to minimize
the response time for query processing, by trying to answer
the query using the original or replica PDSs, whichever comes
online first. We also guarantee the data currency property that
ensures that the response to the query is always accurate, even
if some replicas may have not been online all the time.

The remainder of the paper is organized as follows. We
provide an overview of our approach in Section II. In Section
III, we describe our architecture. We present our replication
protocol in Section IV. We describe how queries are processed
in Section V. We give our prototype implementation and
experimental results in Section VI. We enumerate some of
the related works in Section VII. We conclude the paper and
point to future research directions in Section VIII.

II. OVERVIEW OF PERSONAL DATA SERVER SYSTEM

We propose a radically different approach to storing and
managing personal health data in electronic format. The pro-
posed approach builds on the new emerging technology of
cheap ($10-20 range), portable (carry it in your pocket / purse)
and secure devices that combine the computing power and
strong, tamper-resistant security of smart cards and the ever
increasing storage capacity of NAND flash memory chips.
We call such devices Secure Portable Tokens (or SPT in
short). Examples of such SPTs can be found in wireless secure
dongles, and smart USB jump drives with embedded chips. A
very similar technology can be found in the SIM cards of



mobile cellphones and smart phones. Instead of storing PHR
data on a centralized server, each user has her own SPT to
securely store and carry the PHR data.

The idea promoted in this work is to embed a full-fledged
secure PHR data server and related software components
within the tamper resistant smart card hardware, and store
the PHR data in encrypted manner in the accompanying flash
storage. A schematic overview of this approach is shown in
Fig. 1. The encrypted information on the flash storage can be
accessed only via the smart card based data server. Thus, the
application software as well as the user’s PHR data will be
protected by strong hardware-based security. No malware can
damage the software since it is hardware protected. Moreover,
the whole system is tailor made for PHR information, and
hence will require very little administration from the user. To
use the PHR data and to connect to different service providers,
the SPT may need to be attached to a host device such as a
smart phone or a computer. However, in such cases, the host
device provides only an interface to the external world. All
computations, communication, security policy enforcement,
data storage and retrieval are still carried out by the SPT
hardware. Security policies can be set or overridden only
by the user. However, the policies are still enforced by the
hardware. In this manner, user control of how her sensitive
data is shared by others (by whom, for how long, according
to which rule, for which purpose) can be fully re-established
and convincingly enforced.

SPT owned by a user contains her PHRs, which can be
accessed anytime by connecting the SPT to a host device.
In fact, the user no longer needs an Internet connection to
view her medical records. The user and the healthcare provider
communicate through an online broker. The online broker
serves as a temporary storage merely and does not store the
PHRs of individual users. SPTs may get lost or stolen. Note
that, even if an SPT gets lost, its contents are inaccessible to
unauthorized personnel as we have cryptographic mechanisms
for data protection that cannot be bypassed. However, we need
to provide availability of the data even if a user loses his SPT.
Consequently, we recommend that the user replicates her PHR
data on multiple SPTs that are owned by her trusted peers.
The user has complete control over which SPTs she would
like to replicate the data, for how long, and she can change
this decision at any point of time. Note that, even though the
user’s PHR is replicated on another SPT belonging to her peer,
the peer can view the user’s data only if she has provided an
explicit authorization. The user’s SPT communicates with its
peers using the online broker. In the next few sections, we
describe how the user’s PHR is replicated to multiple SPTs
and the mechanisms by which the PHR data can be queried.
Note that, an SPT storing the PHR forms a PDS and a group
of such PDSs form a PDS cloud.

III. OUR ARCHITECTURE

In order to make personal information reliable and available,
we propose to replicate the information over various SPTs,
referred to as PDS nodes, as shown in Fig. 2. Each PDS node

is identified through a unique identifier, which we refer to as
PdsId, and is owned by one user. Each PDS can take on at
most two roles: owner PDS and replica PDS. A PDS acts as
the owner PDS when it is dealing with the PHR record of the
person who owns the PDS. A PDS acts in the role of replica
PDS when it is involved with the PHR record of a person who
is not the owner of that PDS. Note that, all PDSs possess the
role of the owner PDS. However, only a select set of PDSs,
may be assigned the role of replica PDS. We assume that a
replica PDS contains the PHR of at most one user who is not
the owner. However, an owner PDS may choose to replicate
its data to multiple replica PDSs.

The PDSs communicate with each other via the broker using
the publish-subscribe mechanism. The PDSs are responsible
for pushing/pulling the information stored on the broker.
Although the broker can have various types of architecture,
we assume a centralized architecture in this paper. Thus, we
have a network of PDS nodes that connect to a broker. The
broker stores various types of information that are needed to
communicate with the PDSs. The architecture of the broker is
shown in Fig. 2.

The description of the various tables stored at the broker
site are given below.

[Mappings Table:] The schema of this table is given by
mappings(PdsId, RpdsID). The mappings table stores infor-
mation about owner to replica mappings, defined by the pair
(PdsId, RPdsId), where PdsId is the identifier of the owner
PDS and RPdsId denotes the identifier of the replica PDS.

[Updates Table:] The updates table stores updates made by
the owner PDS that must be propagated to its replicas. The
schema of this table is given by updates(PdsId, DataPacket).
The owner PDS is identified by PdsId and the update that
must be propagated is the DataPacket, which is represented
as a BLOB holding java class object that encapsulates the
data and methods of the corresponding type. Each DataPacket
has a sequence number associated with it that identifies the
unique PHR received from the owner PDS.

[Queries Table:] The queries table stores recent queries
on the PHR data that must be answered. The schema of this
table is given by queries(PdsId, QPdsId, QId, QueryPacket)
where PdsId is the PDS issuing the query, QPdsId is the PDS
which is being queried, QId is the unique query identifier, and
QueryPacket is the BLOB (java class object) representing the
actual query. In order to speed up query processing, this table
is indexed by QId and PdsId.

[Results Table:] The result table stores the query responses
that must be downloaded by the query issuer. The schema of
this table is given by results(PdsId, QId, ResultPacket) where
PdsId is the query issuer, QId is the query identifier, and
ResultPacket is the BLOB representing query results. In order
to speed up query processing, this table is indexed by QId and
PdsId.

In addition, the broker also stores two main memory
hashmaps of the following information.

[Replica Updates:] This is defined by the pair
(RPdsId,seqNo) and it records the sequence number



Doctor
DocumentDocument

Secure 
global 

queries

Administration

Nursing

Laboratory

Clinical Trials

Radiology

Pharmacy

Secure Portable Token

PHR 
data

DocumentDocument
Secure 

application

e.g. view lab reports

PHR Data Sources

O
ffl

in
e 

co
m

m
un

ica
tio

n

Authentication
Access Control

Transactions
Query manager

Cryptography

Index / Storage
Sy

nc
hr

on
iza

tio
n

Operating System

RAM

CPU

Crypto

ROM

Researcher

Other
Patients

Major research
 challenges

Available
Technology

Crowdsourcing

Figure 1. Personal Health Server Approach

Mappings table

Updates table

Queries table

Result table

DBMS storage

Seq.num 
Hash map 1

Seq.num 
Hash map 2

RAM storage

Connections 
Pool

PDSID 128 
byte 

identifier

PDSID 128 
byte 

identifier

PDSID1 ↔ PDSID2
PDSID1 ↔ PDSID3
PDSID1 ↔ PDSID4

Figure 2. PDS Broker Architecture

associated with the latest update, denoted by seqNo, that is
received by the replica PDS with identifier RPdsId.

[Owner Updates:] This mapping is defined by the pair
(PdsId, seqNo). The broker stores the sequence number of
the latest update, denoted by seqNo, that it receives from the
owner PDS with identifier PdsId.

IV. REPLICATION PROTOCOL

In order to ensure availability and reliability, the updates
made to the PHR must be propagated to the replicas. In our

architecture, the data owner has complete control over which
PDS(s) will hold her replica at any given point of time and
the replication protocol.

We should state that there is an original socioeconomic
assumption that replicas are chosen out of the reliable peers
(such as family members or close friends) that will be re-
sponsible to keep the replica online periodically to ensure the
adequate synchronization with the owner PDS.

The owner PDS chooses the set of PDSs which are respon-
sible for hosting its replicas. It does this by sending a replica



Broker Network

Mappings table

Updates table

Owner 
PDSID

PDSID1 ↔ PDSID2
PDSID1 ↔ PDSID3
PDSID1 ↔ PDSID4

Replica 
PDSID

Delete Updates Request

Update replica 
set

PHR
update

Owner/replica sequence
number request

Owner updates 
seq. number 

hash map

Replica updates 
seq. number 

hash map

Replica sequence
number update

Update
request

Updates

Owner/replica sequence
number reply

Figure 3. Replication Protocol

set message to the broker. The broker updates the mapping
table that records the owner to replica mappings. The owner
can change this set at any point of time. Note that, once an
owner has revoked the replica status on a PDS, the replica will
no longer receive new updates. However, if an owner decides
to reinstate the replica status on this PDS, it will get all the
updates that have not yet been deleted.

The new inserts into the PHR data are propagated through
the broker which acts as a temporary storage. The owner PDS
sends a data update message to the broker. The broker on
receiving this message stores it in the updates table until
it receives instructions from the owner PDS to delete it. In
addition to the new PHR record, the data update message also
contains a monotonically increasing sequence number, seqNo.
The broker changes the memory hashmap owner updates to
record the latest sequence number, seqNo, received from the
owner PDS, PdsId.

The broker hosts the new PHR records until it receives the
delete request message from the owner PDS. The owner PDS
executes a Replication Watchdog that keeps track of replica
freshness by sending periodic replica seqNo request to the
broker in order to get the latest sequence number of the PHRs
received by its replicas. It compares these sequence numbers
with that of the last PHR it has sent; if a quorum of replicas
has received the latest PHRs, then it sends a delete request
message to the broker. The broker on receiving such a message
from the owner PDS, deletes the PHRs belonging to the owner
PDS from the updates table.

Each replica PDS executes a Replication Manager that is
responsible for pulling the updates and keeping the replica
that it hosts up-to-date. It does this by sending an updates

request message to the broker. The broker retrieves the owner
PDS corresponding to the replica and sends the corresponding
messages stored in the updates table. If the sequence number,
seqNo, associated with the response message is less than or
equal to those updates it has already received, then the replica
PDS does not insert this new data in its update tables. Note
that, the broker sends new updates to replica only if there is
a disparity in seqNo. The broker sends updates to the replicas
only if the seqNo attribute in the owner PDS hash map table
is different from the seqNo of the PDS replica stored in the
replica hash map store. In such cases, the broker sends the
records that are more recent than that given by the replica
seqNo attribute.

Note that, the broker does not take any active role in
maintaining replica consistency, but merely acts as a temporary
storage. Clearly, the duration of storage depends on how often
the owner PDS and replica PDS connect to the broker.

A. Robustness of the Protocol
In order to make our approach robust, we discuss how a PDS

or the broker detects and solves the problem of lost messages.
The data update message is used by the PDS to send its
updates to the broker. The broker maintains the owner update
hashmap that records the seqNo of the last message sent by
the owner PdsId. In order to check whether the data update
message was correctly received by the broker, the owner PDS
sends it a owner seqNo request message. The broker sends the
seqNo update message in response to announce the sequence
number of the latest PHR received from the owner PDS. The
response received from the broker can be compared with the
sequence number of its latest PHR that it stores in its myPds
table. If there is any discrepancy, the owner PDS resends its



data update message. The owner PDS prevents out of order
message arrival by not sending the next PHR before it verifies
whether the previous one was received by the broker.

The owner PDS sends a replicas set message to inform the
broker about its current set of replicas. If this message is lost,
it can be detected subsequently when it issues a replica seqNo
request message to the broker and receives response about
the latest sequence number of the PHRs hosted at the various
replicas. If the set of replica PdsId responding to this message
does not match the ones that the owner PDS sent in the earlier
replicas set message, then it knows that the earlier replicas set
message was lost. In such a case, it retransmits the replicas
set message.

The owner PDS sends a delete request message to the broker
to delete all its PHRs as soon as they have been downloaded
by its replicas. If this message is lost, the broker will continue
to host the PHRs corresponding to the owner PDS until it
receives the next delete request message.

The owner PDS sends the replica seqNo request message
to get the sequence number of the PHRs stored in its replicas.
It sends owner seqNo request message to get the sequence
number of the latest PHR stored in the broker. If the owner
PDS does not receive a response from a broker for any of
the above messages, it retransmits the corresponding request
messages.

The replica PDS sends an update request message period-
ically to the broker to get the latest PHRs sent by the owner
PDS. It also sends a seqNo update message to the broker
to announce the sequence number of the latest message it
received. The broker can send the latest PHRs of the owner
PDS if it notices any discrepancy.

V. QUERY PROCESSING

We have two types of queries: global queries and individual
queries. Global queries involve PHRs of a group of people.
Consequently, the response of the query resides in several
PDSs. Individual queries involve the PHR of one user, so the
answer can be obtained from the owner PDS or any of its
replicas. In this paper, we focus on individual queries only.
We have an embedded relational database engine residing on
the PDS that can process queries. The schema of our PHR
table is as follows:
(hospitalName, patientName, medicine, date,

doctorName, diagnosis)
Example queries supported by our system are given below.
[Q1:] SELECT COUNT(*) FROM ehr
[Q2:] SELECT date FROM ehr

WHERE diagnosis = ‘‘flu"
AND prescription = "aspirin"

In the following, we use the term query requester (or simply
requester) and query responder (or simply responder) to refer
to the different roles involved in query processing. Note that,
we do not focus on access control issues, but assume that
the requester has permissions to query the PHR of some data
owner. Responder may be the owner PDS or the replica PDS
which has the PHR corresponding to the query.

We describe query processing in Fig. 4. Requester executes
a jobber process that sends the query message to the broker
(shown as Step 1 in Fig. 4). The query is temporarily stored
in the queries table. The response to the query is stored by
the broker in the results table. The jobber process in the
requester sends query result request message (shown in Step
5 of Fig. 4) to get the response of the query. After receiving
the responses from the broker (shown in Step 6 of Fig. 4), the
jobber sends a delete query message to the broker to delete
the query identified by QId and PdsId (not shown in Figure
4.) If the query result is resent to the requester, it signals that
the delete query message has been lost. In such a case, the
jobber sends the delete query message once again.

Responder has a query manager that sends the query request
message (shown in Step 2 of Fig. 4) periodically to the broker
to check whether there are any outstanding queries on the
PHRs residing in it. If there are outstanding queries, the broker
forwards them to the responder (shown in Step 3 of Fig. 4).
The responder constructs a query result message (shown in
Step 4 of Figure 4) and sends it back to the broker.

VI. PROTOTYPE IMPLEMENTATION AND EXPERIMENTAL
RESULTS

The PDS model (both the broker and the PDS itself) has
been implemented using Java SE (Standard Edition) using
SQLite Java driver to work with the embedded database. We
used MySQL for broker backend storage of the PDS storage
tables.

We have deployed the PDS model prototype on the Planet-
Lab [8] testbed. Figure 5 shows the location of the different
PDS nodes and their Round Trip Time (RTT) delays in
milliseconds from PDS location to the broker network and
back to the PDS. The broker infrastructure has been set up
in a geographical Internet location that is different from the
location of the PDS nodes. The backend database server and
Broker process run on separate machines within the same
network so that JDBC queries would not be affected by
the network losses or delays. The PDS nodes have been
deployed in United Kingdom, Poland, US (at Colorado State),
Germany, Sweden, Portugal and Slovenia. No particular choice
for location has been made except that the locations listed have
been observed to possess relative stability of the machines
uptime on PlanetLab global network. Most of the queries have
been issued from US (Colorado State) location and tested with
replicas or target PDSes answering the queries from the above
listed geographical internet locations.

As we see from the plots different geographical locations
incur different QoS values for the replication and query
processing adding the RTT delays to the constant sleep periods
of Replication Manager and Query Manager threads. Therefore
replication and query processing delays have been defined
as the sum of RTT from the source to target and back to
carry the protocol messages plus the sum of sleep periods
for Replication and Query Managers correspondingly at both
source and target PDS nodes. Since both threads are expected
to pull requests with a reasonable sleep period to spare the



Broker Network

Result table

Queries table

PDS 1 PDS 2

Query 
request

Query data

Result

Request for 
query result

Query

Query
result

2

1

5

6

4

3

Figure 4. PDS Query Processing

broker computational resources (and network bandwidth) we
could define the service as having the eventual consistency
property when data is replicated and queried at unpredicted
time intervals but with guaranteed eventual properties (pro-
vided that PDS nodes are able to go on-line).

Also the plots do not reflect the delays that would be
introduced by broker serving requests from a large number
of pulling nodes (more then a thousand) and sending JDBC
queries to backend database with highly populated tables
(introducing local query processing delays on the backend
DB side). This would introduce additional service delays and
is a subject for separate study with highly loaded broker
instances. We did not provide the separate plot for the Replica
Query Manager since the QoS would be identical to the
Query Manager because both threads operate on the local
embedded database entries (replicated database and the PDS
own database respectively).

Note that, the tests of query processing do not introduce
inconsistencies in query results when several replicas are
answering queries, even if some of them go offline. This is
possible because each replica PDS first downloads the updates
before responding to any query. Thus, data currency is ensured
by our protocol.

Sample queries that we executed are given below.
[Q1:] select * from ehr

where medicine = "aspirin"
[Q2:] select * from ehr

where medicine = "aspirin"
and diagnosis = "flue"

[Q3:] select * from ehr
where medicine = ’aspirin’
and diagnosis = "flue"
and hospital = "pvh"

[Q4:] select count(*) from ehr
The measured CPU and memory load on the Broker Java

process has been observed to be relatively negligent with a
testing PDS set (up to 12 nodes going online) ranging from

1 to 2 percent of CPU utilization. We anticipate that highly
loaded Broker instance might be able to service a large number
of pulling PDS subscriber nodes provided that JVM does
correct CPU cores scheduling with underlying OS support.

Overall the developed system prototype has been deployed
successfully with replication and query processing performed
in the environment where PDS nodes are located in geo-
graphically dispersed locations and queries are issued on data
distributed across Internet.

VII. RELATED WORK

Personal Data Servers (PDS) suggests a radically different
way of considering the management of personal data. The
idea of using Secure Portable Tokens for storing personal data
was advocated in one earlier work [9] where we presented
some high level ideas. In this work, we look at replication and
query processing at a much more detailed level with respect
to health care applications, and have reported the results of
actual implementation.

An attempt to facilitate data sharing in distributed Electronic
Health Records (EHR) systems has been advocated in the
research such as [10] where the secure and functional EHR
system is proposed to support secure patient data sharing
across cooperative organizations. We do not address the prob-
lem of how EHR can be shared across various organizations.
However, we demonstrate how PHR data can be stored with
individual users who have complete control over this data. The
individuals can give the various health organizations access to
their PHR via well-defined access control policies.

Our work bears some similarity to peer-to-peer (P2P) data
management research. Commercial peer-to-peer systems (such
as Gnutella, Kazaa and others) are rather limited when con-
sidered from the perspective of database functionality. These
systems provide only file level sharing with no sophisticated
content-based search/query facilities. They are developed as
single-application systems that focus on performing one task,
and it is not straightforward to extend them for other ap-
plications/functions [11]. Typical applications that can take



Figure 5. PDS nodes distribution on PlanetLab testbed

Figure 6. PDS replication QoS on PlanetLab testbed

advantage of P2P systems are probably lightweight and involve
some sort of cooperation [12]. One significant difference with
P2P systems is that our query-processing is very close to
conventional databases. We can express most of the relational
queries on any node unlike P2P systems [13]–[15]. This is
effectively due to the use of embedded database engine in the
PDS node that provides the underlying support for relational
queries.

The need for database functionality embedded in various
forms of lightweight computing devices is giving rise to
personal folders on chips, networks of sensors and mobile
computing devices [16]. Sensor networks gathering weather,
pollution or traffic information have motivated several recent
works [17] where a need arises to enable distributed query
processing over a sensor network [18]. We do not focus
on distributed query processing in this work, but instead on
how data can be replicated across multiple nodes and query

processed even when some nodes are not available.

PDS topology infrastructure uses the same concept of the
overlay network - a similar infrastructure for all P2P systems,
which is built on top of a physical network. PDS overlay
uses unique 128 byte (and expandable) PdsId identifiers to
distinguish nodes in the network from each other during query
processing and replication operations. PDS overlay topology
could be compared to the P2P hybrid networks that are
commonly known as super-peer systems where some peers are
responsible for controlling a set of other peers in their domain
[12]. Examples of super-peer networks include Edutella [19]
and JXTA [20]. PDS nodes are the nodes that interconnect with
each other using a publish-subscribe model through broker
network [21] that is somewhat different from the existing
super-peer systems with better routing efficiency than that
of peer-to-peer DHT alternative [12]. Thus, the PDS model
borrows from P2P and publish-subscribe models; however,



Figure 7. PDS Query Processing QoS on PlanetLab testbed

instead of relying heavily on DHT as is done in P2P systems,
we use the broker network of supporting servers to carry out
the efficient logical routing between the PDS nodes.

Certain applications, such as, agenda management, bulletin
boards, cooperative auction management, and reservation man-
agement, require the data to be current. Replica consistency
is particularly important in such applications. Supporting data
currency in P2P systems is difficult as there is considerable
dynamism in the peers joining and leaving the system. In P2P
systems the problem is sometimes addressed by using data
versioning [22] where each replica has a version number that
is increased after each update. Data currency in PDS being
used for PHRs is extremely important since the action taken
by individuals/organizations depends on the accuracy of the
health records. In PDS model, we not only ensure eventual
consistency of replicated data but also ensure that queries
issued by the user get accurate results.

PDS model also has some commonalities with the Local
Relational Model (LRM) [13]. LRM assumes that the peers
hold relational databases, and each peer knows a set of peers
with which it can exchange data and services. The data
residing in each peer may have semantic dependencies with
that stored in the others. The authors propose coordination
formulas that help resolve the semantic heterogeneity of the
data stored at different peers. We do not consider semantic
heterogeneity in this paper at all. We focus on how PHRs can
be stored and replicated in low powered devices which are
under the control of individual users.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we investigated how PHRs of individuals can
be stored on PDSs such that individuals have more control
over their data. The data of an individual is stored on the
owner’s PDS and it is replicated on the PDS of one or more
individuals who are trusted by the owner. We proposed an
architecture for PDS cloud and discussed how the data can

be replicated and simple queries processed. Our replication
algorithm guarantees eventual consistency provided the PDS
holding the replica comes online after the update. Our query
processing ensures that query response time is minimized and
the latest updates are reflected in the query response. We built
a prototype and performed experiments using the PlanetLab
to demonstrate the feasibility of our approach.

A lot of work remains to be done. Our next step is to
investigate how to process global queries, such as aggregate
queries, where the answer lies in getting the information from
multiple PDSs. We also plan on providing protocols for query
processing when the replica is not stored in one PDS, but
is partitioned across several PDSs. We need to investigate
what types of partitioning schemes work best for applications
involving PHRs.

Security issues also have not been addressed at all in this
work. We plan on how to formally specify access control,
retention, audit, and privacy policies for PHR applications.
Such formalization is needed to analyze inconsistencies and
conflicts among the different set of policies. One future work
is formal specification and analysis of policies and their real-
time enforcement using SPTs.

We have not yet addressed data privacy and anonymity
issues in the current implementation. We plan to achieve basic
network security via TLS encryption of the protocols and
use TOR routing to anonymize the connection to the broker
network. The temporary data stored in the broker network must
be protected to protect against honest but curious broker [9].
In a previous work [23], we have addressed some of these data
privacy and anonymity issues in the context of a centralized
broker. Our future plans include extending these techniques
for a distributed architecture that will work with the SPTs to
provide efficient storage and retrieval of PHRs.

We plan to implement a reference monitor in the secure
hardware of SPTs to enforce such policies. We will investigate
how to store data on an encrypted form on the broker, and how



such data can be securely and efficiently accessed. We plan to
provide secure and anonymous protocols for communication
with the broker to ensure the privacy of PDS users. We also
plan to investigate how to partition the data, such that no
single replica PDS has enough information to cause leakage
of sensitive health data.

ACKNOWLEDGMENT

We wish to thank Mr. Fernando Pedroza and Ms. Brenda
Harstad at the University of Colorado Health for helping us
understand the requirements of the medical domain. This work
was partially supported by the National Science Foundation
under Grant 0905232. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] California Healthcare Foundation, “Consumers and
Health Information Technology: A National Survey,”
http://www.chcf.org/publications/2010/04/consumers-and-health-
information-technology-a-national-survey, Apr. 2010, date accessed:
July 31, 2013.

[2] C. J. Gearon, “Perspectives on the Future of Personal
Health Records,” http://www.chcf.org/publications/2007/06/
perspectives-on-the-future-of-personal-health-records, June 2007.

[3] M. K. McGee, “Forget the Chart, Check the Cell Phone – Insurer will
let members access their health data from cell phones,” Information-
Week. http://www.informationweek.com/forget-the-chart-check-the-cell-
phone/197001014, Jan. 2007.

[4] U.S. Department of Veteran Affairs. MyHealtheVet. [Online]. Available:
http://www.myhealth.va.gov/mhv-portal-web

[5] Microsoft Corporation. HealthVault. [Online]. Available: http://www.
healthvault.com/Personal/index.html

[6] Open Security Foundation. OSF DataLossDb – Data Loss News,
Statistics, and Research. [Online]. Available: http://datalossdb.org

[7] L. Mearian, “Consumers Remain Wary of Personal Health Records,”
News article in ComputerWorld http://www.computerworld.com/s/
article/9215996/Consumers remain wary of personal health records,
Apr. 2011.

[8] PlanetLab Consortium. PLANETLAB: An Open Platform for
Developing, Deploying, and Accessing Planetary Scale Services.
[Online]. Available: http://www.planet-lab.org

[9] T. Allard, N. Anciaux, L. Bouganim, Y. Guo, L. L. Folgoc,
B. Nguyen, P. Pucheral, I. Ray, I. Ray, and S. Yin, “Secure
Personal Data Servers: A Vision Paper,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 25–35, Sep. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1920841.1920850

[10] J. Sun and Y. Fang, “Cross-domain data sharing in distributed electronic
health record systems,” Parallel and Distributed Systems, IEEE Trans-
actions on, vol. 21, no. 6, pp. 754–764, 2010.

[11] B. C. Ooi, Y. Shu, and K. L. Tan, “DB-Enabled Peers for Managing Dis-
tributed Data,” in Procedings of the Fifth Asia-Pacific Web Conference
(APWeb 2003), 2003, pp. 10–21.

[12] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems,
3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2011.

[13] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos,
L. Serafini, and I. Zaihrayeu, “Data Management for Peer-to-Peer Com-
puting : A Vision,” in Proceedings of the 5th International Workshop
on the Web and Databases (WebDB), 2002, pp. 89–94.

[14] N. Daswani, H. Garcia-Molina, and B. Yang, “Open Problems
in Data-Sharing Peer-to-Peer Systems,” in Proceedings of the 9th
International Conference on Database Theory (ICDT). London,
U.K.: Springer-Verlag, 2003, pp. 1–15. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=645505.656446

[15] P. Valduriez and E. Pacitti, “Data Management in Large-Scale P2P
Systems,” in Proceedings of the 6th international conference on High
Performance Computing for Computational Science (VECPAR). Berlin,
Heidelberg: Springer-Verlag, 2004, pp. 104–118. [Online]. Available:
http://dx.doi.org/10.1007/11403937 9

[16] Kyu-Young Whang and Il-yeol Song and Taek-yoon Kim and Ki-hoon
Lee, “The Ubiquitous DBMS,” SIGMOD Record, vol. 38, no. 4, pp.
14–22, Dec. 2009.

[17] G. Bernard, J. Ben-othman, L. Bouganim, G. Canals, S. Chabridon,
B. Defude, J. Ferrié, S. Gançarski, R. Guerraoui, P. Molli, P. Pucheral,
C. Roncancio, P. Serrano-Alvarado, and P. Valduriez, “Mobile
Databases: a Selection of Open Issues and Research Directions,”
SIGMOD Record, vol. 33, no. 2, pp. 78–83, Jun. 2004. [Online].
Available: http://doi.acm.org/10.1145/1024694.1024708

[18] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
an acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, Mar. 2005. [Online].
Available: http://doi.acm.org/10.1145/1061318.1061322

[19] W. Nejdl, W. Siberski, and M. Sintek, “Design Issues and Challenges
for RDF- and Schema-Based Peer-to-Peer Systems,” SIGMOD
Record, vol. 32, no. 3, pp. 41–46, Sep. 2003. [Online]. Available:
http://doi.acm.org/10.1145/945721.945731

[20] S. Microsystems. JXTA: The Language and Platform Independent
Protocol for P2P Networking. [Online]. Available: http://jxta.kenai.org/

[21] L. Vargas, J. Bacon, and K. Moody, “Integrating Databases with
Publish/Subscribe,” in Fourth International Workshop on Distributed
Event-Based Systems (DEBS). Washington, DC, USA: IEEE Computer
Society, 2005, pp. 392–397. [Online]. Available: http://dx.doi.org/10.
1109/ICDCSW.2005.79

[22] P. Knezevic, A. Wombacher, and T. Risse, “Enabling High Data Avail-
ability in a DHT,” in Proceedings of the 2nd International Workshop
on Grid and Peer-to-Peer Computing Impacts on Large Scale Hetero-
geneous Distributed Database Systems, 2005, pp. 363–367.

[23] I. Ray, K. Belyaev, M. Strizhov, D. Mulamba, and M. Rajaram, “Secure
Logging as a Service - Delegating Log Management to the Cloud,” IEEE
Systems Journal, vol. 7, no. 2, pp. 323–334, 2013.


